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Abstract In the light of Euler’s idea equations, a n-order is discussed throug!
alyzing its characteristic polynomial. An unproved result is verified rigorously for the first time. Then some cor
solutions are ruled by those characteristic roots follow.
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THE general form of polynomial-like iteraive equations
Mf(E) F R f(a) + o+ af(2) = F(2), 2 € R ©.1)
e R R defined by composition of func-
to find iterative roots™1!

is discussed extensively' where f* means the kth iterate of
tions, i.e. f° = id, the identity, f"=*f""'. A special case
basic problem in dynamical systems of maps on intervals.
One often pays more attention to the particular form:
£(2) = & fN2) + e fTHx) +... + agx, 2 € R. (0.2)
In 1974 Nabeya'?! gave detailed results of (0.2) for n = 2 by considering its characteristics. One is natu-
rally led to study (0.2) generally following him. However, that proves to be difficult. At the 26th Inter-
national Symposium on Functional Equations held in Spain in 1988, mathematicians presented open prob-
lems and conjectures in serial remarks!"*), in remark 35 Matkowski proposed that the solutions of (0.2)
for n = k are solutions of (0.2) forn = m, m > &, if the characteristic polynomial of the lower-order
equation exactly divide that of the higher-order one. This gives an important and interesting relation be-
tween solutions of the iterative equation and its characteristic roots, but until now no rigorous proof was

» which is a

given.
In this note the above proposed result is proved rigorously. Furthermore, based on this result some

conclusions that show the solutions to be ruled by those characteristic roots are given.

1 Characteristic equations

In the light of Euler’s idea for differential equations, we formally consider a linear solution

fz)=rz, z€ER Xl
of eq. (0.2), where r € Cis indeterminate. Then from (0.2) we have
W)= 7" =gy " ~ayr-aq=0. (1.2)

We call (1.2) the characteristic equation, P,(r) the characteristic polynomial, and the roots of (1.2)
the characteristic roots. By the relation between roots and coefficients eq. (0.2) is equivalent to

/(;)—(_,r, e 'u)»( S )£ 4 s < Dz =0 (L3)

forx € R, where ryy r2,..., 7, are n complex roots of polynomial P, ().
Clearly, arbitrarily given n complexes r,, ra, ", r, € C determine a unique operator F,(ry, s
-, 7,), defined by

Fulryra = 1) f(2) = f*

192 Chinese Science Bulletin  Vol.43 No.3 February 1998



oot (o I iririvrs, &R 1.4
for an arbitrary function f: R — R, which maps such a function into another. For convenience we call it

n-operator of (1.3).
Lemma 1.1. For fixed r, ra, =+, ryand 7,y € C i F,(riy 7y ooy )

, then F,.,(r,

Fur Tus)
Broof. Since F,(ry, ray -y r) 20, ive. £ satisfes ea. (1.3), we have

£ = PN = (B (St
+(-1D)"'riryerflz),. 2 €R. (1.5)

Thus for all x € R the (n + 1)-operator satisfies
Foulry, Tt f(z

-t

-fn.x(x)*(l )f’hn(_/,,]ﬂ e A e O
(S S (S Sl
e (S D) g %

i f )+ o S 7740 = o

# ) B i
== raaF. (o n) fla)
This completes the proof.
Then we can prove Matkowski's remark!™*’,
Theorem 1.1. Suppose that
Qr) =+~ byt~
P(r)=r"=-a, -
are polynomials, where € Cand < n , and that Q| P, i.e. P is exactly divided by Q . If a function
f:R — R satisfies the iterative equation

(1.6)

= bir = b,

-ar—a,

FHE) = b fN) + b f T (E) + o+ kg, T €R, {6 #erd
then f satisfies the iteraive equation
@) = @ fNE) + 4y fHx) o agz, T € R (1.8)

Proof. Let 7, 7, ", r, be complex roots of P . Since Q | P we assume without loss of generality

that 7y, 7, 7e, £ < m, are roots of Q. From (1.7), the hypothesis is equivalent to

Filrra ) f=0. 1.9)
By Lemma 1.1 £ also satisfies
Filronanag)f=0. (1.10)
Thus by induction we can prove easily that
Fulrira.r)f =0, (1.11)

that is, f satisfies eq. (1.8). This proves the theorem.
Indeed Theorem 1.1 gives an important relation between solutions of the iterative equation (0.2)
and its characteristic roots. We must point out the following remarks.
Remark 1.1. Eq. (1.8) of order n has a solution which does not satisfy ea. (1.7) of order k if
QI P but @ P. In fact, if all roots ry, 73, 7, of Pare real and only 7y, 7207y 72 £ < 1, are

roots of Q, then f(z) = rz, 2 € R, i=k+1,,n, satisfies (1.8) but it is not a solution of
[ 7
Remark 1.2. 1f rois a complex root of P, then all the solutions of the real 2-order iterative equation
fla

2Rery f(z) = |ro|’x (1.12)
spectively the real part and norm of ry. In fact, all coef-

satisfy eq. (1.8). Here Rergand | 7o | denote
ficients of P are real, so P must have another root rq, the conjugacy of ro. Then Theorem 1.1 implies our
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result.
2 Iteration of solutions
For convenience, let
wmt(rn o ri s 1) = Funa(rn ooy riens Taens 0 1) @.1
sepresent the (n = 1) -operator of (1.3), dstermined by n — 1 charscteritic 10688 710 Th-1» Tasts =
7, + where 7, means that r, is removed from the list of characteristic roots.
Theorem 2. 1. Suppose that the characteristic equation (1.2) has n different real roots r; < r, <
< 7, and that £+ R — R is a solution of the iterative equation (0.2). Then for any integer m =0,
A,

(2.2)
where g:= F,_(r1,~, 75, 1) f,  i=1,2,,n. And 4 and A", i=1,2,..,n, denote re-
spectively the determinant and slgebraic complement minors of the matrix

L= DD dr i DS e

T
10 =B ign B Lreg e ey ks
I B I o ¢ S

Here ) and its ke denote simply the summations with respect to the indexes from 1 to n with some
shown restriction.
Proof. Consider the equivalent equation (1.3), which can be written as

(S St s GO s
\
=t -, kg G A 2.4)
Tt follows by the notation of g,(z) that
&t f= g, 2.5)
where * means composition of functions. Thus for m >0,
Zoi = e, 2.6)
that is, for fixed 7,
£ =St et GO i = 2 @n
which is a linear equation of f**™, f**"!, -, f"!. Similarly, for fixed &, k = 1,2,", n =1, we
get another analogous linear equation. Then we get a system of  linear equations, expressed by
AF = G, (2.8)

77 i of the vector 4 ol
‘Aopping elementoey Tinear transformations. ropeatedly en the rows of i, withbil GiiSelins “we son
calculate

A = detA = H(v—m (2.9)

Clearly A #0, i.e. A is invertible since ry, 5,
(2.2) is rurmed out directly from eq. (2.8). This completes the proof.

Corrollary 2.1. r, 7> 7, are assumed as in Theorem 2.1. If f: R = R is a solution of a &-

order equation of the form (0.2) and its characteristic polynomial exactly divides P,(r), defined in

r, are different real numbers. Therefore, the formula

(1.2), then f*™ is a summation of certain k terms in (2.6). In particular, f**™ = —*r7"'g;, for m

2
> 0 when f(x) = ra.
Proof. In Theorem 2.1 P, is assumed to have n different real roots 1, 72, *+*, 7, Without loss of
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generality, we suppose that the first £ roots ry, 75, **+, r; are just the  roots of the characteristic polyno-

‘mial associated with the k-order iterative equation which f satisfies, i.e. Fy(ry, r2,=, ) f = 0. By
Theorem 1.1,
Foa(rptsm s, mar)f = i=k+1,n, (2.10)
ie g =0, k+1,-,n. By Theorem 2.1,
im o Al Az e A
F =i i st et M g iy 20 .11)

Especially when f(x) = r.z, (2.11) implies the result
In order to discuss the dual equation, the following lemma is useful.
Lemma 2.1. Suppose that f: R — R is a solution of (0.2). Then ( i) £ is one-to-one if ag 5 0;
(i) fis strictly monotone and onto if ag % 0 and f s continuous.
Proof. If f()) = f(y2) = z, then f'(3) = f'(32) = £7(2), i = 1,2, Thus
17U = ) = @ f )+ anf() Faaw fork = 1,2 (2.12)
It follows that agy; = @gys» i-€. 1 = y1 if ag 5 0. Hence £ is one-to-one.
In addition the function f, one-to-one when ay % 0, must be monotone if f is continuous. To prove
(2) it suffices to show that £ is onto. Rewrite (0.2) as
FUx) = @y f*Nz) = = ayf(2) = agx. (2.13)
1f the interval It = f(R) # R, without loss of generality we suppose that lim, . f(z) = . By
continuity of f* on the whole R, % = 1,2, , the left-hand side of (2.13) is bounded, but the right-
hand side of (2.13) must be unbounded when x — . This contradiction proves that £ is onto.
When ay 50, the relation between roots and coefficients implies that no characteristic root of (0.2)
is zero. By Lemma 2.1, (1.3) is equivalent to
Ve —[E:)/“"'” + :];,x,)f"”’” e G DTN
where f7* denotes the kth iterate of f ' ands, = r,”!, i = 1,2, n. (2.14) is called the dual equation
of (1.3). As for Theorem 2.1 with (2.14) in place of (1.5) we can also prove the following theorem.
‘Theorem 2.2. Suppose that ap 7 0 in (0.2) and that the hypotheses in Theorem 2.1 hold. Then
for any integer m >0,

S0 =0, (2.14)

Fue
Ao

frnem

R @.15)
A A

where g, 4 and A, are just modified from g;, A and Ay, i = 1,2,..,n, defined in Theorem 2.1,
where 7, is replaced by 5;,  j = 1,2, n, and s replaced by £™'.
3 Properties of solutions

In the sequel we always assume that ( | ) ag 7 05 (i ) (0.2) has n different real characteristic
roots 7y < 7, < = < r,. We shall apply the above theorems to give the properties of solutions. Let £ be
a real continuous solution of (0.2)

Corrollary 3.1. Under the above assumptions, 17 if = 1 < 7, < r, <1, then f* approaches 0 as &
—+00;2%if r,>1 or r,< ~ 1, then f* approaches 0 as k=~ % 3" in both cases 0 is the unique fixed
point of f

Proof. The limit of (2.16) as m —+ o0 gives result 1. The result 2* is similarly deduced from
(2.15). To prove 3°, by reduction to absurdity we assume f(zq) = o for some x4 % 0. It follows from
(1.3) that

l*(i‘:r}*[:\;r.r,)+“'*(*U"HY: or, =0, (3.1

which means [[" (1= 7) =0, i.e. atleastoneof r,, i=

++, n, equals 1. This conflicts the hy-
potheses in 17 and 27, so0 is the unique possible fixed point of f.
Furthermore, by Lemma 2.1, £ is strictly monotone and onto. If £ is decreasing, f must have a
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fixed point, which should be 0. Otherwise, if f is increasing but £(0) # 0, without loss of generality, we
only discuss the case that £(0) > 0 and the other case can be discussed similarly. Since £(0) > 0, i.e.
F740) < 0, we have
FO) < £(0) <+ < 00, s k=, 3.2)
FH0) > £72(0) >+ > FHO0)#0, as b+ o, (3.3)
which contradict results 1° and 2° respectively, so f(0) = 0.
Corollary 3.2. Suppose that f: R— R is a strictly increasing continuous solution of eq. (0.2). The

<7 <1<rorn<-1<n< <<l amdiff(z) <z Vz
> 0and f(2) > z, ¥z <0, then £ satisfies

Fo(rpare) f=0 or Fuy(rg, r)f = (3.4

2Ir <<y <-1<r,<lor-1< 1 <1< << r, andif f(x) >z, ¥z
>0and f(2) < z, ¥ z <0, then f satisfies

Fualrityar3t)f =0 o Fui(r ) fh =0, 3.5)

Proof. Using the same arguments as in Corollary 3.1, we see that 0 is the unique fixed point of fin

R in both cases. For simplicity, under the hypotheses of 1° we only discuss the case where x > 0 and

-1< 7 << "' <1< r,. Since f is increasing, for x > 0, x > f(x) > ff(z) > = >

f*(2) = 0ask—+ . By Theorem 2.1, g, vanishes, i.e. F,.i(ry,*, r,-) f = O because | 7, 1*—

0, i= +n = 1but | 7, |*does not. Similarly we can prove 2° from (2.15) in Theorem 2.2 by con-

sidering £~ and r,”', i = 1, n, instead of fand r,.
Up to now, for the general 7-order equation (0.2) the properties of solutions are not yet quite clear
except for a few results, e.g. in the above corollaries and in ref. [5]. There is still a lot of work to do.
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