Zeszyt 196

Prace Matematyczne XV

1998

Janusz Matkowski and Kazimierz Nikodem

Convex set-valued functions on $(0, \infty)$ and their conjugate

Abstract. Let (Ω, Σ, μ) be a σ -finite space and Y be a Banach space. It is shown that if $F:(0,\infty)\to cl(Y)$ is a convex continuous set-valued function, then

$$\int_{\Omega} y \left(F \circ \frac{x}{y} \right) d\mu \subset \int_{\Omega} y \, d\mu \, F \left(\frac{\int_{\Omega} \, x \, d\mu}{\int_{\Omega} \, y \, d\mu} \right)$$

for all positive μ -integrable functions $x,y:\Omega\to\mathbb{R}$. Moreover, F is convex if and only if its conjugate F^* , $F^*(x)=xF(x^{-1})$, is convex.

It is known that convex functions defined on $(0,\infty)$ are characterized by the inequality

$$(y_1 + y_2)f\left(\frac{x_1 + x_2}{y_1 + y_2}\right) \le y_1 f\left(\frac{x_1}{y_1}\right) + y_2 f\left(\frac{x_2}{y_2}\right),$$
 (1)

where $x_1, x_2, y_1, y_2 \in (0, \infty)$ (cf. [2], [3], [8]). J. Matkowski ([2], [3]) noticed that this inequality is a simultaneous generalization of the discrete Hölder's and Minkowski's inequalities, and in [4] he obtained an integral version of this inequality which generalizes both the Hölder's and Minkowski's inequalities (cf. also J. Matkowski and J. Rätz [6] where the case of the equality was considered). It was also observed in [3] (cf. also [2]) that through the inequality (1), the function f is strictly related to the function $f^*: (0, \infty) \to \mathbb{R}$, $f^*(x) = x_f(x^{-1})$, which is termed the conjugate of f. In this note we present an integral counterpart of (1) for convex set-valued functions, and we show that some basic properties of the conjugate functions remain true for set-valued functions.

Let Y be a real vector space and $n(\mathbf{Y})$ be the family of all nonempty subsets of Y. Recall that a set-valued function $F:(0,\infty)\to n(\mathbf{Y})$ is convex if its graph is convex or, equivalently, if for all $x,y\in(0,\infty)$ and $t\in(0,1)$,

$$tF(x) + (1-t)F(y) \subset F(tx + (1-t)y).$$

THEOREM 1

A set-valued function $F:(0,\infty)\to n(Y)$ is convex if and only if

$$y_1 f\left(\frac{x_1}{y_1}\right) + y_2 f\left(\frac{x_2}{y_2}\right) \subset (y_1 + y_2) f\left(\frac{x_1 + x_2}{y_1 + y_2}\right)$$
 (2)

for all $x_1, x_2, y_1, y_2 \in (0, \infty)$.

Proof. If F is convex then for every positive x_1, x_2, y_1, y_2 we have

$$\begin{split} y_1 F\left(\frac{x_1}{y_1}\right) + y_2 F\left(\frac{x_2}{y_2}\right) &= (y_1 + y_2) \left[\frac{y_1}{y_1 + y_2} F\left(\frac{x_1}{y_1}\right) + \frac{y_2}{y_1 + y_2} F\left(\frac{x_2}{y_2}\right)\right] \\ &\subset \left(y_1 + y_2\right) F\left(\frac{x_1 + x_2}{y_1 + y_2}\right). \end{split}$$

To prove the converse implication take arbitrary $x, y \in (0, \infty)$, $t \in (0, 1)$, and apply (2) with $y_1 = t$, $y_2 = 1 - t$, $x_1 = tx$, and $x_2 = (1 - t)y$.

Now assume that $(Y, \|\cdot\|)$ is a Banach space and c(Y) is the family of all closed nonempty subsets of Y. Given a measure space (Ω, Σ, μ) we denote by $L_L^1(\Omega, \Sigma, \mu)$ the family of all positive μ -integrable functions $x: \Omega \to R$. For a set-valued function $G: \Omega \to c(Y)$ the integral $\int_{\Omega} G d\mu$ is understood in the Aumann sense, i.e. it is the set of integrals of all μ -integrable (in Bochner's sense) selections of G.

THEOREM 2

Let (Ω, Σ, μ) be a σ -finite measure space and Y be a Banach space. If $F: (0, \infty) \to cl(Y)$ is a continuous convex set-valued function, then

$$\int_{\Omega} y \left(F \circ \frac{x}{y} \right) d\mu \subset \int_{\Omega} y d\mu F \left(\frac{\int_{\Omega} x d\mu}{\int_{\Omega} y d\mu} \right) \tag{3}$$

for all $x, y \in L^1_+(\Omega, \Sigma, \mu)$.

· In the proof of this theorem we will use the following fact which for $Y = \mathbb{R}$ is proved in [6].

LEMMA

Let $y \in \mathbf{L}^1_+(\Omega, \Sigma, \mu)$, $a = \int_\Omega y \, d\mu$, and $\nu(A) = a^{-1} \int_A y \, d\mu$ for all $A \in \Sigma$. If a function $h : \Omega \to \mathbf{Y}$ is μ -integrable, then $\frac{h}{y}$ is ν -integrable and

$$\int_{\Omega} \frac{h}{y} d\nu = a^{-1} \int_{\Omega} h \, d\mu. \tag{4}$$

Proof. Clearly, ν is a normalized measure absolutely continuous with respect to μ and its Radon-Nikodym derivative $\frac{d\nu}{d\mu} = a^{-1}y$. It is known that a measurable vector-valued function is integrable if if its norm is integrable (cf. [1, Theorem 2, p. 45]). Therefore, by the μ -integrability of \hbar we get that $\|h\|$ is μ -integrable. This implies that $\frac{\|h\|}{b}$ is ν -integrable and, consequently, $\frac{h}{y}$ is ν -integrable. To prove (4) note that for every linear continuous functional $\phi: Y \to \mathbb{R}$ we have (cf. [6])

$$\int_{\Omega} \frac{\phi \circ h}{y} d\nu = a^{-1} \int_{\Omega} (\phi \circ h) d\mu.$$

Hence

$$\phi\left(\int_\Omega \, \frac{h}{y} \, d\nu\right) = \phi\left(a^{-1} \int_\Omega h \, d\mu\right),$$

which implies (4).

Proof of Theorem 2. Take $x, y \in L^1_+(\Omega, \Sigma, \mu)$, put $a := \int_{\Omega} y \, d\mu$, and consider the measure ν defined by

$$\nu(A) := a^{-1} \int_{A} y d\mu, \quad A \in \Sigma.$$

Let $h: \Omega \to \mathbf{Y}$ be a μ -integrable selection of $y\left(F \circ \frac{\pi}{y}\right)$. By the Lemma, $\frac{h}{y}$ is a ν -integrable selection of $F \circ \frac{\pi}{y}$ and

$$a^{-1}\int_{\Omega}h\,d\mu = \int_{\Omega}\frac{h}{y}d\nu \in \int_{\Omega}F\circ\frac{x}{y}d\nu.$$
 (5)

The function $\frac{\pi}{y}$ is also ν -integrable and $\int_{\Omega} \frac{\pi}{x} d\nu = a^{-1} \int_{\Omega} x d\mu$. Moreover, $\int_{\Omega} \frac{\pi}{y} d\nu$ is a positive number. Hence, using the integral Jensen inequality for convex functions (cf. [5]) we get

$$\int_{\Omega} F \circ \frac{x}{y} d\nu \subset F \left(\int_{\Omega} \frac{x}{y} d\nu \right) = F \left(a^{-1} \int_{\Omega} x d\mu \right). \tag{6}$$

By (6) and (5) we obtain

$$\int_{\Omega} h \, d\mu \in \int_{\Omega} y \, d\mu \, F\left(\frac{\int_{\Omega} x \, d\mu}{\int_{\Omega} y \, d\mu}\right).$$

Since h is an arbitrary μ -integrable selection of $y\left(F \circ \frac{x}{y}\right)$, this finishes the proof.

REMARK 1

If values of F are bounded, we can drop the assumption that F is continuous. In that case the convexity of F implies its continuity because the domain of F is finite dimensional (cf. [7, Theorem 3]).

REMARK 2

It is easy to check that if (Ω, Σ, μ) is a non-trivial finite measure space (i.e. there exists an $A \in \Sigma$ such that $0 < \mu(A) < \mu(\Omega)$) and (3) holds for all positive μ -integrable step functions, then F satisfies (2) and hence it is convex.

REMARK 3

Inclusion (3) can be treated as a set-valued generalization of Hölder's and Minkowski's inequalities (cf. [2], [3], [4]).

Given a set-valued function $F:(0,\infty)\to n(\mathbf{Y})$ we define its conjugate $F^*:(0,\infty)\to n(\mathbf{Y})$ by the formula (cf. [2], [3])

$$F^*(x) = xF\left(\frac{1}{x}\right), \quad x \in (0, \infty).$$

Note that the operation "*" is an involution i.e.

$$(F^*)^* = F.$$

It is easy to see that F satisfies (2) if and only if F^* does. Therefore as a consequence of Theorem 1 we get the following

COROLLARY

A set-valued function $F:(0,\infty)\to n(\mathbf{Y})$ is convex if and only if F^* is convex.

References

- J. Diestel, J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence R.I., 1977.
- [2] J. Matkowski, A functional inequality characterising convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 168-180.
- [3] J. Matkowski, A generalization of Hölder's and Minkowski's inequalities and conjugate functions, in: Constantin Caratheodory: An international Tribute, edited by Th. M. Rassias, World Scientific, Singapore, 1991, 819-827.
- [4] J. Matkowski, The converse of the Hölder inequality and its generalizations, Studia Math. 109 (1994), 171-182.

- Matkowski, K. Nikodem, An integral Jensen inequality for convex multifunctions. Results Math. 26 (1994), 348-353.
- J. Markowski, J. Rätz, On the equality condition in Hölder's and Minkowski's acquationes Math. 46 (1993), 220-228.
- K. Nandem, On midpoint convex set-valued functions, Aequationes Math. 33 (1987), 46-56.
- [8] J. E. Pecaric, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992.

Kazimierz Nikodem
Department of Mathematics
Technical University
Willowa 2
PL 43-309 Bielsko-Biała
Poland
E-mail: knik@merc.pb.bielsko.pl

Janusz Matkowski Institute of Mathematics Pedagogical University Plac Słowiański 9 PL-65-069 Zielona Góra Poland

E-mail: matkow@omega.im.wsp.zgora.pl