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ROUND-OFF STABILITY OF FUNCTIONAL ITERATIONS
ON PRODUCT SPACES
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(Received 11 July 1997)

The main purpose of this paper is to obtain certain results concerning the
stability of Picard type sequence of iterates of a system of operators on a
product space. Stability theorems of Ostrowski. Harder-Hicks and Singh et
al. are obtained as special cases.

1. Introduction

Let (Y, d) be a metric space and 7: ¥ — Y. In computation, a solution of an
equation

Tx=x.xe¥Y . (1.1

is usually approximated by an iterating sequence {v,}cY. In practice, an
approximate sequence {y,,} < ¥ is used in place of {x,,}. However, in general, both
the sequences need not converge to the same point even if y,,, converges in ¥ (see. for
instance, Urabe [12], Ostrowski [7] and Harder-Hicks 3], p. 703-705). M. Urabe [12]
appears to be the first to initiate this kind of stability problem on the real line. A. M.
Ostrowski 7] seems to be the first to investigate sufficient conditions for the
stability of iterating sequences concerning a map T on a metric space (see [3, p. 694],
[11, p. 106] or Remark 4). Recently Harder-Hicks [3] (cf. Cor. 3) and Rhoades [9]
have obtained similar results for a wider class of contractive type maps. Singh ef al.
[11] have extended Ostrowski’s stability theorem to a contraction-system presented
in Matkowski [5]- [6] (see alsq [4, p. 39], [10. p. 794] and Corollary ).

The purpose of this paper is to extend the main result, Theorem 2, of Harder and
Hicks [3] to a system of equations on a finite product of metric spaces. Our results
(Theorems 3-4) generalize the main theorem, Theorem 3, of [11] as well (cf. Remark
4.
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At the end, we observe that Theorem 3 [11] with certain restrictions is
equivalent to Ostrowski’s stability theorem (Remark 4).

2. Preliminaries
Let (Y, d) be a metric space and T: ¥ — Y. Pick xqin ¥, and let
Tl =S (T, X)), m=0,1,2, -, (€)

denote some functional itegation procedure which yields a sequence {x,,} converging
to a fixed point of T Let {y,,} be an arbitrary sequence in ¥ and. set

At f(Toyp) €y m=0,1,2, . (%)

If limy .. €, = 0 implies that lim,,,_;.. y,, = p. then the iteration procedure defined in
(*) is called T-stable or stable with respect to 7 [3] (see also [9] and [11]). (Because
of round-off errors involved in *‘approximative sequence™ {y,,}, inequality sign in
(**) seems more appropriate than an equality sign in (¥*)).

Consider the following conditions for 7: ¥ - ¥ :
(2.1) For each pair of points x, y € ¥ at least one of the following is true:

d(Tx, Ty) S od (x, y),
d(Tx. Ty) < B [d (v, Tx) +d (y, V)],
d(Tx, Ty) S v [d (x, Ty) +d (y, T9),

- S 1
where o, B, v, are non-negative constants satisfying 0 <ot < 1,0 < B, v < 2"

(2.2) There exists a constant ¢, 0 < g < | such that for each x, y € ¥,

(T Ty) < g max { (s y), L@ T0) ; d(yTy) dex Tv)-; d(y. T.r)} )

In [8]. Rhoades has various definitions for ive type maps that
generalize the Banach contraction. He has shown that (2.1) and (2.2) (which are
named (19) and (19”) respectively in his paper [8]) are equivalent (see also [3], p.
695). Harder-Hicks [3] have obtained stability results for 7 satisfying (2.1).

In all that follows, we generally follow the following notations and definitions
introduced in Matkowski [5]-[6] (cf. also Czerwik [1]. Kuczma et al. (4, p. 39] and
Singh er al. [10]-[11]).
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For non-negative numbers ajx (i, k= 1, -, n), let

i for i#k
@ die
Cik=
N o il

i,k=1,-,n,and cf,? are defined recursively by

o o o 0 Y
oty | CICirtkr +Citl, 1 €Lkt for i#k
cig =

(1) (1) ) 1) = ¥,
C(ncgl,ku—CQ:,lC(l.)ku for i=k,

ik=1,n—t=1, 1=0,1,n=2.1fn=1,we define ¢} =ay;.

In [6, p. 9-11], it is shown that the system of inequalities

has a solution r; >0, i =1, 2, -, n, if and only if

&0, i=1,n—t, 1=0,1,n-1; n22
hold. Moreover, there exists a number i € (0, 1) such that

n

zﬂ:kfkﬁhr.w i=1,2,,n,

k=1
for some positive numbers ry, r3, =, 1.

Indeed such an s may be obtained (cf. [1]) by

-1
h=max|r; 2 ik Tk |-
% k=1

Let (X, d)),i= 1,2, -, n, be metric spaces,
X=Xy xXp X X Xy

and

23)

2.4)

2.5)

(2.6

(2.6a)
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A A X

oy =01, 2,

Also

=@ ), Xi€ X, i

Thusy € X means y = ( y1, - y,).

The following fixed point theorems are special cases of Theorem 2 of
Singh-Gairola [10] (see also Remark 1 [2]).
THEOERM | Let (X;. dj), i=1, -, n, be complete metric spaces and T; : X = X;,
1, -+, n, be such that

di(Tix, Tiy) < @7

o
max { Y aix di (%%, 3, b max (d; (x;, T; ), di (3is T y),
k=1

di (xi Ty y) +di (33, T X)
e e

for all x,y X, where ay. and b are non-negative numbers, b< 1, and (2.3)- (2.5)
hold. Then the system of equations

X=Tyx, i=1,n, @8

has exactly one solution p=(py, - py) such that pie X; i -, n. For an

0 . .
_arbitrarily fixed x” € X, the sequence of successive approximations
A T i m=0,1,2, 29)

converges and

ot (2.10)

»
pi=limx",i
e

THEOREM 2 Theorem 1 with (2.7) replaced by the following:
d;(T;x, T;y) < 7L)

S {d. T 0T AT+ nx)}l :
=
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REMARK | It is evident that (2.7L) is less general than (2.7), ie.,
T:=(T), -, T,) satisfying (2.7L) also satisfies (2.7). Notice that (2.7) and (2.7L) are
the same if b=0.If p:=(py, -, py) € X is a solution of (2.8), then p is called a
fixed point of T.

REMARK 2 The condition (22) is (2.7L) with (Y.d)=(X;d),T=T;
.n,and n = | such that g =max {ay, b}.

COROLLARY | (Matkowski [5]). Theorem 1 with b=0.

The next result gives simple conditions under which Corollary 1 can be simply
reduced to the classical Banach contraction principle.

COROLLARY 2 If, in Corollary 1, the matrix [aj] is symmetric then the pair
(X.d)withX : = X; X - X X,, and d : X x X > R defined by

"
dxy) =Y, ridi (3 x= (31, -,

i=1

y=(n -y € X,

is a complete metric space, and T=(T\, -, T,): X — X is h-contraction of this
metric space, i.e.

d(Tx,Ty)<hd(x,y); x,ye X,
where h € (0, 1) is given by (2.6a).
PROOF. Define a metric 4 on X by

n

dex,y) =Y, rid; (3, xy€ X,
1

where r;, i = 1, -, n, are such that (2.6) hold. Then (X, ) is a complete metric space.
Let T: X — X be such that Tx = (T} x, ---, T,, x). Now it is enough to show that T'is a
Banach contraction on X. Since T}, i = 1, -+, n, satisfy (2.7) with b =0 (cf. Cor. 1), for
anyx,ye X,

n noon

d(Tx, Ty)= X, ridi (T;x, Tiy) S X 10 Y, i de (5 90 =

i=1 i=1 k=1

n(n

| 3 aieri e (ks 90
k=1li=1
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By the symmetry restriction on aj’s and (2.6),

Hence

d(Tx, )<Y, hrdy O y) =hd (x,y) .
k=1

This completes the proof since A< 1.
REMARK 3 An earlier effort to formulate the result of Corollary 2 (see, for
instance, [4], p. 49) faces rough weather without the symmetry restrictions on a;’s.

LEMMA. If ¢ is a real number such that b” — 0 s j = o, then
m -
lim (3, "7 b)) =0.
e 0
3. Stability Results

The following stability theorems show that the functional iteration for
T:=(Ty. . T,) defined by (2.9) is T-stable whenever T fulfills the requirement of

Theorem 1 with0<b< % of Theorem 2 with no additional requirement,

Notice that the maps considered in (2.1), (2.2), (2.7) and (2.7L) need not be
continuous.

THEOREM 3 Let (X;, di) be complete metric spaces and Ty: X = Xi i=1, -, n,
such that T = (Ty, - Ty) satisfies the conditions of Theorem 1, viz, (2.7), (2.3)-2.5)
and 0 b <3 Let p=(pu, = py) be the fixed point of T. Let ° be an arbitrary point
in X, and put

mtl

5T =TiA", m=0,1,

Let {y]'} denote an arbitrary sequence in X;, i =1, -, n, and set

4O Ty <€l m=0,1,




ROUND-OFF STABILITY OF FUNCTIONAL ITERATIONS ... 281

n m
-1 1 1 -1 1 -1
diprt N<di i )+ e Y g a4 Y B el @
j=0 j=0

0, 2 b ;
5/.3) are some positive munbers, ¢ = p=max (h,c} and h is

2.6a). Also.
lim )" = p; iff lime]' =0. m
e =

To prove (I). first fix x,y € X. Since T= (T}, -, T,) satisfies (2.7), one

i
i (T x. Ty ) S 3, ai di (55, 30): 6.
k=

d,(T; x, T; ) S b d; (x;, T; x); 32)

T To) $bd; (0. Ti3) Sb 1d; (v )+ d (. T2+ (Tyx, Ty ),

4G Tx TV ST, , s (i i) + i (5 Ty 0 G3)
di (T x. T,\)< Iz[ @i T ) +d; 0 Tin)] €

B (i T+ Ty Ty 0+ (530 + s (3 Ty 0,

A (T T) S 32 1 6 (50 + 2 (5. To0) (34

Then from (3.1)-(3.4),

4 (Tix, Tiy) < (3:5)
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max {

iy di (xp, yp), max {71 fb . ﬁ} d; (x;, i) } +max {b Lb 4 %} di (6, T;x) <

n
malea.k di (o Y0, B ds (i, i) + ¢ B ds G5, T ).
This is true fori=1, -, n.
For any m,
: 1 1 mtl 1
I s e s )

mel ml | om
i

<d; o "+ di G ) 4 e 36)

Now we estimate the middle term on the right hand side of (3.6). From the
homogeneity of the system (2.4), we may assume (see also [11], p. 108) without any
loss of generality that d; (x},y{)<r, for some positive numbers ryi=1, - n,
satisfying (2.6). Then from (3.5),

1881 T80 01 (ST

di (5, ) Sy (. T;y ) +di (Tiy', 3i) Sy (%, Ty ) +&
< 0

0, 0 0, 0 0, 0

<max{ Y, ai d (5 Y0, B s (35 30y + ¢ d; (35 T3 ) + €

n

< max 2

k=1

O
i T B rip + € d; (4, %) + &

<max {hr;, Br;} +Ed1-(x?. Dy+ed

=Bri+cd;(f.x)+e =h;, say

(This is true for i =1, -,

, n.)

Similarly,
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2.2 (Pt )
di(xi,yi) <di (Tix , Tiy) +&

.
1
<max{ 3 apdy ck, Y0 By (xf Y| + i (], Tyx') €]

=1
5
<max{ Y ay A, Bt + ¢ di (5], XD+ SBA;+cdy(x) )+l
k=1
2 0 1 0 1
=B ritcBdi(xi, xi)+edi(xi, x)+Bei+g .
Inductively
m » m-1
™Y <p™ rre BT i + 38" e
j=0 j=0
Its substitution in (3.6) establishes (I).

To prove (II), first assume y;" —pipasm—eo,i=
(3.5),

, =+, n. Then, for any i, from

1 1
&' <di "L T < G p) + i (Tp, Tiy™ <

.
1

4 (3™ p) + max{ Y

k=1

i di (Pro %), B i (i i) + ¢ di (piy Trp) <

-
d O ) +| (X @) + B max (dy (pi 1), dy (P i)} +0.

k=1
3 m - m
Since each d; (pj, yi ) = 0as m — oo, limye & =0.

Now suppose €/ — 0 as m — e=. Since Theorem | guarantees the existence of
exactly one solution of (2.8) and, by hypothesis, p is a solution of (2.8), the sequence
xf" converges to p;, i = 1, -, n, (cf. (2.9)-(2.10)). Recall that 0 < B < 1. Thus from (I),
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" 1.
lim d; (pi, i) <
L

m m
lim | 8" di x|+ tim | 3"V ed .
LEL s moe| /2o
Since sequences {d; (), x1™))Zo and (€]} are both convergent to zero, an
appeal to the lemma of Harder and Hicks establishes (II).
THEOREM 4 Let (X;, d;) be complete metric spaces and T;: X = Xjy i =1, n,
such that T:=(Ty,--,T,) satisfies the conditions of Theorem 2, viz., (2.7L),
(23)2.5)and0<b < % Let x° be an arbitrary point in X, and put _

ml m ¢
xi =Tix, m=0,1,-

..
Let {y;'} denote an arbitrary sequence in X, i =1, -, n, and set

4O Ty s €l m=0.1, -,

Then, form=0, 1, -, and i=1,2, -, n,

m =
(P <di (py ™+ 8™ 1426 3 8" s (1 + T 8 ] @D
=0 j=0
where ;> d; (x5, 32 are some positive numbers, §=max {(h, b} and h is defined by
(2.6a).

PROOF. It may be completed using Theorem 2 and following the proof of
Theorem 3.

COROLLARY 3 Let (Y,d) be a complete metric space, and let T:Y—> Y.
Assume T satisfies the condition (2.2). Let p be the fixed point of T. Let xq be an
arbitrary point in Y, and put Xy =T Xy for m=0, 1, -+ (so that limy, e Xy = p). Let
Ym denote an arbitrary sequence in Y, and let

4 Ymtts Tym) SEmy m=0, 1,

Then
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m m
+1 - -
. ye) Sdp, e+ d (20,30 +29 2,47 d () + 26" €5
j=0 j=0
and lim,y e Y, = p if and only if limp, . €, =0 .

PROOF. Take (Y,d)=(X;,d), T=T;=1,-,n, and n=1 in Theorem 4 with
ry=d (xo, o). @ = h and g =8, (see also Remark 4).

REMARK 4 Theorems 3 and 4 are the same if b =0. The main result of [11] is
Theorem 3 with b=0. Ostrowski’s classical theorem of stability is derived from
Theorem 3 if we take (Y.d )= (X;,d), T=T;,i=1,--,n,andn=1 witha;; =h,b=0
and d (xg, yo) = ry. In view of Corollary 2, Theorem 3 with b =0 and a; symmetrical
is equivalent to the Ostrowski’s theorem.

REMARK 5 The main result for the stability of Picard sequence of iterates of

Harder-Hicks [3, Th. 2] is the above corollary, (recall that (2.1) and (2.2) are
equivalent).
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