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DECOMPOSITION OF HOMOGENEOUS MEANS
AND CONSTRUCTION OF SOME METRIC SPACES

P. KAHLIG AND J. MATKOWSKI

(communicated by Z. Pales)

dbstract, Any (poiively) homogencous mean on (0 0)? can be decomposed multiplicatively

into the arithmetic mean A and a one-place function, called A ~index function. Index functions

characterize a homogeneous mean in many respects, and their graphs are suitable for geometrical

ns of several properties of homogeneous means. Moreover, index functions can

facilitate proofs of inequalities between different types of homogeneous means. With the aid of
A-index functions, some merics are introduced in the set of homogeneous means.

0. Introduction

Let m : (0, 00)*> — (0, c0) be a fixed positively homogeneous mean. Then any
positively homogeneous mean defined on (0, 50)? can be decomposed (multiplica-
tively) into m and a one-place function, called m-index function. In fact, there is a
one-to—one correspondence between the family of all homogeneous means and the set
of index functions. The main part of the paper is devoted to the case m = A, where A is
the arithmetic mean. The A-index function of a mean characterizes the mean in many
respects, e.g. symmetry of a mean is equivalent to the evenness of its A—index function,
and subadditivity of a mean is equivalent to the convexity of its A—-index function.

Index functions can be useful tools in proving inequalities between different types
of positively homogeneous means (as an application, in section 5, we give the best
estimation of the contra-harmonic mean by power means). Graphs of index functions
are suitable for geometrical interpretations and visual comparisons of several properties
of positively homogeneous means. In section 6, we show that index functions allow
to introduce metrics in the set of positively homogeneous means. In section 7, the
M -convexity of power functions is treated via index functions.

Mathematics subject classification (1991): 26D07.
words and phrases: Homogeneous mean, index function of a mean, decomposition of a mean,
complete metric space of homogeneous means
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464 P. KAHLIG AND J. MATKOWSKI
1. Preliminaries and motivation

Let I C R be an interval. By a mean we understand a two-place function
M : P - R such that

min(x,y) < M(x,y) <max(v,y),  x y€l
(in particular, we have M(x,x) = x forall x € I). A mean M is called strict if for all
x.y€el, x#y, thesei ies are sharp; and it is s) ic, if M(x, y) = M(y, x)
for all x, y € I (for a more exhaustive theory of means cf. Bullen, Mitrinovi¢ and
Vasié 2], also Aczél and Dhombres [1]).

In the present paper we are mainly interested in positively homogeneous means.
Therefore the interval I has to be of one of the following forms: (0, 00), [0, 00),
(—0,0), (—00,0] and R. Since the cases (—o0,0) and (—oo, 0] easily reduce to
(0,0), [0, 00), respectively, we omit them. Recall that a function M : I> — R is
positively homogeneous of order p (p € R), if

M(tx, ty) = "M(x,y), t>0, x,y€el

It is easy to see that if M in this homogeneity condition is a mean then p = 1,ie. M
is positively homogeneous (for short: M is homogeneous),

M(tx,1y) = tM(x, y), t>0, x,yel
To present a general concept of this paper let us fix a mean N : (0, 00)? — (0, 00).
Then for every mean M : (0, 00)* — (0, 00) there is a trivial decomposition
M(x,y) = N(x, y)fun(xy),  x y>0
where, of course, fyy = M/N. For example, the exponential mean F on (0, oc),
F(x,y) = log ((exp(x) + exp(y)) /2) , “decomposed” by the arithmetic mean A (re-
stricted to (0, 00) ), A(x,y) = (x + y)/2, gives, trivially, F = Afrs where
2 o8 (eXP(X) -;— EXP(Y))

x+y

Fra(x,y) :

has a rather complicated form (without the possibility of any simplifying reduction).
However, if N and M are homogeneous means, the two-place function fy;y can be
reduced to a one-place function, which is useful in representing every homogeneous
mean M nontrivially as a product Nfyyy .

To ize a positively function M : (0, 0)> — R by a one—
place function 4 : (0, 00) — (0, c0), it is often useful to take

M(x,y) = xh(y/x), xy>0,

where h(s) := M(1,s), s > 0. When the mean M is symmetric, the corresponding
symmetry property of & (which reduces to the functional equation h(s) = sh (1),
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s > 0) is not easily recognizable. However, an expedient symmetry may be achieved
by a transformation of the variable s (s = y/x) to a new variable r; taking the
= i = 1), we obtain

homographic involution s = {F (implying 1 = {32

M(x,y) = A, y)f (’:;f) ., BEZ0

where A stands for the arithmetic mean and f(r) = M(1+1,1—1), 1€ (=1,1). In
the next section we discuss such a decomposition in more detail.

2. Decomposition by the arithmetic mean

Denote by A the arithmetic mean A(x,y) = 32, (x, y >0).

3
Definition 1. For an arbitrary homogeneous mean M : (0, 00)2 = (0, 00) the
function firs : (=1, 1) — R, given by

Sua(t) =M1 +1,1-1), te(=L1),

is called index function of M with respect to A (for short: A—index function of M).
The following decomposition result justifies this definition.

THEOREM 1. If M : (0, 00)> — (0, 00) is @ homogeneous mean, then

MGx) = AGx ) (2

and, moreover,
I° fua((=1,1)) € (0,2);
2° fua(0)=1;
3° M is symmetric iff fua is even, i.e.

Sua(=t) = fua(®)y  re(=1L1)
4° forall t € (-1,1),

1= [t]< fua(t) S 1+ 2]

5° forall 1€ (~1,1),

faa®)=1;
6° for the extremal means, min and max, we have, respectively,
Juina(t) =1=1t],  fuwa(t) =141, re(=11);
7% if M is one of the projective means, i.e, if M = Py or M = Py, where

Pi(x,y) = Pax,y) =y,

then
Sea) =1+t,  fralt)=

te(=11);
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8° for all homogeneous means M, N : (0, c0)* — (0, 00),
M(x,y) SN(xY), (6 y>0) iff fualt) <fva®), te(=11)
9° M is subadditive, i.e.
M (x1 +x2, Y1 +y2) S M (x1,51) + M (12, 72), X1, X2, Y1, ¥2 > 0,
iff the function fy 4 is convex.

Proof. Let M be a homogeneous mean on (0, c0)?. Then, making use of the
definition of the A—index function of M, we have

x+y 2 t+v 2x 2*

:%M(H— 1-*") = A, Y)fira (:;i)

x+y x+y

forall x, y > 0, which proves the decomposition formula (1).
By the definition of a mean, we have

o<min(l+41-1)<KM(I+1,1-1) <max(1+14,1-1),

forall 1 € (—1, 1). The definition of fy;4 proves 1°. Setting t = 0 in the definition of
the A-index function gives fiy4(0) = M(1, 1) = 1 and proves 2°. If M is symmetric
then, forall 7 € (—1,1),

Sua(=0) =M1 -, 1+ 1) =M1 +1,1—1) = fyra(r).
Conversely, fira(—t) = fua(t), forall r € (—1, 1), implies that

i
Sua (x+v) Sua (x+y> x,y>0.
Now the symmetry of A and decomposition formula (1) imply that

(5. = A ) fn (52 = A0 0an (53 ) = M2

x+

forall x, y > 0, which proves 3°. We omit easy proofs of properties 4° — 8°. It is
known that a positively homogeneous function M : (0, 50)* — R is subadditive iff the
function ¢ : (0,00) — R, () := M(t,1), t > 0, is convex (cf. Matkowski [5]).
Thus to prove 9° it is enough to show that fi;4 is convex iff the function ¢ is convex
(cf. also Remark 1). We have

ﬁ,_A(t):M(l+r,lvl)—(l+t)M(l, 1+r> 1+1)o<1+1)

1+t 1+1¢ 2
‘2_”’(1_+x‘l> 72—7W<1+1>
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where (i) := ¢(u— 1). But the function ' is convex iff the function u — uy(1/u)
is convex (cf. Matkowski [4]). This proves 9°, and the proof is completed.

Remark 1. If fysa is twice differentiable in (—1,1), the proof of 9° can be
simplified. Then, of course, ¢ is twice differentiable in (0, 0c) and we get

" 4 n(l-t
fas = isd” (554) . re-1),
which shows that fy 4 is convex iff ¢ is convex. — To give a complete argument for
9%, other than that presented above, it is enough to observe that every convex function
is a limit of a sequence of convex and twice differentiable functions.

It turns out that property 4° izes the family of all means
on (0, c0) . In a sense, the following result is the converse of Theorem 1.4°.

THEOREM 2. For every function f: (—1,1) — R such that
-t f@O) <1+ 2], re(=L1), (2
the function M : (0, 00)? — R defined by

M(x,y) =A@, y)f (%) . xy>0 3

is a homogeneous mean such that f = fia.

Proof. Suppose that f satisfies condition (2) and let M be defined by (3). It is
obvious that M is homogeneous. Take arbitrary x, y > 0, and assume, for simplicity
of notation, that x < y. Then, applying (2) and (3), gives

x+y (1 y—x)

2 x+y
el el
2 x+y 2 ' \x+y

=Mxy) < 2E2 (1+ V)
7 X+

T2 (14222 < = i),

which shows that M is a mean. Setting x = 147 and y = 1 —¢ for 1 € (-1, 1) gives
M(1+1,1—1) = f(r), which means that f = fi+, and the proof is completed.

Remark 2. Theorems 1 and 2 establish a bijection of the class of all homogeneous
means M : (0,00)2 — (0,00) onto the class of all functions f : (=1,1) = (0,2)
satisfying condition (2). Formula (1) gives a general construction of homogeneous
means.
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Remark 3. The set
A={(s) ER e (=L 1) 1-||<s<1+]r}

is of butterfly shape. Theorem 2 can be interpreted geometrically in the following
way: every function f : (—1,1) — R such that the graph of f is contained in A, is
an A-index function of a mean. Note that A is not a convex set. In this context it is
interesting that the set of all A—~index functions is convex. Namely, for all homogeneous
means M, N and 2 € (0, 1) the function A fia+ (1—4)fx.4 isan A—index function
of amean AM + (1 - A)N

This fact can be generalized. For homogeneous means V, M, N on (0, c0)

define their composition U : (0, 00)? — (0, c0) by
U(x,y) =V (M(x,y),N(x,y)), % y>0.
Then, of course, U is a homogeneous mean, and
Jua(®) =V (fual), fua®), 1€(=11).
In particular, the graph of a homogeneous mean of any two A-index functions, the
graphs of which are of course in A, is also located in the region A.

Note also that the A-index functions fy4 of homogeneous means M need not
be continuous. To show this it is enough to apply Theorem 2 where f is an arbitrary
discontinuous function satisfying condition (2).

The next result gives conditions under which a homogeneous mean defined on
(0, 00)* can be, in a natural way, extended to a homogeneous mean defined on the
closed quadrant [0, c0)?.

THEOREM 3. Let M : (0, 00)* — (0, 00) be a homogeneous mean. If the limits

Sua(1=) = lim fua(0),
—1-
Sua(=14) := lim_fua(0),
e
exist, then they are finite, and M : [0, 00)? — [0, 00) defined by
M(x,y) X y>0,
A(x, 0fia(1=) x>0, y=0,

M= A0 (o)
0

is a homogeneous mean defined on [0, co)?.

Proof. In view of Theorem 1.1° the limit fyy4(1—) is finite and, making use of
(1), we infer that, for every x > 0, the limit

x=y

M(x,0+) = lim M(x,y) = lim A(x,y)fira (m) =Ax, 0)fira(1-)
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exists, and is finite. Similarly, the limit fyo(—1+) is finite, and, for every y > 0, the
limit

M(O+,y) = lim M(x,y) = lim ACx,y )fm( ) — AV ua(-14)

exists, and it is finite. As the homogeneity of M is obvious the proof is completed.

Remark4. Applying this theorem, it is easy to verify that harmonic and logarithmic
means (whose natural domain is (0, c0)?) can be extended onto the closed quadrant
[0, 00)?. Note also that for every homogeneous mean M defined on [0, 00)? we can
define the A—index function fya : [—1,1] — [0,2], and that the counterparts of
Theorems 1 and 2 remain true.

Taking in Theorem 2 a function f : (=1, 1) — R satisfying condition (2) and such
thatatleast one of the limits f(1-) or f(—1+) does nolexns( we obtain ahomogeneous
mean defined on (0, c0)? that is not toa mean
defined on the closed quadrant [0, 00)?.

Example 1. (Decomposition of power mean M?! by arithmetic mean A.) The
power means M : (0, 00)% = (0, 00), p € R, are defined by the formula

P\ /P
MG ) = (%) p#A% MUey)=Glxy). xy>0,

where G : (0, 00)? = (0, c0) stands for the geometric mean. We have

Iy 1p >
S a(t) = (W) . feal)=(1 —tl)'/', te(-1,1).

Farticular cases.
(i) p=—1 (decomposition of harmonic mean M!~'] = H by arithmetic mean):

Hw) = A (52). x>0

fuat) =HQ+1,1-0)=1-2 r1e(-1,1).
Note that here the limits fia(1=), fy.a(—14) exist and equal zero. Therefore, in
view of Theorem 3, the harmonic mean H can be (uniquely) extended onto the closed
quadrant [0, oo)z ,and H, the homogeneous extension of H , vanishes on the boundary
of its domain.

(ii) p=2 (decomposition of RMS mean M =

R by arithmetic mean):

R(x,y) = A(x, y)fra (%) s X y>0;

12
s

fra(t)=R(1+t,1—1)=(1+7* te(-1,1).
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Let us note the following easy to verify
Remarks. Forany mean M : (0, 00)? — (0, c0) , the function M* : (0, 00)> — R
defined by
M*(x,y) i=x+y-M(xy), x>0,
is a mean. In the sequel it is called the contra-mean of M . Note that (M*)* = M.
Moreover,

AMM)=A and  fyra+ fia =2
In connection with this remark let us note another property of A-index functions.

THEOREM 4. If M : (0, 00)> — (0, 00) is a homogeneous mean and fy4 is its A
—index function, then the function

fi=2—fua
is also an A—index function, namely of a mean which is the contra-mean of M.
Proof. In view of Theorem 1.4°,
1= 1S fua(®) S W+ 2], 1€ (=1,1).
Hence, by the definition of f, we get
-l f) <1+ ]e], re(=L1),

and, according to Theorem 2, the function f is an A-index function of a certain
homogeneous mean 1 : (0, 00)* — (0, o), and forall x, y > 0,

mis) = s f (252) = 246,

— A ¥)fua ( +y) =x+y-Mxy)
which completes the proof.

Example 2. (Decomposition of contra-harmonic mean K = H* by arithmetic

mean):
") Xy 103
<+

K(xy) =

Xty
feal) =K(1+0,1-1)=1+7, te (-1,1).

Example 3. (Decomposition of Heronic mean E by arithmetic mean):

Alx, y)fia (

B =} (s y +00)) =aelfea (52), x>0

A = E Sy % @ra-a"7),  re-L.
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Example 4. (Decomposition of logarithmic mean L by arithmetic mean):

—A(x Y)fra ( ) xy>0, x#y;

x+y

2t
og 1%

Sualt) :L(1+z.1—r):I te(=1,1).

Here fi4(1-). foa(—1+) existand equal zero. In view of Theorem 3, the mean
L is extendable onto the quadrant [0, 00)?. According to Theorem 3, the extension L
vanishes on the boundary of its domain.

3 ition by any mean

Here we show that upon replacing the arithmetic mean by another homogeneous
reference mean, the counterparts of Theorem 1.1° — 8° remain true.

Definition 2. Let m : (0, 00)* — (0 oo) be a fixed homogeneous mean. For an
arbitrary homogeneous mean M : (0, 00)* — (0, 00) the function fym : (—1,1) = R,
given by
M(l+n1-1)

Junl®) = ST
is said to be the index function of M with respect to m (for short: m—index function of

€(-1,1),

Remark 6. Note that, under the assumption of the definition,

Al) _MO1+t1-1) 1+1¢ -
= ke el

THEOREM 5. Let m : (0,00)% — (0,00) be a fixed homogeneous mean. If
M : (0, 00)2 = (0, 00) is a homogeneous mean, then

M) =l fun (S2), 5350
and, moreover,
 fin(=1,1) € (0, @), where @ :=sup{ - 1€ (-1,1)}:
° fum(0) =1

3" if m is symmetric, then M is symmetric iff fy is even, i.e.

Sum(=1) = fium(t)s 1€ (=1 1);
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4° foreveryt€ (-1,1),

1=liz] tilel,
< fum(t
0 < Sum(t) € f.,.A( )
5 forall t € (~1,1), fum(t) =1;
6° for the extremal means, min and max, we have, respectively,
1-|¢] 1+ 1]
minm (1) = s nax,m! €(-1,1);
e b o Lo U DL A S

7° if M is one of the projective means, i.e. if M = Py or M = Py, where Py(x,y) :=
x, and Py(x,y) :=y, then
feum(t) =

Jroa(t) = €(-11);

f A(f)
8° for all homogeneous means M, N : (0,00)% — (0, %),
M(x,y) SN Y) (53 >0) i fiun() < fun(), 1€(=11).
We omit easy arguments (analogous to the suitable parts of Theorem 1).

Remark7. If m, M : (0, 00)* — (0, o) are homogeneous means then

Suam(t) = te(-1,1).

1
S (1)’
The next result, a counterpart of Theorem 2, is, in a sense, the converse of Theorem
5.4°. Tt gives a construction of a homogeneous mean from a given suitable function in
a single variable and a given homogeneous reference mean.

THEOREM 6. Let m : (0,00)> = (0, 00) be a homogeneous mean. For every
function f: (—1,1) — R satisfying the condition

1] 14 1]
Suna(r) Fma(t)”
the function M : (0, 00)* — R defined by

<f) < te(-1,1), 4)

M(x,y) = m(x,y)f (%) ),

is a homogeneous mean such that f = fi.

As the proof is similar to that of Theorem 2, we omit it.

Example 5. (Decomposition of a power mean M!?! by another power mean M!4l.)
By the definition of power means (Example 1) we get the docomposition

MV(x, y) = M (x, y) fyin i (%) P geER, (x,y>0);
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MPI(1+1,1-1)

S pra(t) = Wiz €(-L1).
Particular cases.
(i) p=—1, g =0 (decomposition of harmonic mean M{~! = H by geometric
mean M = G):

Hiny) = <x>)fm(x+y) Sl 0 snn e

(i) p=1, q=0 (decomposition of arithmetic mean M(!l = A by geometric
mean MU = G):

A = 6o (S2), he)=0=A7R  re(-L,

conforming to fi6(t) = 1/fc.a(t) forall r € (—1,1) (cf. Example 1) by Remark 7.

Example 6. Choose for reference the harmonic mean, m = H, and consider the
function f : (=1,1) = R, f(r) = 1 + £. From the decomposition H = Afj;4
(cf. Example 1) we know fy4(r) = 1 —r*. The given f fulfills condition 4° of
Theorem 5, therefore, f is an H-index function for a certain homogeneous mean
M : (0, 00)* = (0, 00) . By Theorem 6 this mean has the form

M(x,y) = 2 f(*“)’) _3yen?

x+y \x+y

%, y>:0

Although the reference mean m = H is symmetric, the resulting mean M is not
symmetric since the function £ is not even.

4. Graphs of index functions

Let m: (0,00)? — (0, 00) be a fixed homogeneous mean. Then the graphs of all
m-—index functions fy,, , where M is a homogeneous mean on (0, ), are contained
in a butterfly-shaped region; they are suitable for geometrical interpretations and visual
comparisons of several properties of homogeneous means.

4.1 Graphs of index functions with respect to the arithmetic mean.

The A-index function fy4 is, according to Theorem 1.4°, bounded by the
functions

Juina(®) =1=11],  foal)=14]t],  t€(=11)

their graphs constitute a region of butterfly shape.
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Example 7. The graphs of the A—index functions fy,4 of some power means
(cf. Example 1) are given in Figure 1. The arithmetic mean A (as reference mean)
appears as a horizontal straight line; geometric mean G and harmonic mean H are
represented by a semicircle and a parabola, respectively. All graphs must pass through
the point (0, 1) (cf. Theorem 1.2°). The present means are symmetric, implying
that the graphs of the corresponding A—index functions are symmetric with respect to
the second coordinate axis. The well-known relation between harmonic, geometric,

ithmic, arithmetic and root- q mean, d by the inequality min <
H < G < L<ASKR < max, is mirrored in any graph of index functions (according
to Theorem 1.8°).

Fig. 1. Graphs of A-index functions.
The labels refer to the following means: A arithmetic mean, G geometric mean, H harmonic
mean, C contra-geometric mean, K contra-harmonic mean, max maximum, min minimum

Example 8. The graphs of the A—index functions fi4 of some contra—means (cf.
Example 2) are also given in Figure 1. — The Heronic mean E from Example 3 can
be written as a weighted arithmetic mean of A and G, namely

1 42
E—§(2A+G)AA(3A.§G).

which is mirrored in the corresponding A —index function as
1 42
fea=3Q2+foa) =4 (gv ng.A) .

(It is easy to read off the inequality G < E < A from any graph of index functions.)

4.2. Graphs of index functions with respect to any homogeneous mean.

The index function fi;,, (of a homogeneous mean M with respect to another
homogeneous mean m ) is, according to Theorem 5.4° , bounded by the functions
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. e _ 1+t
Juinnlt) = s o) =

which form a region of butterfly shape in graphical representations.

te(-1,1),

Example 9. The graphs of the G-index functions fy,¢ of some power means (cf.
Example 5) are given in Figure 2. The geometric mean G (as reference mean) appears
as a horizontal straight line; the harmonic mean H is now represented by a semicircle,
and (the graph of) the G-index function f; ¢ is not bounded above. Thus, in Theorem
5.1°, we have o = +00.

Fig. 2. Graphs of G-index functions.
The labels refer to the following means: A arithmetic mean, G geometric mean, H harmonic
mean, max maximum, min minimum

5. Use of A-index functions in proving inequalities

To get the best estimation of the contra-harmonic mean

24y
XELY

K(x,y) = x,y>0,

by power means MU,
? 4 yp\ /P
)= (SFE) L pr0 w) = v (>0

we now apply Theorem 1.8°. (Cf. also Zs. Péles [7] where, by a different method, a
more general result s proved.)
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THEOREM 7. For every p € R, M < K iff p < 3. Moreover; there is no
p € R such that K < MIP),

Proof. Suppose that MIP) < K for some p > 0. By Theorem 1.8 this inequality
is equivalent to

Suna() < fral®),  re(=L1).
Since
fea®) =142 fuma() =27+ + (=077, re(-L1),

we get
(I+P+ (1= <200+2P, te(=11).
As, by Taylor’s theorem,

(I+0P+ (-1 =2+ (’27)17+a(12), re(-1,1),

2(1+r1)/’=2+(’1’>1’+o(r’), te(-1,1),
the last inequality implies that (5) < (§),ie. p<3.
Since, obviously,
Sumal®) = (143 P <147 = fial)), 1€(=11),

Theorem 1.8° implies that M) < K. Since the function R 3 p — M7l is increasing,
we infer that MIPl < K forall p < 2 38
Suppose now that there exists a p € R such that

Jia() < fupal)),  re(=11).

In view of the previous part of the proof we have p > 3. Letting here r — 1 gives
2 < 2(P=1/P, which is a contradiction, and the proof is completed.

Remark 8. A similar reasoning allows to give a simple proof of the inequality of
Lin [3]
G LM,
which is the best estimation of the logarithmic mean by power means.

6. Some metrics in the family of homogeneous means

We begin this section with the following
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THEOREM 8. Let .# denote the set of all homogeneous means M : (0, 00)* —
(0,00), and let dy : 4> — R be defined by
da(M,N) := sup {|fira(t) = fua(®)| : 1 € (=1, 1)}
Then (M, dy) is a bounded complete metric space. Moreover,
1° for every sequence My € A, k€N, and M € A,
lim dy(My, M) =0
k=00

iff M. — M uniformly on compact subsets of (0, 00)?;

sup{da(M,N) : M, N € A} = da(min, max) = 2;
3° the set M is convex, ie. forall M, N € A and A € (0, 1),

Wi=AM+ (1= AN € A,

and the metric space (.#, ds) is convex in the sense of Menger (it is metrically
convex), i.e.
dy(M, W) + d4(W, N) = ds(M, N).

Proof. From Theorem 1.4° we infer that

fuaat) = fua@)l <2]2],  re(=11),

which shows that the function d4 has finite values on .#, and ds(M,N) < 2. If
dy(M,N) =0 then fys = fy.,and by (1), we have M = N Conversely, if M = N
for some M, N € /# then fya = fua and, consequently, ds(M, N) = 0. Since the
symmetry and the triangle inequality are obvious, dj is a metric in ./ . Let (My)i2,
be a Cauchy sequence in the metric space (.#,d,) and & > 0. Thus thereisa kp € N
such that da(My, M;) < € forall k, I > ko, k, [ € N. By the definition of dy we
have

[fota(®) = firna®)| <& k120, re(=11). (5)
It follows that there exists an f : (=1, 1) — R such that forevery 7 € (=1, 1),

‘]im Sia(®) = f(2).

(=00
Since, in view of Theorem 1.4°, we have 1— | 1 |< fiya(t) < 1+ | 1 |, for all
1€ (=1,1), wehence get 1— | 1 |< f(r) < I+ | | forall £ € (=1, 1). By Theorem
2 there exists an M € . such that f = fy4 . Letting [ = oo in (5) gives

[fna(®) = fra®)] < & k>0, te(-1,1)

ie. da(Mi, M) < € forall k > ko. Thus the sequence (M) converges to an element
of .7 in the sense of the metric dy , and the completeness of the metric space is proved.
Part 1° is an easy consequence of decomposition formula (1). Part 2° and 3° are
obvious.
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Remark 9. Let .# denote the set of all homogeneous means M : (0, 00)* —
(0, 00), and let ps : .#* — R be defined by

e sup{|fM.A<r>|I—|fM(zJ\ e},

Then, similarly as in Theorem 8, one can show that (., p,) is a bounded complete
metric space; the statements 2° — 3° remain valid. It is obvious that the metric p, is
stronger than dj . To show that p, is essentially stronger, consider the following

Example 10. Let M, € . , n € N, be a sequence of means such that

£ il e € [1n1);
Jima(6) *{ I, 1 < 1/n.
Then ds(M,,A) = 1,n € N, and (M,) converges to A, as n — oo, in the sense of

the metric dy . On the other hand, we have
Pa(Mp, A)=1, neN;

obviously, the sequence (M,) is not convergent in the sense of the metric p4 .
The metric in Remark 9 seems to be a most proper one, and the last example shows
that this (apparently most proper) metric is independently interesting.

Choosing special subsets of .# one can define some other metric spaces; cf., for
instance, the following remarks.

Remark 10. Let £ be the set of all homogeneous means M : (0, c0)? — (0, o0)
such that the A—index function fy4 is Lebesgue measurable, and let p > 1 be fixed.
Then, by Theorem 1.1°, for every M € %, the function fy;4 is Lebesgue integrable,
and I3 : & x £ — R defined by

1 ¥
(M, N) = (L [funa() ffm(r)\"df> , MNe2,

is a metric in .. Similarly as in Theorem 8, it can be shown that the metric space
(#, ) is complete, and metrically convex (and the set (%) is convex, cf. Remark 3).

Remark 11. Denote by %, the set of all homogeneous means M : (0, 00)> —
(0, 00) such that the A—index function fi4 is n times continuously differentiable.
Then g4 : 6, x €, — R defined by

i) =S |14 = 58| + sup {4220 - 20 : 1 < 1}
k=1

is a metric in . The metric space (6, 04) is complete, and (metrically) convex.
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7. M —convexity of power functions

Let M : (0,00)> — (0, 00) be a homogeneous mean. A function ¢ : (0, c0) —
(0, co) is called M—convex if, forall x, y > 0,

O(M(x,y)) < M(6(x), 9(y))-

For every p € R define ¢, : (0,00) = (0, 00) by ¢,(x) = x* (x > 0). The
following criterion of M —convexity for the power functions is proved in [Matkowski
and Ritz, 6].

All functions 9, p > 1, are M-convex iff the following function is increasing:

i (0,00) = (0,00), ()= (M () (x>0).

Remark 12. Due to the homogeneity of M, the test function 7y can be written in
a more symmetric form,

wm(x) =c (M (f/l. E"/z))m (x> 0), where ¢ := e/,

and we get the following:
1. Let r € R, r # 0, be fixed. All functions ¢, p > 1, are M")—convex iff the
function
rxy\ V) e )
Tn(x) =c (cosh (7)) (x>0) is increasing.

2. All functions ¢, p > 1, are L—convex iff the function
inh(E)\ 1%
Tx)=c (w) (x> 0) is increasing.

3

Let us note that, via the hyperbolic functions, there is a strict connection of the test
function 7y with our index function. Namely, we have the following

Remark 13. For every positively homogeneous mean M : (0, 00)> = (0, 00),

T(x)

4 [cosh (%) Sua (lanh(%))] i (x>0), c=e"2

Acknowledgment. The authors are indebted to an anonymous referee for con-
structive comments and for a generous suggestion which lead to Remark 9. Technical
assistance of Ms. Jolanta Okrzesik is appreciated.
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