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Abstract: Some theorems about separation of two real functions by the func-
tion which is convex or affine with respect to the weighted quasi-arithmetic
means are presented.

Introduction

It is shown in [2] that every real functions f and g, defined on an

interval I C R and satisfying the inequality
fltz+ (1= t)y) <tg(z) + (1 -)g(v),

for all , y € I, and ¢ € (0,1), can be separated by a convex function
(cf. Th. A). Applying a Helly’s theorem, the authors of [5] proved that
if, besides the above inequality, the functions f, g satisfy the reverse in-
equality with f and g interchanged, then there exists an affine function
which separates these functions (cf. Th. B).

In Section 1 we quote these results and we show that Th. B is a
consequence of Th. A. Moreover, we discuss the inequality
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fltz+ (1—1t)y) <tgi(e) + (1 - t)g2(y)
with three functions defined again on a real interval I and we show
that, in general, there is no a separating convex function between f
and min(g1, g2)-

The main results of this paper are given in Section 3 and 4 where
we transfer the Ths. A and B to the class My—convex and M-affine
functions (M, denotes the family of the weighted quasi-arithmetic
means of the generator ).

1. Remarks on separation theorems for convex and
affine functions

‘We begin with recalling the following
Theorem A ([2]). Real functions f and g, defined on a real interval
1, satisfy the inequality

fltz+ (1 -t)y) < tg(z) + (1 -t)g(y),

forallz, y € I and t € (0,1) if, and only if, there ezists a conver
function h: I C R such that f <h < g.

As a simple consequence we obtain
Corollary 1. Let I C R be an interval. If f, g1, g2 : I C R satisfy the
inequality
(1) flz+ (1 -t)y) <tor(e) + (1 -1)g2(y), wzyel, te(0,1),
then there ezists a convez function h : I — R such that f < h <
< max(g1, g2)-
Remark 1.If f, g1, g : I C R satisfy the inequality (1), then obviously
that f < min(g1, g2). In this connection a question arises whether there
exists a convex function h : I — R such that f < h < min(gi, g2).
Taking I =R, g1, g2 : R+— R, g1(z) = 22, go(z) = (z - 1), 2 >0,
and f = min(gi,g2), it is easy to see that the answer is negative.

However, we can prove the following
Proposition. Let I C R be an interval, and suppose that the functions
£y 915+ ,9n : I = R satisfy the inequality

. i .
i (Ztm) <Dtz Dt L0 T
i=1 i=1 =1

If gn < min(g1,...,gn-1), then there ezists a conver function h :
: I — R such that f < h < min(gy,...,gn-1). If moreover, g, =
=min(g1,...,9gn—1) then the converse implication also holds true.
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Proof. Take arbitrary z,y € I, t € [0,1],and i = 1,... ,n— 1. Setting
ti=ttp=1—t,and t; =0, j=1,...,n—1, j#4 z ==,
T, =y, we get

fltz+(1-1t)y) <tgi(a) + (1 —t)gn(y), i=1,...,n-1
It follows that

flte+ (1 -t)y) < tg(z) + (1 = t)gn(y) < tg(z) + (1= t)g(v),
where g = min(gy,...gn—1). Now Th. A completes the proof. ¢

Applying Helly’s theorem on the existence a straight line inter-
secting a family of parallel compact segment in R?, the authors of [5]
proved the following
Theorem B. Let I C R be an interval. The functions f, g: I — R
satisfy the system of inequalities

{ fltz+1-t)y) <tg(z)+(1-t)g(y)

glte+(1-t)y) 2tf(z)+(1-8)F(y)

if, and only if, there exists an affine function h : I — R such that
f<h<g.

It turns out that Th. B is a consequence of Th. A. In fact, applying
Th. A to the first of the inequalities we get a convex function hy : I —
~— R such that f < h; < g. Writing the second inequality in the
equivalent form
(=9)(tz+(1=t)y) S t(=f)@)+(1-t)(-f)@), =zyel, t€(0,1),
and applying again Th. A we obtain a concave function hy : I — R
such that f < hy < g.

Now there are three possible cases: either the graphs of h; and Ay
have two different common points or they have only one common point
or there is no points of intersection of the graphs of k1 and hs.

Taking in the first case the straight line through the both common
points; in the second case a straight line through the common point
which lies between the graphs of 21 and hs, and, in the third case, any
straight line between the graphs of h; and ho, we get the desired affine
function h.

z,yel, te(0,1),

2. Definitions and some properties of M;-convex
functions

Let I C R be an interval. For a fixed continuous and strictly
monotonic function ¢ : I — R and for any fixed ¢ € (0,1), we define
My : I* — I by the formula
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(2) Mye(z,y) = 7' (t6(2) + (1 = )6(v), = yel
The function My ; is a mean in I i.e., for all z, y € I,
min(z,y) < My,(z,y) < max(z,y),
and it is called a weighted quasi-arithmetic mean (cf. [1], p. 287 and [3],
p. 189). Note that, for any interval J C I,
My (I xJ)cCJ, te(0,1).
This property allows us to introduce the following
Definition 1. Let a subinterval J of I and ¢ € (0,1) be fixed. A
function w : J — I is said to be
(i) My, —convez if w(My(z,y)) < My(w(z),w(y)), z, y € J;
(i) Mg, i—concave if w(My,o(x,y)) 2 Mg (w(2), w(v)), @, y € J;
(iil) My,i—affine if w(Mo,(z,y)) = Ms,o(w(z), w(y)), z, y € J.
Definition 2. A function w : J +— I is called My—convez if for every
t € (0,1) it is Mgy -convex. Analogously we define My-concave and
My-affine functions.
Remark 2. Let I =R and let ¢ : ] — R be given by
é(u) =au+b, uel,
where a, b € R, a # 0, are fixed. It is easy to see that Md,w%-convexity
of a function w is equivalent to the Jensen convexity of w, and, for
every fixed ¢ € (0,1), the My ;-convexity of w reduces to its t-convexity
(cf. [4]). Moreover, My-convexity of a function coincides with its clas-
sical convexity. Thus the notion of the My-convexity generalizes the
classical convexity.
In the sequel the following criterion of the My-convexity will be
useful.
Lemma 1. Let ¢ : J — R be continuous and strictly decreasing.
Then u : ¢(J) — J is concave if, and only if, the function ¢~ *ouo ¢
is My-convez on J.
Proof. By the concavity of u we have
u(tr + (1 —t)s) > tu(r) + (1 — t)u(s), 7, s€o(l), te(0,1).
Setting here 7 = ¢(z), s = é(y), for z, y € J, and applying the
decreasing monotonicity of ¢, we get
w (671 (t4() + (1 - )6(v))) < 7" (26 (w(@)) + (1 - 1) (w(v))) ,
for all z, y € J, and ¢ € (0,1), where w := ¢! ouo ¢. This shows that
w is My-convex on J. The converse implication is obvious. ¢
Similarly we prove the following
Lemma 2. Let ¢ : J — R be continuous and strictly increasing.
Then u : ¢(J) —> J is convex if, and only if, the function ¢~ ouo ¢
is Mg-convez on J.
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3. Separation theorem for M,-convex functions

The main result of this section reads as follows:
Theorem 1. Let I and J be intervals such that J C I and suppose that
¢ : J — R is continuous and strictly monotonic. Then f, g:J — 1T
satisfy the inequality
(3)  f(Myr(z,y)) < My (9(2),9(w)), =z, y€d, t€(01),
if, and only if, there exists an Mg-convex function h : J — I such that
(4) f(z) < h(z) < g(z), zeJ.
Proof. Assume that (3) holds true. First consider the case when ¢ is
strictly decreasing. From (2) and (3), for all z, y € J, and ¢ € (0,1),
we obtain

7 (@7 o) + (1~ 1)g(®))) < 67 (t6(9(2)) + (1~ )B(9())) -
Choose arbitrary r, s € ¢(J). Substituting here z = ¢~3(7) and y =
= ¢~!(s) and making use of the decreasing monotonicity of ¢ we get
(5) (¢ofod™)(tr+(1~t)s) > t(s0go¢™")(r) +(1-t)(¢ogod™")(s)
for all 7, s € ¢(J) and ¢ € (0,1). Define f, §: ¢(J) — J by
(6) Ff=6¢o0fos™, g=dogost.
In view of (5) we have
fler+ @ —1t)s) > tg(r) + 1 -1)g(s), rse€d(J), te(0,1).
Now, applying Th. A, we infer that there exists a concave function
h: ¢(J) — J such that
fr)zh(r) 2 3(r), reé(]).
Putting here 7 = ¢(x), = € J, and making use of the decreasing mono-
tonicity of ¢, we get
f@)< (47 ohog)(2) <g(a), z€J.
In view of Lemma 1, the function h : J — I defined by
h=¢ lohog

is the desired Mg—convex function.

Now consider the remaining case when ¢ is strictly increasing.
A similar reasoning as in the previous part of the proof shows that
(6o fo¢™)(tr+ (1—1t)s) <t(pogod™)(r) + (1 - 1)($og067")(s)
for all , s € #(J), and t € (0,1), which means that

flir+(1—1t)s) <tg(r)+ (1-1)3(s), rsed(J), te(01),

where f, §: ¢(J) —> J are defined by (6). Applying again the Th. A
gives the existence of convex function % : ¢(J) — J such that
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f(r) < h(r)<g(r), reo(J).
Putting here r = ¢(z), = € J, and making use of the increasing mono-
tomcnty of ¢ we obtain (4) with A : J — I defined by formula h =
=¢ lohog¢. By Lemma 2, his the desired My-convex function.

The converse lication is an easy cc of the fact that
the weighted quasi-arithmetic mean is strictly monotonic with respect
to each variable. ¢
Remark 3. Applying Th. 1 with ¢ : J — R defined by ¢(u) = au+b,
u € J, where a, b € R, a # 0, are fixed, we get the result obtained
in [2].

Recall that a function k : J — (0, 00) is geometrically convez if

h(aty'™) < (b)) (hw)'™, =,y t€(01).

Taking I = (0,00), and ¢(t) =logt (¢t > 0) in Th. 1 we obtain
the following
Corollary 2. Let J C (0,00) be an interval and suppose that f, g :
: J — (0,00). Then

F @'y ) < (9@) e@)'™, wyed te(01),
if, and only if, there exists a geometrically convex function h : J —
+—+ (0,00) such that

4. Separation theorem for M;-affine functions

In this section we prove the following
Theorem 2. Let I, J be intervals such that J C I. Suppose that
¢:J— R is a continuous and strwtly manatama, and f,g: J— 1.
Then the follows diti are
(i) there exists an My-affine functzon h:J+— I such that
f(@) <h(z)<g(z), z€J;
(i) there exist an My-convez function by : J — I and an My-
concave function hy : J — I such that
f(@) Shi(z) <g(@), z€Jd, f(z)<ha(x)<g(x), z€J;
(iii) the functions f and g satisfy the system of inequalities:
{ F(My(z,9)) < Myi(g(2),9(v))
9(Mo(z,)) = Moe(f(2), £(v)
Proof. Implication (i) = (ii) is a consequence of the fact that every
affine function is both convex and concave.

2,y el te(0,1)
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The increasing monotonicity of the weighted quasi-arithmetic
mean M, ; with respect to each variable yields the implication (i) =
— (iii).

To show the implication (iii) = (i) first assume that ¢ is strictly
decreasing. Taking f, §: ¢(J) — J defined by (6) we can write the
system (iii) in the form
{ Flr+(1-1)s) 2g(r) + (1~ 1)g(s)

gltr+(1-1)s) <tf(r)+ (@1 —0)f(s)
Applying Th. B we infer that there exists an affine function & : ¢(J) —
+—— J such that

r,s€d(J), te(0,1).

g(r) <h(r) < f(r), red().
Putting here r = ¢(z), = € J, and making use of the decreasing mono-
tonicity of ¢ we get
f(z) <h(z) <g(z), z€J,
where h : J — I is given by the formula h = =1 0 ho ¢. Clearly, h is
the desired Mg-affine function.

Assume now that ¢ is strictly increasing. Similarly as in the pre-
vious case, the function f, §: ¢(J) — J defined by (6) satisfy the
system of inequalities

{ fler+(@1~t)s) <tg(r)+(1-2)g(s)
gltr+(1—t)s) 2tf(r)+ @1 —-1)f(s)

rs€d(J]), te(01).

The existence of the affine function A : ¢(J) — J such that

F(r) <h(r) <g(r), reo(]).
is again a consequence of theorem B. Now it is easy to check that A :
:J+—— 1T given by h = ¢~ o ho ¢ satisfies the condition (i). ¢
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