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JANUSZ MATKOWSKI AND KAZIMIERZ NIKODEM
Convex set-valued functions on (0, co) and their

conjugate

Abstract. Let (Q,%, ) be a o-finite space and Y be a Banach space.
It is shown that if F : (0,00) — cl(Y) is a convex continuous set-valued

function, then
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for all positive p-integrable functions @,y : @ — R. Moreover, F is
convex if and only if its conjugate F*, F*(z) = «F(z~!), is convex.

It is known that convex functions defined on (0, c0) are characterized by
the inequality
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z2,y1,¥2 € (0,00) (cf. [2], [3], [8]). J. Matkowski ([2], [3]) noticed
that this inequality is a simultaneous generalization of the discrete Hélder’s
and Minkowski’s inequalities, and in [4] he obtained an integral version of this
inequality which generalizes both the Holder’s and Minkowski’s inequalities
(cf. also J. Matkowski and J. Réitz [6] where the case of the equality was
considered). It was also observed in [3] (cf. also [2]) that through the inequality
(1), the function f is strictly related to the function f* : (0,00) =+ R, f*(z) =
zf(z71), which is termed the conjugate of f. In this note we present an
integral counterpart of (1) for convex set-valued functions, and we show that
some basic properties of the conjugate functions remain true for set-valued
functions.

Let Y be a real vector space and n(Y) be the family of all nonempty
subsets of Y. Recall that a set-valued function F : (0,00) — n(Y) is convex
if its graph is convex or, equivalently, if for all z,y € (0,00) and t € (0,1),

tF(z) + (1 - )F(y) C Fltz + (1 — t)y)
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where
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THEOREM 1
A set-valued function F : (0,00) = n(Y) is conves if and only if
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for all ©1,32,y1,y2 € (0,00).
Proof. If F is convex then for every positive z1, 22, y1, Y2 We have
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To prove the converse implication take arbitrary z,y € (0,00), t € (0,1), and
apply (2) with yy =1, y2 =1 —1t, 21 = tz, and 23 = (1 - t)y.

Now assume that (Y, |- ||) is 2 Banach space and cl(Y) is the family of all
closed nonempty subsets of Y. Given a measure space (2, £, ) we denote by
L} (Q,Z,p) the family of all positive y-integrable functions z : Q—R. Fora
set-valued function G : Q — cl(Y) the integral [, Gdy is understood in the
Aumann sense, i.e. it is the set of integrals of all p-integrable (in Bochner’s
sense) selections of G.

THEOREM 2
Let (2,%,p) be a o-finite measure space and Y be a Banach space. If
F:(0,00) = cl(Y) is a continuous convez set-valued function, then
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for all z,y € L (Q, Z, ).

In the proof of this theorem we will use the following fact which for Y = R
is proved in [6].
LEMMA

Lety € LL(Q,T,p), a = [qudp, and v(A) = a7 [ ydu for all A € .

If a function h : @ = Y is p-integrable, then % is v-integrable and

/ ﬁdu=a"/hu;¢. 4)
oy Q
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Proof. Clearly, v is a normalized measure absolutely continuous with re-
spect to 4 and its Radon-Nikodym derivative d" = a~ly. It is known that a
measurable vector-valued function is mlegrable iff its norm is integrable (cf.
[1. Theorem 2, p. 45]). Therefore, by the p-integrability of h we get that
is p-integrable. This implies that T is v-integrable and, consequently, 2
i ntegrable. To prove (4) note that for every linear continuous functlonal
o:Y — R we have (cf. [6])

A¢;hdv=a-1A(¢oh)du,

o(f5)=o( [,

corem 2. Take 7,y € LL(Q,Z, ), put a := fnydu, and con-
defined by

v(A):

a'1/ydp, Aex.
A

: Q=Y beap- integrable selection of y (F o %) By the Lemma, 3
is a v-integrable selection of F o £ and

a’l/hduzf EduE/Fofdu. (5)
o QY Q y
:

function § is also v-integrable and [, 2dv = a7! [y zdu. Moreover,
dv is a positive number. Hence, using the integral Jensen inequality for
ex functions (cf. [5]) we get

/nFogdch(/Q gdv)=F(a“/nzdy)4 ®)
By (6) and (5) we obtain
/nhdue/nyduFGZZZZ)»

Since h is an arbitrary p-integrable selection of y (Fo %), this finishes the
proof.
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REMARK 1

If values of F are bounded, we can drop the assumption that F is continu-
ous. In that case the convexity of F implies its continuity because the domain
of F is finite dimensional (cf. [7, Theorem 3)).

REMARK 2

It is easy to check that if (2,Z, ) is a non-trivial finite measure space
(ie. there exists an A € ¥ such that 0 < p(4) < u(Q)) and (3) holds for all
positive p-integrable step functions, then F satisfies (2) and hence it is convex.

REMARK 3
Inclusion (3) can be treated as a set-valued generalization of Holder’s and
Minkowski’s inequalities (cf. [2], [3], [4]).

Given a set-valued function F : (0,00) — n(Y) we define its conjugate
F*: (0,00) = n(Y) by the formula (cf. 2], [3])
F*(2) = oF (é) . e (0,00).
Note that the operation “x” is an involution i.e.
(F*)*=F.
It is easy to see that F' satisties (2) if and only if F~ does. Therefore as a
consequence of Theorem 1 we get the following

COROLLARY
A set-valued function F : (0,00) — n(Y) is conves if and only if F* is
convez.
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