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ABSTRACT

The continuous multiplicative iteration groups of homemorphisms f :
(0,00) = (0,00), f*o f* = f* (s.t > 0) such that for every r > 0,
the function f* is M-convex or M-concave with respect to a given continuous
function M : (0, 00)* — (0, 00) are considered. In the case M(x, y) = x +y
we show in particular that the iteration group with a geometrically convex
generator consists of only subadditive or superadditive elements. In the case
M(x, y) = §(x+y) we show that if the derivative of the generator group is ge-
ometrically convex (or geometrically concave) then it consists only of convex
and concave elements. Some applications to the converse of the Minkowski
inequality are given

Introduction

‘We examine the continuous multiplicative iteration groups of homemorphisms f* :
(0,00) = (0,00), f*o f' = f* (5,1 > 0), having the following property: for every
1 > 0, the function f* is M-convex or M-concave (f* is M-convex if f'(M(x, y)) <
M(f'(x), f'(y)), where M is a continuous function on (0, 00)2. In Section 1 we prove
that actually this basic property is a consequence of a considerably weaker condition
(cf. Theorem 2). The main result of this section (Theorem 1) says that if there are two
elements f* and f",s < | < r, which are both M-convex or both M-concave, then
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all members of the group are M-affine, f1(M(x, ) = M(f'(x), f'(y)) for all
x,y,t > 0. Some other results characterizing the considered iteration group (f"),-o
in term of its generator ¢ such that f' = ¢ o (1¢~") are also given.

In Section 2 we assume that M (x, y) = x + y. Now every M-convex (M-concave)
function is subadditive (superadditive). Applying Theorem I we prove its more detailed
counterpart (Theorem 3). The generator ¢ of the iteration group is a power function,
and f* is linear for every 1 > 0. This result is an essential generalization of the main
result of [6]. Moreover, we show that each iteration group with geometrically convex
generator ¢ has the property that its elements f* are subadditive or superadditive.

In Section 3 we apply Theorem 3 to prove a new converse of the Minkowski’s
inequality.

Section 4 is devoted to the case M(x, y) = (x + y)/2. Thus f' are convex or
concave in the classical sense. Theorem 7, the counterpart of Theorem 1, is an obvious
consequence of Theorem 3. The main result of this section, Theorem 8, asserts that
every iteration group with a generator ¢ such that the derivative ¢ is geometrically
convex or geometrically concave has only convex and concave elements.

In the last section we discuss the possible generalizations of main results for the
iteration groups (f*),~o with (M, N)-convex elements (i.e., such that f'(M(x, y)) <
N, F1 D).

1. Iteration groups with M-convex and M-concave elements

Let (f");-0 be a multiplicative iteration group of homeomorphisms f' of (0, 00),
i, f*o f'= f*foralls,t > 0. The iteration group is continuous if for every x > 0
the function

(0,00) 31— f'(x)
is continuous.

Let M : (0,00) x (0,00) — (0, 00) be an arbitrary function. A function f :
(0, 00) — (0, 00) is M-convex if

f(M(x, ) = M(f(x), f(M), x,y>0.
termed M-concave. The function f is

If the inequality is reversed the function f
M-affine if
Sf(M(x,y)) = M(f(x), f()), x,y>0.

Remark 1. Note that if f, g : (0,00) — (0, 00) are increasing and M-convex then
f o g isalso M-convex. If f is one-to-one and onto then the inverse function of f is
M-concave.

Of course, if f and g are M-affine then f o g is M-affine. Under some conditions
on f and g the converse implication holds true. Namely, we have the following:
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Lemma 1. Suppose that f, g : (0, 00) — (0, 00) are M-convex (or M-concave), f is
strictly increasing, and g is onto. If f o g is M-affine then the functions f and g are
M-affine.

Proof. Assume that f o g is M-affine. If f were not M-affine then there would exist

1o, vo > 0 such that

f(M(ug, v)) < M(f(uo), f(vo))-

Since g is onto, there are xg, yo > 0 such that g(xo) = up and g(yo) = vo. By the
‘M-convexity of f and g and the monotonicity of f we hence get

£ og(M(xo, yo)) = f [M(g(x0), g(0)) ] = f(M(uo, v))
< M(f(uo), f(v0)) = M(f o g(x0), f o g(yn),
which is a contradiction.
Similarly, if g were not affine then we would have
g(M(xo, y0)) < M(g(x0), g(y0))
for some xo, yo > 0. Since £ is strictly increasing and M-convex, we obtain
S0 g(M(xa, y)) = f[g(M(x0,y0)] < f [ M(g(x0), g(y0)) ]
< M(f 0 g(x0), f0g(30))-

This contradiction completes the proof. O
As an obvious consequence we get the following

Corollary 1. Suppose that f - (0, 00) = (0, 00) is M-canvex (or M-concave), stricily
increasing, and onto. If for a positive integer m, the m-th iterate of f is M-affine, then
1 is M-affine.

Now we prove the main result of this section.

Theorem 1. Let M : (0, 00) x (0, 00) — (0, c0) be a continuous function and suppose

lh.ll (f")e>0 is a continuous multiplicative iteration group such that

f* iis a homeomorphism of (0, 00) for every 1 > 0;

(ii) for some ¢ > 0, f has no fixed points;

(ifi) f* is M-convex or M-concave for every ¢ > 0;

(iv) there exist s and 7,0 < 5 < | < r, such that £* and f" are both M-convex (or
both M-concave).
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Then
SHUM(x, ) = M(f'(x), f'(y), X 9,050;
ie., f"is M-affine for every 1 > 0.
Proof. Since ' for some 1 > 0 is fixed point free it follows that for every 1 > 0,
1 # 1, the function f* is also fixed point free. Consequently, f* is an increasing
homeomorphism of (0, co) for every t > 0.
Suppose for instance that f* and f” arc M-convex.
If log r/ log s is irrational then the set
D:={r"s" :n,meN)
is dense in (0, co) and, by Remark 1, we have
S'(M(x, ) < M(f'(0), f' (), x,y>0,
for all £ € D. Since the iteration group and the function M are continuous, this
inequality holds true for all £ > 0. As f'/* is the inverse of f', we hence get
My = M@ ). Xy >0,
for all 1 > 0. Consequently
S (Mx, )= MU', 15, x,y,0>0.

Now suppose that log r/ log s is rational. Since 0 < 5 < | < r, there positive
integers m, n such that s = 1. Hence the functions ™" and f*" are inverses of
each other, and, because they are increasing, one of them is M-convex and the other
M-concave. On the other hand, each of them is M-convex as the composition of
increasing M-convex functions (cf. Remark 1). It proves that they both are M-affine.
In particular we have shown that there exist ¢ > 0, ¢ # 1, such that

fUM(x, y)) = M(f7(x), f1(y), x,y>0,

and
FHM(x, ) =M, FG), xy >0

Thus, without any loss of generality we may assume that ¢ > 1. Take arbitrary m € N.

Since : ;
(f'l "")o...o(_f" "‘) =19,

m times

the Corollary | implies that f1""

function

is M-affine. Hence, for every positive integer k, the

s (f,,um) o (f”!/m)

& times
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is also M-affine. The set {g*/" : m, k € N} is dense in (1, 00). Now the continuity
of the iteration group and the funcnon M imply that for every t > 1, f* is M-affine.
This implies that f* is affine for every 1 > 0, what was to be shown.

Remark 2. In iteration theory it is a well known fact (cf. for instance M. Kuczma
[31. p. 198) that for each multiplicative continuous iteration group ( f*)>o satisfying
the conditions (i) and (ii) of Theorem 1 there exist an open interval I C R and a
homeomorphism ¢ : 1 — (0, 00), called a generator of the iteration group, such that
J'=¢ 0 (g™") for every 1 > 0 (here ¢~' denotes the inverse function of ¢). Since
forallr > 0and x € (0,00), 1¢~"'(x) € I, we have either I = (0,00) or = R. In
the sequel / = (0, 00) or [ = R.

Using this fact we can write Theorem 1 in the following equivalent form:

Corollary 2. Let M : (0,00) x(0,00) = (0,00) be a continuous function and (f');»0
a continuous multiplicative iteration group such that conditions (i)~(iv) of Theorem |
are fulfilled. Let ¢ : I — (0, 00) be a generator of the iteration group (f),o.
Then the function My : (0, 00) x (0,00) — (0, 00) defined by
My(x,y) = ¢~ [M@x).6(N],  x,y>0,

is positively homogeneous, i.e.,

Myltx,1y) = tMs(x,y),  x,y.1>0.

Theorem | and Corollary 2 give the general conditions under which an iteration
group must be trivial in a sense that all its members are M-affine functions. The
crucial role in these theorems plays the assumption (iv). As an obvious consequence
of Theorem 1 we obtain

Corollary 3. Let M : (0,00) x (0,00) — (0,00) be a continuous function and
suppose that (')~ is a continuous multiplicative iteration group such that

(i) f" is a homeomorphism of (0, 00) for every 1 > 0;

(i) for some t > 0, ' has no fixed points;
(iii) f" is M-convex or M-concave for every t > 0.
If the iteration group (f');-o is not trivial, i.e., there is a t > 0 such that f* is not
M-affine, then " is not affine for every t > 0,1 # 1. Moreover, either

f'is M-convex for every t > 1 and M-concave for every t € (0, 1),
or
f" is M-concave for every t > | and M-convex for every 1 € (0, 1).

A natural problem to determine the iteration groups such that all the elements are M-
convex or M-concave seems o be difficult to decide in a such general setting. However,
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making use of Corollary 3, and the generator ionof a iplicative iteration
group, we obtain the following:

Proposition 1. Let M : (0, 00) x (0, 00) — (0, 00) be a continuous function, ¢ a
homeomorphism of 1 onto (0, 00), and suppose that f* = ¢ o (1¢") for ¢ > 0.

19 If ¢ is increasing then f* is M-convex for every t > 1, iff the function My is
superhomogeneous, i.c.,

tMy(x,y) < My(tx,ty), Y0 v

2" If ¢ is decreasing then f' is M-convex for every t > 1, iff the function My is

subhomogeneous, ic.,
Mylix, ty) < tMy(x, y), TP =IO
Let (f*);-1 be a (multiplicative) iteration semi-group of functions f* : (0, 00) —
(0,00), i.e., f*o f' = f* foralls,t > 1. The iteration semi-group is continuous if
for every x > () the function
(L,oo) 31— f'(x)

is continuous.

The next result shows that condition (iii) of Theorem 1, and Corollary 3 can be
replaced by a weaker one.
Proposition 2. Let (f');~1 be a continuous multiplicative iteration semi-group, and
M : (0,00) x (0,00) = (0, 00) a continuous function. If there exists a sequence
te > L, limg o0t = | such that for every k € N the function f* is increasing and
M-convex (resp. M-concave), then for every t > | the function f' is increasing and
M-convex (resp. M-concave).
Proof. Since f* : (0,00) — (0, 00) is increasing and M-convex, the composite
function

fi=phopn
is increasing and, in view of Remark 1, M-convex. In the same way we can show that
the function f*%' is increasing and M-convex for all k, m € N. Put
S:=(y':k,meN),
and take an arbitrary 1 > |. The density of the set S in (1, 00) implies the existence
of a sequence s, € § such that lim,_. o s,=t. Moreover f* is increasing and we have
fr M y) S M(f 0, f") . x y>0.

By the continuity of the iteration semigroup, letting n — 00, we hence get the M-
convexity of f.
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In the same way one can prove

Theorem 2. Let (f*);.0 be a continuous multiplicative iteration group, and M :
(0,00) x (0,00) — (0,00) a continuous function. If there exisis a sequence f;, >
0,1 # 1, iMoo i = | such that for every k € N the function f* is increasing and
M-convex or M-concave, then:

1 for every 1 > O the function f* is increasing;

2 cither f* is M-convex for all t > 1, and f* is M-concave for all 1 € (0, 1), or
f" is M-convex for all 1 > 1, and f* is M-concave for all 1 € (0, 1).

2. Iteration groups with subadditive and superadditive functions
Take M(x, y) := x+y forx,y > 0. A function f : (0, 00) — (0, 00) is M-convex
iff
fr+N 2 fO+ /), xy>0,

ie., f is subadditive. OF course, f is M-concave, and M-affine if, respectively, f
is superadditive, and additive. Applying Theorem 1 with M(x, y) = x + y we shall
prove the following

Theorem 3. Suppose that ( f*),q is a continuous multiplicative iteration group such
that
(i) f' is a homeomorphism of (0,00) for everyt > 0;
(ii) for some t > 0, f' has no fived points;
(i) f* is subadditive or superadditive for every t > 0;
(iv) there exist s andr,0 < s < | < r, such that f* and f" are both subadditive (or
both superadditive).
Then there exists a p € R\{0) such that

floy=ix,  x1>0.
Moreover, the generator ¢ of the iteration group is a power function, i.e., ¢(x) =

B()xP, x > 0, forsome p € R, p # 0, and ¢(1) > 0 is an arbitrary constant.

Proof. Let a homeomorphism ¢ : I — (0, 00) be a generator of (f*);.o. By Theorem
Lwith M(x,y) =x +y, f' = ¢o(tg~") is additive for every 1 > 0. Consequently,
for every > 0, there exists a ¢(1) > 0 such that

oo™ Wl =c)x, x>0
Writing an analogous equation for every s > 0 we have

Plso™" ()] = c(s)x, x>0,
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Composing separately the functions on the left and the right-hand sides of the above
equations we obtain

lstp~ ()] =c)e)x, x>0,
On the other hand we have
Plstg™" (x)] = e(st)x, x>0,
The last two equations give
c(st) = c(s)elr), 5,t>0,

which shows that ¢ : (0, 00) = (0, 00) is a continuous solution of the multiplicative
Cauchy equation. Since,

) =oltp~' (), 1>0,
is continuous, there exists a p € R, p # 0, such that ¢() = 1/, ¢ > 0, (cf. J.Aczél
(1], p. 41). Now (6) implies that ¢ is a power function. This completes the proof. O

Theorem 3 is a generalization of Theorem 1 in [6] where only the case when
log s/ log r is irrational was considered.
An application of Theorem 2 for M (x, y) = x + y gives the following

Corollary 4. Let (f*).o be a continuous multiplicative iteration group, and M
(0, 00) x (0, 00) = (0, 00) a continuous function. If there exists a sequence 1, > 0,
B # L limg oot = 1, such that for every k € N the function f* is increasing and
subadditive or superadditive, then:

1" for every t > 0 the function f* is increasing;

2" cither f' is subadditive for all t > 1, and superadditive for all t € (0, 1), or
Sflis dditive for all t > 1, and subadditive for all 1 € (0, 1).

Corollary 4 shows that assumption iii) of Theorem 3 can be considerably weakened.
Applying Proposition | for M(x, y) = x + y gives the following

Corollary 5. Let ¢ : I — (0, 00) be a homeomorphism, and suppose that f' =
¢op™")forr > 0.
19 If ¢ is increasing then f* is subadditive for every t > 1, iff

197 B+ <TG + (1Y), x,y> 0 1> 1
2 If ¢ is decreasing then f' is subadditive for every 1 > 1, iff
67 (@) +6(y) <187 @) + oY), x, y>0; 1> 1.

To determine some iteration groups such that all the elements are subadditive or
superadditive we need the following definition.
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A function g : (0, 00) — (0, 00) is geometrically convex iff
gy ™ < g e', x,y>0; A€, 1).
If the reversed inequality holds true, the function g is said to be geometrically concave.
Note that g is geometrically convex iff the function log og o exp is convex on R. A
continuous function g is geometrically convex iff

8(VAY) < g gy), x,y>0,

and g is ically concave iff this i ity is reversed.

Lemma 2. Let ¢ : (0, 00) — (0, 00) be bijective. For every t > 0 define the function
& 1 (0, 00) = (0, 00) by the formula
)

gi(x) = x> 0.

19 If ¢ is increasing and geometrically convex, then g, is decreasing for every t €
(0, 1) and increasing for every t > |

2 If ¢ is increasing and geomertrically concave, then g, is increasing for every
1 € (0, 1) and decreasing for every t > 1.

3 If ¢ is decreasing and geometrically convex, then g, is increasing for every t €
(0, 1) and decreasing for every t > 1.

49 If ¢ is decreasing and geometrically concave, then g, is decreasing for every
t € (0, 1) and increasing for every t > 1.

Proof. 1° Since ¢ is increasing it is enough show that the function
_oux)
¢x)’
is decreasing fort € (0, 1) and increasing forr > 1. From the convexity of log o oexp
itfollows that the right derivative ¢’ := ¢/, exists everywere in (0, 00), and the function
¢'(x)
¢ (x)
is increasing. Therefore for all x > 0 the right derivative (g o $)’, (x) exists and we

have
') (x) — P(1x)¢' (x)

(g oP)(x) :

>0,

—

xS0

(go¢),(x) =

¢
_ ¢ (¢'(lx)(lx) 3o ¢’(x)x)
x¢(x) \p(1x) P (x)

Now the continuity of g o ¢ implies that it is decreasing for ¢ € (0, 1) and increasing
fort > 1.
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The proofs of statements 24" are analogous. O

Remark 3. Let f : (0,00) — (0, 00). If the function g : (0, 00) — (0, 00) given by
the formula
p=12 s,
x

(resp )then f is tive (resp. itive), (cf. E. Hille,
RS. Phillips [2], Theorem 7.2.4.). Note that g is decreasing (resp. increasing) if, and
only if, f is subhomogeneous, i.c.,

frx)zrf(x), r<l x>0 flrx)rfx), r=1; x>0,

(resp. f is superhomogencous, i

frx) <rf(), r<lix>0  frx)2rf(x), rz1; x>0,

From this Remark and Lemma 2 we obtain

Theorem 4. Let (f'),.o a multiplicative iteration group with a generator ¢
(0, 00) = (0, 00).
19 If ¢ is increasing and geometrically convex then
(a) f" is subadditive (and subhomogeneous) for every t € (0, 1);
(b) fis Iditive (and suj foreveryt > 1.
2% If ¢ is increasing and geometrically concave then
(a) /" is (and superh )for every 1 € (0, 1);
(b) f* is subadditive (and subhomogeneous) for every t > 1.
3" If ¢ is decreasing and geometrically convex then
(a) f*is dditive (and sup )for every1 € (0, 1);
(b) f" is subadditive (and subhomogeneous) for every t > 1.
4" If ¢ is decreasing and geometrically concave then
(a) " is subadditive (and subhomogeneous) for every t € (0, 1);
(b) f'is dditive (and superh ) for every t > 1.

Example 1. It is easy to verify that the function ¢(x) = ¢* — I, (x > 0), is an
increasing and geometrically convex bijection of (0, cc). Thus the iteration group

110 =gl ()] = exple logx + D] = (x+ D' =1, >0, x>0,

s of subadditive functions for 1 < I and superadditive for 1 > 1.

3. An application to the converse of Minkowski’s inequality

Let x,. denote the characteristic function of a set C. The symbol Lin(x,) stands
here for the one dimensional linear space {u x. : u € R}. By Lin, (x,) we denote the
set of all elements of Lin(x,.) which are positive on C.
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In this section we apply Theorem 3 to prove the following result which can be
treated as a partial converse of the Minkowski’s inequality:

Theorem 5. Let (2, T, 1) be a measure space such that | is an accumulation point
of the range of measure () and suppose that there exist two sets A, B € ¥ such
that

0 < pu(A) <1 < pu(B) < oco.

Ify + [0, 00) — [0, 00) is a continuous bijection such that

v (frewtnan) syt (frexds)+yt ([ rovan)

forall x, y € Liny(x,), C € £, p(C) < oo, then there exists a p > 0 such that
y(0) = y()?, 1 > 0. Moreover the both sides of inequality (1) are equal.

Proof. Take an arbitrary C € T such that 4(C) < oo, and x, y €Liny (x.). There are
u, v > Osuch that x = uy,. and y = v,.. Substituting these functions into (1) gives

yz (/;1 yol(u+v)x, )du) <yl (fn VO(MX(Nlll) +y7! (/n VO(VXc)i/l-l)»

Since (0) = 0, we can write this inequality in the form
Y~ W@y @) <y W@y @) 4y~ W@y ), wvz0. ()

Thus the function y~' o (ry) is subadditive for every 1 € p(E)\{00). Put ¢ :=
¥ 'l Then ¢ 0 (1¢™") = y~" o (ty) for all ¢ > 0, and ()0 defined by
Vi) ¢ o (1¢~") is a continuous multiplicative iteration group satisfying the
conditions (i) and (ii) of Theorem 3. Since 1 is an accumulation point of 2(E), there
exists a sequence 1, € t(X) such that 1, # 1, 1, > 0, and lim, o £, = 1. We may
assume, without any loss of generality, that , > I foralln € N.Since f* is subadditive
for every n € N, in view of Corollary 4, every element of the iteration semi-group
(f")i-1 is subadditive. Thus for every 1 € (0, 1), the function f* is superadditive, and
consequently, the condidion (iii) of Theorem 3 is fulfilled.

Put s := p(A), and r = p(B). Taking C = A, and next C = B in (2) shows
that the functions f* = ¢ o (s¢™') and f" o (r¢™") are subadditive. Since
0 <5 < I < r, the condition (iv) of Theorem 3 is also fulfilled. By Theorem 3 the
function ¢ = y " is a power function, and consequently, the inequality (1) becomes
an equality. This completes the proof.

Remark 4. Assuming additionally that inequality (1) holds true for two linearly inde-
pendent functions x = x. and y = xp, C, D € £, u(C), u(D) € (0, 0), one can
show that p > 1.

It can be easily verified that, in a similar way as Theorem 5, one can prove the
following more general
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Theorem 6. Let (2, T, 12) he a measure space such that | is an accumulation point
of the range of measure j(S), and suppose that there exist two seis A, B € T such
that

0 < pu(A) < | < p(B) < co.

Ify : (0, 00) = (0, 00) is a continuous bijection such that

y“‘(fﬂyo(x+y):lu)5y"(Lyoxdu)+y"'(/;xycydu) 3)

Jorall x, y € Liny(x,),C € .0 < u(C) < oo, then there exists a p # 0 such that
y(t) = y()?, 1 > 0. Moreover the both sides of inequality (3) are equal.

Remark 5. Some converses of the Minkowski's inequality, for essentially stronger
inequality than (3), have been proved in 5] (cf. also (6]).

4. Iteration groups with convex or concave functions

Take M(x, y) i= (x + y)/2 for x, y > 0. A function f : (0,00) — (0, 00) is

M-convex iff
/(il) 16 RN
2 2
ic., f is Jensen convex. Of course, f is M-concave and M-affine if, respectively,

ensen concave, Jensen affine. Applying Theorem 1, similarly as in the proof of
Theorem 3, one can prove the following

Theorem 7. Suppose that (f*);-0 is a continuous multiplicative iteration group such
that
(i) for everyt > 0, " is a homeomorphism of (0, 00);
(ii) for some t > 0, f* has no fixed points;
(iii) for every t > 0, f* is convex or concave;
(iv) there exists and r,0 <5 < | < r,such that f* and f7 are both convex (or both
concave).
Then there exists p € R\(0) such that

Sy =t'x, x,1>0.

Moreover, the generator § of the iteration group is the power function, i.e., ¢ (x) =
G()xP, x > 0, for some p € R, p # 0, and $(1) > 0 is an arbitrary constant.

Remark 6. Because every increasing and convex homeomorphism of the interval
(0, 00) is itive, Theorem 7 is an i it of Theorem 3.
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Remark 7. In view of Theorem 2, the assumption (iii) in the above theorem s satisfied
if there exists a sequence f; > 0, f # I, limy—vc0 i = | such that for every k € N the
function f* is increasing and convex or concave.

Theorem 8. Let a differentiable bijection ¢ - (0,00) — (0, 00) be a generator of the
iteration group (f*)-0, i.c., f*= o (1¢p~") forallt > 0.

19 f ¢’ > 0 and ¢’ is geomerrically convex, then f* is convex for everyt > 1, and
concave for every t € (0, 1).

2 If¢’ > 0and ' is geometrically concave, then f* is concave for every t > 1,
and convex for every t € (0, 1).

39 If ¢’ < 0and —¢' is geomerrically convex, then f* is concave for every t > 1,
and convex for every t € (0, 1).

4 If¢' < 0 and —¢' is geometrically concave, then f* is convex for every t > 1,
and concave for every t € (0, 1),

Proof. 1" The geometrical convexity of ¢ implies the existence of the right derivative

¢ := (¢")), exists everywhere in (0, 00) and the function
@)
X+ L2 0] 5 >0,
'(x)

i increasing. Thus

$D(1x) $D(x)
x>
@'(1x) P'(x)

X, x>0,1>1,
or, equivalently,
$ 2P (x) - $'(1x)pP(x) 20, x>0, 1> 1.
Multiplying the both sides by the positive function /[¢'(x)]® gives
P00 = ¢ ()P ([P ()] 20, x>0, 1> 1.
Replacing x by ¢~'(x) yields the inequality
LA ) G A R C T el O L)

220, 1>1

eI 91T
‘which means that
d

Nm ,zz""’“‘” N 20, x>0,1>1.

It follows that f* is convex and consequently the proof of 1° is completed.
We omit analogous proofs of statements 2-4°.
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5. Iteration groups with geometrically convex and geometrically
concave elements

Take M(x, y) := /&7 forx, y > 0. A function f : (0, 00) — (0, 00) is M-convex
iff
f(N 2 ), xy>0,
ic., f is Jensen geometrically convex. Of course, f is M-concave, and M-affine if,
respectively, / is Jensen geometrically concave, Jensen geometrically affine. Applying
Theorem I, similarly as in the proof of Theorem 3, one can prove the following

‘Theorem 9. Suppose that (f'),..q is a continuous multiplicative iteration group such
that
(i) for every t > 0, f" is a homeomorphism of (0, 00);
(ii) for some t > 0, f' has no fied points;
(iii) for every t > 0, f' is geometrically convex or geometrically concave;
(iv) there exist s and r,0 < s < | < r, such that f* and f' are both geometrically
convex (or both geomerrically concave).
Then either
19 there exists a ¢ € R\(0) such that

i =% x,150;

and the generator ¢ of the iteration group is the power function ¢ (1) = ¢ ()19, 1 > 0,
for some g € R, q # 0, and (1) > 0 is an arbitrary constant; or
2% there exist p € R, p # 0, and ¢ > 0, such that

Iy
I.l' .

/')

x>0
moreover, the generator ¢ of the iteration group is of the form

sy ="', >0,
where ¢(1) > 0 is an arbitrary constant.

Proof. Let ¢ : I — (0, 00) be a generator of the iteration group. In view of Theorem |
we have

SN =0 (167 (V) = Ve (107 @) 967!, x y. 1> 0.

Setting x = ¢“, y = ¢", and taking the logarithm of both the sides, we can write this
equation in the equivalent form

log g (1¢~"(e")) +log $ 16~ (")
ST g e A

log (197" (1)) = uveR,
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which means that for each 1 > 0 the function logog o (1¢™") o exp is a Jensen one.
Since it is continuous, there exist (cf. Aczél [1] or Kuczma [4) the real numbers a(r)
and b(r) such that

logp(1p~" (") =a(u+b(r), ueR, 1>0.

Moreover the continuity of ¢ and ¢~ implies that the functions a, b : (0, 00) > R
are continuous. Putting B(1) := exp(b(1)), we have B(1) > 0 forall t > 0, and

Gp~'(x) = BWx"", x,1>0. @)

Hence
(517" (1)) = BGsn)x**",  x,5.1>0.

On the other hand, composing the function ¢ o (s¢') and ¢ o (t¢="), we get
$(s197' (1) = B [ B O x*0 5,15 0.
From the last two relations we obtain

B(s)x“t" = B(s) [ B#) 1" x40 x5 150,

It follows that the function a is multiplicative, i.e.,
as) =a(s)a@), s,1>0,
and B satisfies the functional equation
B(st) = B($) B, 5,1>0. 6]
‘The continuity of a implies the existence of p € R (cf. [1], [4]) such that
a@y=1", 1>0.

If p=Othena = 1, and by equation (5), the function B is multiplicative. Thus there
exists a ¢ € R such that
B)=1, 1>0.

Setting x := (1) in (4) gives ¢ (1) = ¢(1)B(1), and consequently
¢ =g, 1>0,
where g # 0.
If p # 0, then (5) has the form
B(st) = B()[BOT", s,1>0.
Tuking s = 1 we infer that B(1) = 1. The symmetry of the left side of this relation

gives
B [BW] = BO[BE], s.1>0,
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ie., & :
BN =B, s 15 0!
Thus there is a constant K > 0 such that
[BOI=V=2=k, 150,

and, conscquently,
BO="K"= 50

By (4) we obtain
Sup ) =K"x", k1> 0.

For x := ¢(1) we hence get
6 = K" @) =p(HMK)'', 1>0.
Putting ¢ := ¢ (1)K gives
s =¢Mc"", >0,
and, as ¢ is one-to-one, we infer that ¢ # 1. Of course, we also have

o =1
ww"u»:(ﬁ) x>0

This completes the proof. 1

Final remarks

‘The basic notions of Section I, the M-convexity, M-concavity, and M-affinity of
a function can be extended in the following way. Let M, M; : (0, 0) x (0, 00) —
(0, 00) be arbitrary functions. A function f : (0, 00) — (0, 00) issaid to be (M, My)-
convex if

f(Mi(x, ) < Ma(f(x), f(»), x,y>0.
eversed, f is (M, My)-concave. The function f is (M}, M2)-affine

If the inequality i
if

fMi(x,y)) = My(f(x), f(3), x,y>0.
Now the question arises whether Theorem | can be extended to iteration groups with
(M), My)-convex and (M), Ma)-concave functions where M; # Mz. To show that the
answer is negative consider the following

Example 2. Take My (x, y) := (xy)2, Ma(x,y) := (x + y)/2, for x, y > 0. Itis
casy to verify that ( £*),-.q where

flay=@E+D'-1, x>0,



