A SEPARATION THEOREM FOR M_{ϕ} -CONVEX FUNCTIONS

Janusz Matkowski

Department of Mathematics, Technical University, Willowa 2, 43–309 Bielsko-Biala, Poland

Tomasz Zgraja

Department of Mathematics, Technical University, Willowa 2, 43–309 Bielsko-Biala, Poland

Received: February 1997

MSC 1991: 26 A 51, 39 B 72

Keywords: Convex and affine functions with respect to a weighted quasiarithmetic mean, separation of function.

Abstract: Some theorems about separation of two real functions by the function which is convex or affine with respect to the weighted quasi-arithmetic means are presented.

Introduction

It is shown in [2] that every real functions f and g, defined on an interval $I \subset \mathbb{R}$ and satisfying the inequality

 $f(tx + (1-t)y) \le tg(x) + (1-t)g(y)$,

for all $x, y \in I$, and $t \in (0,1)$, can be separated by a convex function (cf. Th. A). Applying a Helly's theorem, the authors of [5] proved that if, besides the above inequality, the functions f,g satisfy the reverse inequality with f and g interchanged, then there exists an affine function which separates these functions (cf. Th. B).

In Section 1 we quote these results and we show that Th. B is a consequence of Th. A. Moreover, we discuss the inequality

$$f(tx + (1-t)y) \le tg_1(x) + (1-t)g_2(y)$$

with three functions defined again on a real interval I and we show that, in general, there is no a separating convex function between f and $\min(q_1, q_2)$.

The main results of this paper are given in Section 3 and 4 where we transfer the Ths. A and B to the class M_{ϕ} -convex and M_{ϕ} -affine functions (M_{ϕ} denotes the family of the weighted quasi-arithmetic means of the generator ϕ).

1. Remarks on separation theorems for convex and affine functions

We begin with recalling the following

Theorem A ([2]). Real functions f and g, defined on a real interval I, satisfy the inequality

$$f(tx + (1-t)y) \le tg(x) + (1-t)g(y)$$
,

for all $x, y \in I$ and $t \in (0,1)$ if, and only if, there exists a convex function $h: I \subset \mathbb{R}$ such that f < h < g.

As a simple consequence we obtain

Corollary 1. Let $I \subset \mathbb{R}$ be an interval. If f, g_1 , $g_2 : I \subset \mathbb{R}$ satisfy the inequality

 $\begin{array}{ll} (1) & f(tx+(1-t)y) \leq tg_1(x)+(1-t)g_2(y), & x,y \in I, \quad t \in (0,1)\,,\\ then & there & exists & a & convex function & h:I & \longmapsto & \mathbb{R} & such & that & f \leq & h \leq \\ \end{array}$

 $\leq \max(g_1, g_2)$. Remark 1. If $f, g_1, g_2 : I \subset \mathbb{R}$ satisfy the inequality (1), then obviously that $f \leq \min(g_1, g_2)$. In this connection a question arises whether there exists a convex function $h : I \longmapsto \mathbb{R}$ such that $f \leq h \leq \min(g_1, g_2)$. Taking $I = \mathbb{R}$, $g_1, g_2 : \mathbb{R} \longmapsto \mathbb{R}$, $g_1(x) = x^2$, $g_2(x) = (x-1)^2$, x > 0,

and $f = \min(g_1, g_2)$, it is easy to see that the answer is negative. However, we can prove the following

Proposition. Let $I \subset \mathbb{R}$ be an interval, and suppose that the functions $f, g_1, \ldots, g_n : I \mapsto \mathbb{R}$ satisfy the inequality

$$f\left(\sum_{i=1}^{n} t_{i} x_{i}\right) \leq \sum_{i=1}^{n} t_{i} g_{i}(x_{i}), \qquad \sum_{i=1}^{n} t_{i} = 1, \quad t_{i} \geq 0, \quad x_{i} \in I.$$

If $g_n \leq \min(g_1, \dots, g_{n-1})$, then there exists a convex function $h: I \mapsto \mathbb{R}$ such that $f \leq h \leq \min(g_1, \dots, g_{n-1})$. If moreover, $g_n = \min(g_1, \dots, g_{n-1})$ then the converse implication also holds true.

Proof. Take arbitrary $x, y \in I$, $t \in [0, 1]$, and $i = 1, \dots, n-1$. Setting $t_i = t$, $t_n = 1 - t$, and $t_j = 0$, $j = 1, \dots, n-1$, $j \neq i$; $x_i = x$, $x_n = y$, we get

 $f(tx + (1-t)y) \le tg_i(x) + (1-t)g_n(y), \quad i = 1, \dots, n-1.$ It follows that

 $f(tx + (1-t)y) \le tg(x) + (1-t)g_n(y) \le tg(x) + (1-t)g(y),$

where $g = \min(g_1, \dots g_{n-1})$. Now Th. A completes the proof. \Diamond

Applying Helly's theorem on the existence a straight line intersecting a family of parallel compact segment in \mathbb{R}^2 , the authors of [5] proved the following

Theorem B. Let $\overline{I} \subset \mathbb{R}$ be an interval. The functions $f, g: I \longmapsto \mathbb{R}$ satisfy the system of inequalities

 $\begin{cases} f(tx + (1-t)y) & \leq tg(x) + (1-t)g(y) \\ g(tx + (1-t)y) & > tf(x) + (1-t)f(y) \end{cases} x, y \in I, t \in (0,1),$

if, and only if, there exists an affine function $h:I\longmapsto\mathbb{R}$ such that $f\leq h\leq g$. It turns out that Th. B is a consequence of Th. A. In fact, applying

Th. A to the first of the inequalities we get a convex function $h_1:I \longmapsto \mathbb{R}$ such that $f \leq h_1 \leq g$. Writing the second inequality in the equivalent form $(-g)(tx+(1-t)y) \leq t(-f)(x)+(1-t)(-f)(y), \quad x,y \in I, \quad t \in (0,1),$

(g)((x)

Now there are three possible cases: either the graphs of h_1 and h_2 have two different common points or they have only one common point or there is no points of intersection of the graphs of h_1 and h_2 .

Taking in the first case the straight line through the both common points; in the second case a straight line through the common point which lies between the graphs of h_1 and h_2 , and, in the third case, any straight line between the graphs of h_1 and h_2 , we get the desired affine function h.

2. Definitions and some properties of $M_\phi\text{-convex}$ functions

Let $I \subset \mathbb{R}$ be an interval. For a fixed continuous and strictly monotonic function $\phi: I \longmapsto \mathbb{R}$ and for any fixed $t \in (0,1)$, we define $M_{\phi,t}: I^2 \longmapsto I$ by the formula

(2)
$$M_{\phi,t}(x,y) = \phi^{-1}(t\phi(x) + (1-t)\phi(y)), \quad x, y \in I.$$

The function $M_{\phi,t}$ is a mean in I i.e., for all $x, y \in I$,

 $\min(x,y) \leq M_{\phi,t}(x,y) \leq \max(x,y)$, and it is called a weighted quasi-arithmetic mean (cf. [1], p. 287 and [3], p. 189). Note that, for any interval $J \subset I$,

 $M_{\phi,t}(J \times J) \subset J$, $t \in (0,1)$.

This property allows us to introduce the following

Definition 1. Let a subinterval J of I and $t\in (0,1)$ be fixed. A function $w:J\longmapsto I$ is said to be

- (i) $M_{\phi,t}$ -convex if $w(M_{\phi,t}(x,y)) \leq M_{\phi,t}(w(x),w(y)), x, y \in J$;
- (ii) $M_{\phi,t}$ -concave if $w(M_{\phi,t}(x,y)) \ge M_{\phi,t}(w(x),w(y)), x, y \in J;$
- (iii) $M_{\phi,t}$ -affine if $w(M_{\phi,t}(x,y)) = M_{\phi,t}(w(x),w(y)), x, y \in J$.

Definition 2. A function $w: J \longmapsto I$ is called M_{ϕ} -convex if for every $t \in (0,1)$ it is M_{ϕ} -convex. Analogously we define M_{ϕ} -concave and M_{ϕ} -affine functions.

Remark 2. Let $I = \mathbb{R}$ and let $\phi : I \longmapsto \mathbb{R}$ be given by $\phi(u) = au + b$, $u \in I$,

where $a, b \in \mathbb{R}$, $a \neq 0$, are fixed. It is easy to see that $M_{\phi, \frac{1}{2}}$ -convexity of a function w is equivalent to the Jensen convexity of w, and, for every fixed $t \in (0, 1)$, the $M_{\phi,t}$ -convexity of w reduces to its t-convexity (cf. [4]). Moreover, M_{ϕ} -convexity of a function coincides with its classical convexity. Thus the notion of the M_{ϕ} -convexity generalizes the classical convexity.

In the sequel the following criterion of the M_{ϕ} -convexity will be

Lemma 1. Let $\phi: J \mapsto \mathbb{R}$ be continuous and strictly decreasing. Then $u: \phi(J) \mapsto J$ is concave if, and only if, the function $\phi^{-1} \circ u \circ \phi$ is M_{ϕ} -convex on J.

Proof. By the concavity of u we have

 $u(tr + (1-t)s) \ge tu(r) + (1-t)u(s), \quad r, s \in \phi(I), \quad t \in (0,1).$

Setting here $r=\phi(x),\ s=\phi(y),\ \text{for }x,\ y\in J,$ and applying the decreasing monotonicity of $\phi,$ we get

 $w\left(\phi^{-1}\left(t\phi(x)+(1-t)\phi(y)\right)\right) \le \phi^{-1}\left(t\phi\left(w(x)\right)+(1-t)\phi\left(w(y)\right)\right),$

for all $x, y \in J$, and $t \in (0,1)$, where $w := \phi^{-1} \circ u \circ \phi$. This shows that w is M_{ϕ} -convex on J. The converse implication is obvious. \Diamond

Similarly we prove the following

Lemma 2. Let $\phi: J \longmapsto \mathbb{R}$ be continuous and strictly increasing. Then $u: \phi(J) \longmapsto J$ is convex if, and only if, the function $\phi^{-1} \circ u \circ \phi$ is M_{ϕ} -convex on J.

3. Separation theorem for Mo-convex functions

The main result of this section reads as follows:

Theorem 1. Let I and J be intervals such that $J \subset I$ and suppose that $\phi: J \longmapsto \mathbb{R}$ is continuous and strictly monotonic. Then $f, g: J \longmapsto I$ satisfy the inequality

(3)
$$f(M_{\phi,t}(x,y)) \le M_{\phi,t}(g(x),g(y)), \quad x, y \in J, \quad t \in (0,1),$$

if, and only if, there exists an
$$M_{\phi}$$
-convex function $h: J \longmapsto I$ such that (4) $f(x) < h(x) < g(x)$, $x \in J$.

Proof. Assume that (3) holds true. First consider the case when ϕ is strictly decreasing. From (2) and (3), for all $x, y \in J$, and $t \in (0,1)$, we obtain

$$f\left(\phi^{-1}(t\phi(x) + (1-t)\phi(y))\right) \le \phi^{-1}\left(t\phi(g(x)) + (1-t)\phi(g(y))\right).$$

Choose arbitrary $r, s \in \phi(J)$. Substituting here $x = \phi^{-1}(r)$ and $y = \phi^{-1}(s)$ and making use of the decreasing monotonicity of ϕ we get

(5) $(\phi \circ f \circ \phi^{-1})(tr + (1-t)s) \ge t(\phi \circ g \circ \phi^{-1})(r) + (1-t)(\phi \circ g \circ \phi^{-1})(s)$ for all $r, s \in \phi(J)$ and $t \in (0,1)$. Define $\bar{f}, \bar{g} : \phi(J) \longmapsto J$ by

for all $r, s \in \phi(J)$ and $t \in (0, 1)$. Define $f, g : \phi(J) \mapsto J$ by (6) $\bar{f} = \phi \circ f \circ \phi^{-1}$, $\bar{g} = \phi \circ g \circ \phi^{-1}$.

The view of (5) we have

$$\bar{f}(tr + (1-t)s) \ge t\bar{g}(r) + (1-t)\bar{g}(s), \qquad r, s \in \phi(J), \quad t \in (0,1).$$

Now, applying Th. A, we infer that there exists a concave function $\bar{h}:\phi(J)\longmapsto J$ such that

$$\bar{f}(r) \ge \bar{h}(r) \ge \bar{g}(r), \quad r \in \phi(J).$$

Putting here $r=\phi(x),\ x\in J,$ and making use of the decreasing monotonicity of $\phi,$ we get

$$f(x) \le (\phi^{-1} \circ \bar{h} \circ \phi)(x) \le g(x), \quad x \in J.$$

In view of Lemma 1, the function $h: J \longmapsto I$ defined by

$$h = \phi^{-1} \circ \bar{h} \circ \phi$$

is the desired M_{ϕ} -convex function.

Now consider the remaining case when ϕ is strictly increasing. A similar reasoning as in the previous part of the proof shows that $(\phi \circ f \circ \phi^{-1})(tr + (1 - t)s) \le t(\phi \circ g \circ \phi^{-1})(r) + (1 - t)(\phi \circ g \circ \phi^{-1})(s)$ for all $r, s \in \phi(\mathcal{J})$, and $t \in (0, 1)$, which means that

$$\bar{f}(tr+(1-t)s) \leq t\bar{g}(r)+(1-t)\bar{g}(s)\,, \qquad r,\, s \in \phi(J), \quad t \in (0,1),$$

where \bar{f} , $\bar{g}:\phi(J)\longmapsto J$ are defined by (6). Applying again the Th. A gives the existence of convex function $h:\phi(J)\longmapsto J$ such that

$$\bar{f}(r) \le \bar{h}(r) \le \bar{g}(r), \quad r \in \phi(J).$$

Putting here $r = \phi(x)$, $x \in J$, and making use of the increasing monotonicity of ϕ we obtain (4) with $h : J \mapsto I$ defined by formula $h = \phi^{-1} \circ \bar{h} \circ \phi$. By Lemma 2. h is the desired M_{ϕ} -convex function.

The converse implication is an easy consequence of the fact that the weighted quasi-arithmetic mean is strictly monotonic with respect to each variable. \Diamond

Remark 3. Applying Th. 1 with $\phi: J \longmapsto \mathbb{R}$ defined by $\phi(u) = au + b$, $u \in J$, where $a, b \in \mathbb{R}$, $a \neq 0$, are fixed, we get the result obtained in [2].

Recall that a function $h: J \mapsto (0, \infty)$ is geometrically convex if $h(x^ty^{1-t}) \le (h(x))^t (h(y))^{1-t}$, $x, y \in J$, $t \in (0, 1)$.

Taking $I = (0, \infty)$, and $\phi(t) = \log t$ (t > 0) in Th. 1 we obtain the following

Corollary 2. Let $J \subset (0,\infty)$ be an interval and suppose that $f, g: J \mapsto (0,\infty)$. Then

$$f(x^t y^{1-t}) \le (g(x))^t (g(y))^{1-t} , \qquad x, y \in J, \quad t \in (0,1) ,$$

if, and only if, there exists a geometrically convex function $h: J \longmapsto (0, \infty)$ such that

$$f(x) \le h(x) \le g(x), \quad x \in J.$$

4. Separation theorem for Ma-affine functions

In this section we prove the following

Theorem 2. Let I, \bar{J} be intervals such that $J \subset I$. Suppose that $\phi: J \longmapsto \mathbb{R}$ is a continuous and strictly monotonic, and $f, g: J \longmapsto I$. Then the following conditions are equivalent:

 (i) there exists an M_φ-affine function h: J → I such that f(x) ≤ h(x) ≤ g(x), x ∈ J;

(ii) there exist an M_φ-convex function h₁: J → I and an M_φ-concave function h₂: J → I such that

 $f(x) \le h_1(x) \le g(x), \quad x \in J, \quad f(x) \le h_2(x) \le g(x), \quad x \in J;$

(iii) the functions
$$f$$
 and g satisfy the system of inequalities:
$$\begin{cases} f(M_{\phi,t}(x,y)) & \leq M_{\phi,t}(g(x),g(y)) \\ g(M_{\phi,t}(x,y)) & \geq M_{\phi,t}(f(x),f(y)) \end{cases} x, y \in I, \quad t \in (0,1).$$

Proof. Implication (i) \Longrightarrow (ii) is a consequence of the fact that every affine function is both convex and concave.

The increasing monotonicity of the weighted quasi-arithmetic mean $M_{\phi,t}$ with respect to each variable yields the implication (ii) \Longrightarrow \Longrightarrow (iii).

To show the implication (iii) \Longrightarrow (i) first assume that ϕ is strictly decreasing. Taking \bar{f} , $\bar{g}:\phi(J)\longmapsto J$ defined by (6) we can write the system (iii) in the form

$$\left\{ \begin{array}{l} \bar{f}(tr+(1-t)s) & \geq t\bar{g}(r)+(1-t)\bar{g}(s) \\ \bar{g}(tr+(1-t)s) & \leq t\bar{f}(r)+(1-t)\bar{f}(s) \end{array} \right. \quad r, \, s \in \phi(J), \quad t \in (0,1).$$

Applying Th. B we infer that there exists an affine function $\bar{h}:\phi(J)\longmapsto J$ such that

 $ar{g}(r) \leq ar{h}(r) \leq ar{f}(r) \,, \quad r \in \phi(J) \,.$

Putting here $r=\phi(x),\ x\in J,$ and making use of the decreasing monotonicity of ϕ we get

 $f(x) \le h(x) \le g(x), \quad x \in J,$

where $h: J \longmapsto I$ is given by the formula $h = \phi^{-1} \circ \bar{h} \circ \phi$. Clearly, h is the desired M_{ϕ} -affine function.

Assume now that ϕ is strictly increasing. Similarly as in the previous case, the function \bar{f} , $\bar{g}:\phi(J)\longmapsto J$ defined by (6) satisfy the system of inequalities

$$\left\{ \begin{array}{ll} \bar{f}(tr+(1-t)s) & \leq t\bar{g}(r)+(1-t)\bar{g}(s) \\ \bar{g}(tr+(1-t)s) & \geq t\bar{f}(r)+(1-t)\bar{f}(s) \end{array} \right. \quad r,\, s \in \phi(J), \quad t \in (0,1).$$

The existence of the affine function $\bar{h}:\phi(J)\longmapsto J$ such that

$$\bar{f}(r) \leq \bar{h}(r) \leq \bar{g}(r) \,, \quad r \in \phi(J) \,.$$

is again a consequence of theorem B. Now it is easy to check that $h: J \longmapsto I$ given by $h = \phi^{-1} \circ \bar{h} \circ \phi$ satisfies the condition (i). \Diamond

References

- ACZÉI, J.: Lecture on functional equations and their application, Academic Press, New York and London, 1966.
- [2] BARON, K., MATKOWSKI, J. and NIKODEM, K.: A sandwich with convexity, Math. Pannonica 5/1 (1994), 139-144.
- [3] KUCZMA, M.: An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Prace Nauk. Uniw. 1. 489, Polish Scientific Publishers, Warszawa-Krakow-Katowice, 1985.
- [4] KUHN, N.: A note on t-convex functions, in: General Inequalities 4, Internat. Ser. Numer. Math. 71, Birkhäuser, Basel, 1984, 269-276.
- [5] NIKODEM, K. and WSOWICZ, Sz.: A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164.