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ABSTRACT

We examine the envelopes of one-parameter family of the graphs of “affine
type” of functions (@) er, Where @y (x) = g(p(x)—a)+g(a) (as well as three
other types), where g and p are given functions. These families of functions
appear in connection with some Cauchy functional equations of iterative type.
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Introduction. In the present paper we examine the envelopes of the one-parameter
families of curves being the graphs of functions ¢, which have one of the following

forms
Pu(x) = g(p(x) — @) + g(@), xa€R,
$a(x) = g(p(x) —a)g(@), x,aeR,
u0) *g(”(x)) +g@, xa>o,
bulx) *g(&)g(n), xa>0,

where g and p are given functions. In the case when p = id these functions appeared in
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anatural way in connection with means and some functional equations of iterative type
(cf. [3]), and the res problem of pes was consi in [4]. For obvious
reason, coming from the suitable Cauchy functional equation, we say that the above
families of curves are of affine, exponential, logarithmic, and power type, respectively.

In particular we show that, depending on the type of the family, the strict convexity
of g,logo g, g oexp, and log o g oexp (i.e., the geometrical convexity of g), guarantees
a simple form of the envelope.

1. Envelopes for families of affine type

By R we denote the setof reals. For an arbitrary functiong : R — R.andp : R > R

define the one-parameter family of functions ¢, : R — R by
Galx) =g (p(x) —e) +g(@), xa€R,
by S(g, p) denote the family of curves being the graphs of ¢, @ > 0. Let g and p
be differentiable. Denote by £, , the set of all points (x, y) € R? such that for some
a € R we have
y=g(p) —a)+ gla), — g (p(x) —a) +g'(@) =0.

According to a well known fact (cf. for instance [1]) the envelope of the family
S(g, p) cither coincides with E,., or is a proper subset of Ey, . Since the derivative of
the function p does not appear in the above special system of equations, we shall not
assume any regularity conditions for p. In the sequel the set E, , is called a generalized
envelope or, shortly, envelope of the family G(g, p).

We often identify a function and its graph. Therefore we frequently write the gen-
eralized envelope Ey , in the form y = E, ,(x), x € R.
Remark L1, If g(x) = cx + ¢(0), x € R, where ¢ and g(0) are arbitrary real
constants, then (g, p) = (g o p + g(0)) is a singleton, and E, ,, the envelope of
S(g, p), obviously coincides with the graph of the function g o p + g(0).

It turns out that, under some general conditions, the converse implication holds true.

Proposition 1.1. Let g, p : R — R be given functions, and suppose that 0 € p(R).
If S(g, p) is a singleton then

gla+y) +g(0) = gl@) + g(y), aeR, yepR).

If, moreover, g is continuous at least at one point, and there are u,v € p(R),
u # 0 5 v, such that u/v is irrational, then

g(x) = cx +g(0), xeR,

for some ¢ € R.
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Proof. The family G(g, p) is a singleton if and only if
8(p(x) —a) +g@) =g (p(x) — B) +8(B),

p(x) gives g(y —a) + g(e) = gy — B) + g(B),
¥, ¥ € p(R) we have

forall x, a, B € R. Setting y
o, B € R,y e p(R). Tuking
gy —a) +gl@) =g0) +g(y), acRyepR).

Hence, for  : R — R defined by the formula ¢/ (2) := g(a) — g(0), « € R, one gets

YOy -a)+¥@=y(), aeRyepR). 1)
Taking here @ = y gives y(0) = 0. By assumption 0 € p(R). Hence, setting y = 0
in this equation we obtain ¥ (—a) = —/(a), @ € R. Replacing a by —a in (1) gives
Ve+y) =y¢@+y¥(), «eRyepR), @)
which means that g(a + y) + g(0) = g(a) + g(y), @ € R, y € p(R). Taking in (2)
y=uand y = v we see that ¥y : R — R satisfies the simultaneous system of two
functional equations
Ve+u) =y@+yw, Yle+v)=y@+ye), aeR,
Since ¥ is continuous at a point, and «/v is irrational, it follows that there isa c € R
such that Y (@) = ca forall @ € R (cf. [2]). This completes the proof.

Remark 1.2. Suppose that p = a, where a € R, a # 0. Then the family G(g, p) is
asingleton if and only if g(¢ — @) + g(@) = g(a — B) + g(B), @, p € R. Itis easy to
check that the general solution g : R — R of this functional equation has the form
y() 1> 3a,
g =1c t=3a,
2c—y(a—1) t <za,
where y : (a, 00) — Rand ¢ € R are arbitrary.
‘The main result of this section reads as follows:
Theorem 1.1. Let g : R — R be a differentiable function. Then the graph of the

function

Rosoaa[22].

is contained in the envelope of the family (g, p). If the function g' is one-to-one, then
the envelope E, , has the representation

y=Egp(x)=2g [f%] xeR.
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Proof. In view of the classical method (cf. for instance [1]), to find the envelope of
the family of curves G(g, p) itis enough to eliminate the parameter @ from the system
of equations

y=g(px)—a)+gl@), —g@Px)—a)+g@=0 xyaeR (3)
The second equation can be written in the equivalent form g’ (p(x) — @) = g'(a),
x,a € R.If the function g is one-to-one, it follows that p(x) — a = a, and conse-
quently, @ = p(x)/2, x € R. Setting @ = p(x)/2 into the first of the equations we

get the function
y=2g[¥j|, x€R, @

the graph of which is the envelope of the considered family of curves.

If the function g’ is not one-to-one, then, as the point @ = p(x)/2 satisfies the
second equation of the system (3), every point of the graph of the function (4) is a
point of the envelope. This completes the proof. [

Corollary 1.1. Let g : R — R be a differentiable and strictly convex (or strictly
concave) function. Then the graph of the finction
y=2g [m] , xeR.
2
is the envelope Ey,, of the family S(g, p).

2. Envelopes of families of exponential type

Let g : R — (0,00) and p : R — R be given. Similarly as in the previous
section we consider the one-parameter family §(g, p) of functions ¢, : R — (0, 00),
defined by ¢, (x) := g (p(x) — ) g(@), x,@ € R.

Remark 2.1. If g(x) = g(0)e*, x € R, where ¢ € R and g(0) > 0 are arbitrary
constants, then G(g. p) = [¢(0) gop) isasingleton, and E, ,,, the envelope of (g, p),
coincides with the graph of the function g(0) g o p.

Proposition 2.1. Let g : R > (0,00), p : R — R, be given function and suppose
that 0 € p(R). If §(g, p) is a singleton then

20) gl +y) = gl@) g(y), aeR,yepR).
If, moreover, g is continuous at least at one point, and there are u,v € p(R),
u # 0 # v, such that u/v is irrational, then
g(x) =g(0)e", x€eR,

for some c € R.
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Theorem 2.1. Ler g : R — (0,00), and p : R — R be fixed functions. If g is
differentiable then the graph of the function

o (2]

is contained in the envelope of the family S(g, p). If the function g'/g is one-to-one,
then the envelope Eg |, has the representation

P\
y=Euw=lg(52)] . x>0

Corollary2.1. Let g : R — (0, 00) be a differentiable function. If log o g is a strictly
convex (or strictly concave) function, then the graph of the function

[ (pe)\T
] e

is the envelope E, , of the family G(g, p).

3. Envelopes of families of logarithmic type
Fora function g : (0, 00) — R, and p : (0,00) — (0, 00) define the one-parameter
family G(g, p) of functions @, : (0, c0) — R by

bu(x) :=g(i,‘(l'—())+/:(a). x, a>0.

Remark 3.1. If g(x) = clogx + g(1), x > 0, where ¢ and g(1) are arbitrary real
constants, then §(g, p) = {g o p +log g(1)} is asingleton, and E, ,, the envelope of
(g, p), obviously coincides with the graph of g o p + log g(1).

Proposition 3.1. Let g : (0,00) — R, p : (0, 00) = (0, 00) be given funciion, and
suppose that | € p(R). If §(g, p) is a singleton then

&) + glay) = gla) +g(y), a€R,y€p((0,00).

If. moreover, g is continuous at least at one point, and there are u, v € p (0, 00)),
u# 1 # v, such that log u/ log v is irrational, then

g(x) = clogx +g(1), x>0,

for some ¢ € R.
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Theorem 3.1. Let g : (0,00) — R be a differentiable function. Then the graph of

the function
(0,00)3x — 2¢ [/pm],

is contained in the envelope of the family S(g, p). If the function (0, 00) 3 x = g'(x)x
is one-to-one, then the envelope Ey , has the representation

y=Eg,(x) =2 [J/»(x)]. x>0
Corollary. 3.1. Let g : (0,00) — R be a differentiable function. If the function

2 oexp is convex (or concave) in (0, 00), then the envelope Ey, of the family $(g, p)
has the representation

y = Egp¥) =2 {‘/p(T)] x>0

4. Envelopes of families of power type

Fora function g : (0, 00) — R, and p : (0, 00) — (0, 00) define the one-parameter
family G(g, p) of functions ¢, : (0, 00) — (0, 00) by

Ba(x) ~g( ))g(a) x,a>0.
Remark 4.1 If g(x) = g(1)x, x > 0, where ¢ € R and g(1) > 0 are arbitrary

constants then §(g, p) [ml)gop] isasingleton, and E, ,, the envelope of G(g, p),
i les with the graph of g(1) g o p.

Proposition 4.1. Let g : (0, 00) — (0, 00) be an arbitrary function. If §(g, p) is a
singleton then

g(Dglay) = gl@)g(y), a>0,y€ p((0,00).

If, moreover; g is continuous at least at one point, and there are u, v € p ((0, 00)),
u # | # v, such that log u/ log v is irrational, then

g(x) = g(hx, x>0,
for some ¢ € R.

Theorem 4.1. Let g : (0,00) — (0, 00) be a differentiable function. Then the graph

of the function b
(0,00) 3 x —> [g (\/;@)]
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is contained in the envelope Eq , of the family (g, p). If the function
g

3
8(x)

is one-to-one, then the envelope curve has the representation

Eg(x) = [g (W)]z x>0.

Corollary 4.1. Let ¢ : (0, 00) — (0, 00) be a differentiable function. If the function
logo g o exp is convex (concave), i.e., if g is convex (concave) with respect 1o the geo-
metric mean, then the envelope curve Eg , of the family S(g, p) has the representation

y=Egx) = [5(‘/@)]2 x>0

(0,00) 3 x —

y

5. Final remarks

Remark 1. Taking p = id in all theorems we get the basic results of paper 4]
(cf. also [3] where some motivations are given).

Remark 2. The main idea of the proof of Theorem 1.1 is based on the fact that for a
one-parameter family of curves of the Cauchy affine type ¢, (x) := g (p(x) — @) +
(@), x,a € R, the second equation of the basic envelope system (3) written in the
form g’ (p(x) — &) = g'(@), x, @ € R, together with the injectivity of the derivative
' permit, without difficulties, to eliminate the parameter. We are going to show that
using this idea does not allow to prove more general results than Theorem 1.1 (as well
as Theorems 2.1, 3.1, and 4.1). In fact, suppose that g, k, m, r : R — R are given
functions, and consider the one-parameter family of functions

Gp(x) =g r(x) +k(B) +gmB)),  x, peR. ®)
(Note that the function on the right-hand side is similar to the relevant one in the
affine type family of curves, but of course more general). Assume that g, k, m are
differentiable. Now one of the equations for the envelope of the family of curves
(#) pe is of the form
& (r@) +k(BYK'(B) + ¢ (m(B)) m'(B) =
and, if K'(B) # 0,

&)+ k() = —ﬂg’(mw» ©

Thus, to apply the same method for the de(enm tion of B as a function of x
(to eliminate B from the system of envelope equations) it is necessary (0 assume
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that —m'(B)/k'(B) = |, B € R, i.e., thatk(B) = —m(B) + ¢, p € R, where c € R is
aconstant. Setting this into equation (6) we obtain g’ (r (x) — m(B) + ¢) = g’ (m(B)),
B € R. Setting p(x) := r(x) + ¢, x € Rinto (5) and (6) gives

¥y =¢p(x) =g (p(x) —m(B) + g (m(B)) . x, BeR,

and g’ (p(x) —m(f)) = g ' (m(B)), x,p € R. Now, if g’ is one-to-one, the last
equation implies m(p) 1p(x), x, B € R, and, consequently, y = 2g( zph)).
x € R, is the envelope of the family of curves (¢p) .. Thus, seiting & = m(g), we
get the family of curves (@u)yemr):

y=g(px) —a)+gl), xeR,x em(R)

being a subfamily of curves of affine Cauchy type considered in section 1.

Remark 3. Looking for a generalization of the problem one could go beyond the
affine type for the equation of the family of curves (considered in section 1). Take for
instance the family of functions ¢, of the form

¥ = Pa(x) = A(x)gla(x)m(@) + n(@)) + B(x)g(b(x)k(a) +I(a)), @]
forall x,a € R, where A, B,a, b,m,n,k, : R — Rare given functions. Suppose that
m, n, k, and [ are differentiable. Assuming that the suitable functions do not vanish,
we can write the counterpart of (3) in the form

&' (a(x)m(@) + n(a))

B(x) [h(x)k'(@) +I'(@)] , ®

— ¢ (b(x)k(a) +1 A

A [am @@ S LEke e

(Note that the family of functions given by (7) is essentially the most general one

which permits to make advantage of the injectivity of the function g’.) To eliminate

the parameter & with the aid of the assumption that g’ is one-to-one, we should have
B(x) [h(0K (@) +1'(@) ]
A [a(m'(x) +n'(@) ]

or, equivalently,

=-1, x,e€eR,

b (@) +1'@) _ A)
a(x)m'(a) + n’(fx) B(x)
The function on the left-hand side does not depend on a.

Suppose that n’(e) # 0 for & € R. It follows that there exist ¢i, ¢z, c3 € R such
that m'(@) = ¢ (@), k'(@) = cn'(a), I'(@) = can'(@), @ € R. Consequently,
m(a) = cn(@) + dy, k(@) = cnle) + da, (@) = can(@) + da, @ € R, for some
constants dy, dy, dy € R, and

x,aeR.
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From the last relation we have

ca(x) +1
B =—AWZEE, xeR
It follows that the functions ¢, given by (7) have to be of the form
¥ =¢ux)
= AW)ga)len(@) + di] + n(e) ©

|
— AW 2D L ene) + dal + ean(a) + d),
b(x) + ¢
for all x, @ € R. The envelope equation (8) takes the form
£ @@lenie) +di] +n@) = g’ (b)lcn@) + do] + csna) +d3)

forall x, @ € R. If ¢’ is one-to-one we hence get

a)lein(@) +d] +n(@) = blcm(@) +di) +ean(@) +ds,  x, @ eR.
Assuming that ¢ja(x) — c2b(x) + 1 —¢3 # 0, x € R, we get

drb(x) — dya(x) +da
cla(x) = cb(x) + 1 —
Substituting this value of 7 (e) into equation (9) we obtain the envelope of the family
of graphs of (du),cr-

The above discussion proves that, even if we give up the affine type of the family
of curves, the method applied in this paper does not allow to treat essentially more
general families of functions.

nla) =

It is easy to observe that the counterparts of Remarks 2 and 3 for exponential,
logarithmic, and power type families of functions also remain true.
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