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Introduction

-

The polynomial-like iterated functional equation
(@) = anf™(2) + an1 S (@) + o + a0z, ag #0, (L1)

is an important form of functional equations [1-9], where z € I, an interval of R, f : I — I is
an unknown function, f" denotes the n-th iterate of f, and ag,ai,"--,a, are real constants.
Many functional equations can be reduced to it. For example, the equation

f(2z - f(z)/m) =mz, feCR,R), (1.2)
proposed by Biven [10], is equivalent to

h(z) = 2h(z) -z, c€R, (13)

by setting g(z) = f(z)/m and h = g1, Also it is worth mentioning that Eq. (1.1), related to

the linear difference equation
Thinil = Anhin + oo+ QThi1 + 00T, (14)
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is actually a nonlinear problem because the set of its solutions does not span a linear space. In
particular, the known Babbage’s functional equation

fz) ==, (1.5)

concerning iterative roots, is a special case of Eq. (1.
In this paper Eq. (1.1) forn=1, i.e.,

F2(@) =a1f(x) + aoz, a9 #0,a0,01 €R, T ER, (1.6)

is discussed in detail. Properties of its continuous solutions are given through analysing its
characteristic equation. In some cases how its general solutions are constructed is shown.
Especially, we discuss the case of noncritical characteristic in Sections 3 and 4, the particular
case of equal absolute values in 5, the case of critical characteristic in 6 and that of no real
characteristic in 7, after setting up its characteristic theory in 2. In this procedure a useful
method to discuss the general case of Eq. (1.1) is described naturally.
2 Characteristic Equation
Setting in Eq. (1.6) that

fl@)=rz, T€C,#0, tobe determined, (2.1)

we deduce an equation
P =ar+a, a#0, 22)

which is called the characteristic equation of Eq. (1.6). Its root  is called a characteristic

root and the corresponding function f(z) in (2.1) is called a characteristic solution of Eq.

(1.6). We shall see how the continuous solutions of Eq. (1.6) depend on its characteristic roots.
Let 1,72 be roots of (2.2). Clearly

n+T2=a;, TiT2 = —ag. (2.3)
Thus Eq. (1.6) can be rewritten in the form
f2(@) = (ry +r2)f(2) — T2z, (1.6r)
and by the following Lemma 1 we have the dual equation
1
72@) = (U/r +1/ra)f7H (@) = —. (1.6d)
mnr
Here 1/ry and 1/r, are clearly the characteristic roots of (1.6d).
Lemma 1 Suppose f : R — R is a solution of Eq. (1.6). Then a) f is one to one; b) f

is strictly monotone and onto, provided f is continuous.
Proof 1 f(u1) = f(y2) = 2,

f(2) = a1 f(n) + aoyr = a1 £(32) + aoy2- (24)
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Thus agy; = aoys and 1 = y. The result a) is proved. By the continuity £ must be monotone.
To prove b) it suffices to show that f is onto. Let F(z) = az(f(z) — a,z). Then

F o f = id(identity), (25)

ie, F=f~! onI= f(R). Naturally F(I) = E. Suppose I # R and b is a finite endpoint of I.
Then F(z) = f~}(z) = co as 2 — bin I, so F could not be continuous at the point b. This
contradicts the continuity of F defined above on whole R.

Lemma 2 (Iteration of Solutions)  Let f : R — R be a solution of Eq. (1.6), ry and r» be
two characteristic roots. Then
i) when ry # ra,

(@) = Aa(n)(f(2) = 112) — Ai(n)(f(2) — 122), (2.6a)
forn=0,1,2,--, where Ai(n) = 17/(ry —11),i =1,2, and

F7(@) = Ba(=n)(f 7} (&) = z/m1) = Bi(-n)(f (@) ~ 2/r2), (2.6b)
T (2 = 1/m);

forn=0,1,2,---, where Bi(—n) =
ii) when ry =7y =7,

@) =" f(z) - (n—1)r"s, n=0,1,2,"; (2.7)

FME)y=nrlT"f Y 2) - (=1 "2, n=0,1,2,---. (2.7b)

Remark 1 For arbitrarily given zo, 2, € R defines the sequence {z,},n = 0,+1,+2,---
recursively such that

Tnyz = (P +72)Tnp1 —T1728a, n=0,1 (2.8a)
H I R ) (UL S it fuy (2:85)
T2
By Lemma 2 we get the general solution of the difference equation (1.4) for n = 1, i.c.,
Zn = Ag(n)(z1 — r120) — A1 (n)(21 — ram), (2.9a)
Z-nt1 = By(=n)(z0 — 21/11) = Bi(-n)(z0 —1/r2), n=0,1,---. (2.9b)
Proof From (1.6r), the equivalent form, we have
f(f(2)) = r2f(z) =11 (f(2) = r22), (210)
that is,
9(f(2)) =rig(z) (211)
for short with g(2) = f(z) — r2z. By an easy induction we see that g(f™(z)) = rig(z), ie.,
S (@) = r2f" (@) = i (f(2) = 122). (212)

Similarly we also get

F77(2) = i f™@) = 3 (f @) ~ o). (213)
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Subtracting (2.12) from (2.13) implies (2.6a). Similarly (2.6b) follows from (2.6d). Furthermore,
when r; =, =7, Eq. (1.6r) and (1.6d) have respectively the form f2(z) = 2rf(z) - r2z and
the form f~2(z) = 2r~1f~}(z) — r~2z. Thus (2.7a) and (2.7b) follow by induction.

Lemma 3 (Rate of Variation) Let f : B — B be a continuous solution of Eq. (1.6), 1
and ry be characteristic roots with || < |rs|. Then
i) ifry >0 andra >0,

1 < (f(@2) = f(@))/(z2 — 1) <72, Va1 #2p; (2.14)
ii) if ry < 0 and 2 > 0, when f is increasing
2 < (f(z2) = f(21))/ (22 — 1), Va1 # 22, (2.15)

and when f is decreasing
f()=riz+c forsome ce€R; (2.16)

iii) if 11 > 0 and r < 0, when f is increasing

02 (fz2) = f(@))/(@2 — 1) S, Vau # 22, (217)

and when f is decreasing
f(z)=rz+c forsome c€R; (2.18)

iv) ifr; <0 andry <0,
2 < (f(@2) = f(21)/ (22 —21) <11, Vau #22. (2.19)

Proof  For case i), from (2.62) in Lemma 2 we see that
u(@) = lim f"(2)/r3 = (f(z) ~1i2)/(r2 = 1), Ve ER. (2:208)

Since, according to Lemma 1, f is strictly monotone, the iterates f™ are increasing for even n.
As the limit of a sequence of increasing functions u(z) has to be nondecreasing. Thus (2.20a)
implies the function z — f(z) — ryz is nondecreasing in R because ry > 7y, that is, for z; < x2
we have f(z1) — 1171 < f(22) = 1172, 50

1 < (f(22) = f(21))/(z2 —21), Va1 #z2 (2.21a)
Similarly from (2.6b) in Lemma 2 we see that
v(z) = lim 1} f"(z) = (¢/r2 = {7 @)/(Ufr2 = 1/r1), Vz€ER, (2.20b)

and v : R — R is nondecreasing. Moreover the function & — z/r — f~!(z) is nonincreasing
becuase 1/r; —1/r; < 0. In view of (2:21a) f(z) is strictly increasing. Thus with a substitution
of variables we have f(z1)/r2 — 21 > f(22)/r2 — a2 for &1 < 22, i.e.,

(f(22) = f(z1)) /(22 —21) <12y Vo1 # 2o, (2:21b)

Hence (2.21a) and (2.21b) complete the proof of i)



Janusz Matkowski et al. Method of Characteristic for Functional Equations in Polynomial Form * 425

For case ii), 1/r, — 1/ry > 0 and thus by (2.20b) the function z — z/r, — f~(z) is
nondecreasing. Hence f(z1)/r2 — 21 < f(22)/ra — z2 for 21 < 7, when f is increasing, and
(2.15) is proved in the same way as above. When f is decreasing, f" is also decreasing for
each 0dd 7, and thus u(z) in (2.20a) must be nonincreasing since v, > 0. However, in the last
paragraph u(z) is shown to be nondecreasing, so u(z) should be constant. This together with
(2.20a) yields (2.16).

The proofs of iii) and iv) are analogous.

Remark 2 By Lemma 3 i) f and f~! are “strongly monotone”, i.e., for z;,22 €
R, (f(21) = f(z2))(@1 = 22) 2 mafas — 2l and (F71(21) = 7 (22)) (21 = 22) 2 Pals — 2.

Lemma 4 If the solution of f : R — R of Eq. (1.6) has a nonzero fized point, then one
of its characteristic roots equals 1.

Proof Assume f(zo) = 20,0 # 0. It follows from (1.6) that

Zo = arzo + QoTo, i€, @ +ag=1. (2.22)
From (2.3) we have ry + 1y —rirp = 1, ice.,

A-r)1=-r)=0. (2.23)

Hence either 7y = lorm, = 1.

3 Noncritical Cases where 775 > 0

In this section 7, and 7, denote two noncritical real characteristic roots of Eq. (1.6), i.e.,
|r1] # 1 and |rp| # 1, under the condition of which the characteristic solutions defined in
(2.1) have hyperbolic iterative dynamical behaviors. The discussion will proceed separately for
cases (1) 1 <71 <73, (2)0< 7 <1<, (3)0< 1 <12<1, (41 <72 <-1,(5)
r<-1<r2<0,and (6) =1<r <r3<0.

Theorem 1 Suppose 1 < 11 < r2. (i) If f : R — R is a continuous solution of Eq.
(1.6) then f(0) = 0 and f, strictly increasing, satisfies the “two-side” Lipschitzian condition
n < (f(2) - f(2")/(z — 2') <73 for z # @' in R. (ii) Conversely, Eq. (1.6) has a continuous
solution depending on an arbitrary function. More precisely, for every zo > 0,z > 0 and
fo : [zo,21] — R such that

120 < 21 < oo, (3.1)
fo(zo) =21, folzr) = (1 +m2)z1 — 117220, (3:2)
1 < (fo(2) = fo(@')/(z —2') <72, Vz,2' € [20,21], (33)

there is a unique continuous function p : (0,00) — (0,00) satisfying Eq. (1.6) on (0,00) and
P = fo on [zo,z1]; for two arbitrary initial functions for and fop like fo, the function

n(z), z>0,
f@) = { o, 2=0, (3.4)
—p2(-2), 2<0.

is a continuous solution of Eq. (1.6) on R, where py and py are functions like p determined as
above by for and foz- (3.4) gives all continuous solutions of Eq. (1.6) in R.
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Proof For given 7 > 0 and z; > 0 in (3.1), the sequences {z,|n = 1,2,---} and
{-nln =1,2,---}, defined by (2.82) and (2.8b), are strictly monotone and #, — 00, — 0
as n — co. From (3:2) and (3.3) we can define recursively homeomorphisms fo : [n, #ni1] —
[Ens1,Znsaln = 0,1, -, such that

In(zn

Tnt1y  fal@nt1) = Tnta, (3.5)

and
1 £ (fal@) = fa@) /(@ = &') S 12, V2,2" € 20, Tns]. (3.6)
In fact, for a defined f, in (3.5) and (3.6) we let

fas1(2) = (n +12)z = niraf7(z), Vo € [Ensr, Tasa]- 37

Obviously (3.5) implies fnt+1(Zns1) = Zns2 and fni1(Tnt+2) = Tass. Moreover, by (3.6) we
have 1/r2 < (f71(z) - f71(@'))/(x —&') < 1/r; for 2,2' € [Tnt1,Znsa). It is not difficult to
deduce

1 £ (fas1(@) = fas1(2))/(z — 2') S 72y V2,2" € Entr, Tnsa)- (3.8)

By induction f, satisfying (3.5) and (3.6) is well defined. Similarly, we can also define recursively
homeomorphisms f_r : [£-n41,2-n42] = [T—ns@-ns1)yn = 0,1,-+-, by the properties of the
dual equation (1.6d) such that

Fnltontt)=2_n fon(Ents) =Z-nt1, (35d)
1/r2 S (fn(@) = fon@)/@=2') S Y1, V2,2' € [onin,oonsa).  (36d)
Finally, define

fa(@); 2 € [niZns)y n=0,1,-,
F5M2)§ @ Elpind e W2 5

o= {

Since fu(Zn+1) = fri1(@ns1)n = 0,1, f2{(20) = fo(2o), and fTA(@-nt1) = fops1(Z-n1),
n=2,3,---,p:(0,00) — (0,00) is continuous. By the recursive construction of f, in (3.7) and

f-n in the corresponding dual formulas p(z) satisfies Eq. (1.6). In particular, p(z) can be ex-

tended continuously at the end-point 0 such that p(0) = 0 since by (3.5d) p(2_n) = £_n4+1 and

Z_pn — 0 as n — co. Furthermore, by Lemma 3 i), the above construction enables us to obtain

all continuous solutions of Eq. (1.6) on (0,c). Also, we observe that g : (—0,0) — (—00,0) is

a continuous solution of Eq. (1.6) iff the function p(z) := —g(—2) is a continuous solution on

(0,00). Thus by Lemma 3 i) f : R — R is a continuous solution of Eq. (1.6) iff p := £|(0,c0)

and g := f|(~c0,0) satisfy Eq. (1.6) on (0,00) and (—o0,0) respectively and £(0) = 0. This

completes the proof.

Remark 3 Taking 2; = ry2o (resp. 21 = ra2) in Theorem 1 we get, as the only possible
solution, f(x) = ryz (resp. f(2) = o) for & € (0,00). In fact, in this case there is only one
initial function fo satisfying (3.1-3.3), namely fo(z) = 1z (resp. fo(z) = r2z).

Theorem 2 Suppose 0 < 1y < 1 < 5. (i) If f : R — R is a continuous solution of
Eq. (1.6) then f is strictly increasing. If, additionally, f has a fized point then f(z) = r:z
when 2 > 0 and f(2) = r;z when & < 0 for some i,j = 1,2. (ii) Conversely, every continuous
solution f : R — R of Eq. (1.6) without fized points depends on an arbitrary initial function.

L
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More precisely, for zo =0, for every z, > 0 (resp. < 0) and for every function fo : [zo,21] — R
(resp. fo : [z1,20] = R) such that

fo(@o) = fo(0) = 21, fo(e1) = (r1 +12)21, (3.10)

1 < (fo(@) = fo(@')) /(@ — ') <12y Yz, 2" #0. (3.11)

there ezists a unique continuous function f : R — R satisfying Eq. (16) and f(z) = fo(z) on
[20,21] (vesp. on [z1,20]).

Proof By Lemma 3 i) f is strictly increasing. By Lemma 4 the only available fixed point
of f is 0. Thus either 0 < f(z) < z or f(z) > « for = > 0. In the first case f*(z) — 0 as
n — 00, 50 (2.6a) in Lemma 2 implies f(z) = 1. The second case can be reduced to the first
one because 0 < f~!(z) < & for z > 0, and (2.6b) implies f~1(z) = z/ra, i.e., f(z) = raz.
The discussion for ¢ < 0 is analogous. To prove (ii) we define the sequences {zn} and {z_n}
by (2.8a) and (2.8b), which tend to oo and —oo respectively as n — oo, and define recursively
homeomorphisms f, and f_, by (3.7) and the corresponding dual formulas. The discussion is
quite similar to that in the proof of Theorem 1.

The case where 0 < r; < 75 < 1 can be obviously reduced to the case of Theorem 1 by
considering the dual equation (1.6d).

Theorem 8  Supposer; <3 < —1. (i) If f : R — R is a continuous solution of Eq. (1.6)
then f is strictly decreasing with a unique fized point 0 and satisfies the “two-side” Lipschitzian
condition 11 < (f(z) — f(2'))/(z — ¢') < 72 for ¢ # 2’ in R. (ii) Conversely, Eq. (1.6) has
a continuous solution depending on an arbitrary function, given by f(x) = —p(z) when x > 0
and f(z) = p(—z) when = < 0 where p : [0,00) — [0,00) has been constructed in Theorem 1 as
an arbitrary solution of the functional equation

P(2) = ((-r1) + (=12))p(@) = (=11)(-r2)z, @ € [0,00). (8.12)

Proof Lemma 3 iv) implies all results of (i) except for that £(0) = 0. I f(zo) > oo (resp-
< 1) for some zo € R then by its “two-side” Lipschitzian condition

f(z) < f(zo) + ra(z —29) = —00, as z— +o0, (3.13a)

resp.
f(2) > f(z0) + r2(x — 7)) — +00, as z — —oo. (3.13b)

Thus f(21) < o < 21 (resp. f(x1) > zo > 1) for some z; € R. By the continuity f must have
a fixed point. By Lemma4, £(0) = 0 and f(z) # & for z # 0. Furthermore, in order to prove (ii)
it suffices to check that f(z) defined by p(z) in (3.12) satisfies Eq. (1.6). For z > 0, f(f(z)) =
F(=p(z)) = p(=(=p(z)) = P*(2) = (r1 + 12)(=p(2)) = 11722 = (r1 +72)f (2) =~ rara2. Similarly
for z < 0.

Theorem 4  Supposer, < —1 <5 < 0. Then every continuous solution f of Eq. (1.6) is
strictly decreasing and 0 is its unique fized point, and 1 < (f(z)—f(2'))/(z—2") < r2,Vz # &'.

The proof proceeds as in the case of Theorem 3 (i) in the light Lemmas 3 iv) and 4.

The case where —1 < 7, < 75 < 0 can be obviously reduced to the case of Theorem 3 by
considering the dual equation (1.6d).
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4 Noncritical Cases where 73 < 0

Theorem 5 Suppose that 1y < 0,11 # —1,1y > 0,1y #1 andra # —r1. If f:R—Risa
continuous solutions of Eq. (1.6) then f(z) = riz or f(z) =13z forz € R.

Proof 1Tt is discussed according to the following different cases.

Casei) —1<r <0,0<r;<1and || <7, In view of Lemma 3 ii) every decreasing
solution is of the form f(z) = riz + ¢. We can easily check that ¢ = 0 by substituting this
function in Eq. (1.6). Alternatively, we prove that f(z) = roz is the unique increasing solution.
To prove indirectly, we assume that there is a continuous increasing solution f different from
the function z — roz. Since |ry| < 1 and |rs| < 1 in this case, by Lemma 2, f"(z) — 0 for
7 € Ras n — co. The monotonicity implies £(0) = 0 and Lemma 4 implies that f has no fixed
points other than 0. Thus by Lemma 3 ii) we obtain

Tz < f(x) <z, as >0; z< f(z)<raz, as z<O0. (41)

Note that the reason why the inequalities in (4.1) are strict is that f(z) # 72z, Vz # 0; otherwise,
if f(zo) = rao for some zo > 0, for example, then fixing z; = 0 and z3 = o respectively in
(2.15) we have f(z) > raz for £ > 0 and f(z) < 1oz for z € [0,20) and thus f(z) = raz for
z € [0,20), i.e., f(z) = raz for z > 0 by the continuous extension and increasing iteration of
Eq. (1.6). Therefore, for = > 0 the sequence {f"(z)} is strictly decreasing, {f~"(x)} is strictly
increasing, and

M < fMz) <z, z<f(2)<(1r) 2. (4.2)
Take 2o > 0 and put ,, = f*(20),n = 0,£1,-+-. Since {z_ns : n = 0,1,---} satisfies (2.8b),
by (2.9b) and the monotonicity of {f~"(z)} we have that _n41 < T, i.e.,

By(—n)(zo — 21/m1) = Ba(=n)(z0 — 21/72)

(43)
< Ba(=n = 1)(zo — 21/r2) = Bi(=n = 1)(z0 — 21/r2).
Multiplying both sides of (4.3) by the negative constant (1/ry — 1/r1)r17s, we get
(1/r)"G > (1/ra)"H, ice, (ra/m)"G>H (44)
forn=0,1,---, where G = rpzg — 21 — 1122 + 1121 and H = 179 — z; — 117920 + razy. If
G>0,
-0 = klim (r2/r)* G > H, (4.52)
which implies a contradiction; if G < 0,
G>(ri/r)*H -0, as k— oo, (4.5b)

which is also a contradiction. Consequently, G = 0, i.e., f(zo) = 21 = razo. This conflicts with
(4.1). The proofs are analogous for z < 0 and z < 0.

Caseii) —1<r <0,0<r <1and |r| > ra f(z) = riz is the unique decreasing
solution, by Lemma 3 ii) as in the proof of the case i). Similarly we assume that Eq. (1.6) has
an increasing continuous solution f different from the function & — roz. In the same way as
above we obtain strict inequalities

0< f(z)<rz <z, when z>0; z<rz< f(z)<0, when z<0. (4.6)
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1t follows that {2, : 2, = (), n = 0,1,--} satisfies Zn41 < Za, and by (2.9a) we have
(ra/r)"H>G, n=0,1,-, (4.7)

where G = 21 — razo — 1121 + rirawo and H = &1 = rizo — ram1 + rirazo. Consequently, as in
the case i) we get G = 0, i.e., f(2o) = 21 = 2z, thus reducing to an absurdity.

Case i) ;< —1,72 > 1 and |ry| < ro. This case can be reduced to the case ii) by
considering Eq. (1.6d) for /1.

Caseiv) 11 <-172>1and || > ry. Similarly this case can be reduced to the case i)
as in the case iii). :

Case v) 1 < —land 0 <7 < 1. Obviously, by Lemma 3 iii) f(2) = 712 is the unique
decreasing solution. Suppose g() is an increasing continuous solution. By Lemma 3 iii)

0<(g(e) —g@)/(x—y) <2y Yz #y. (4.8)

Since 0 < 3 < 1 we see by the contraction principle that g has a unique fixed point. By Lemma
4, g(0) = 0;g(z) < r2z < = when & > 0; g(z) > r2z > z when z < 0. Then the monotonicity
implies {g"(z)} — 0 as n — co. It follows from (2.6a) in Lemma 2 that g(z) = raa.

Case vi) —1<r <0andr; > 1. This case follows immediately from the case iii) by
considering Eq. (1.6d) for f~!. This completes the proof.

Theorem 5 shows that in these cases the possible continuous solutions of Eq. (1.6) are its
characteristic solutions.

5 The Case |ri| = |ry]

Theorem 6 Supposeri =72 =7 # 0 and f : R — R is a continuous solution of Eq.
(16). Then (i) if r # 1, f(c) =z for z € B; (ii) if v =1,f(2) =z +c forz € R and for some
ceR

Proof By Lemma 2 ii) we have

u(e) i= lim (f°(a)/nr"!) = f(z) =12, Vo€ R, (5.1a)
@) = lim ("7 (@)/n) = f @) —2/r, VzeR (5.1b)

For r > 0, f(x) must be increasing; otherwise, by the monotonicity given in Lemma 1 f*(z) is
increasing and then by putting n even in (5.1a) and (5.1b) u(z) and v(z) are nondecreasing, but
for decreasing f(z) the function u(z) = f(z) —rz is clearly decreasing. Since f(z) is increasing,
we see from (5.1a) and (5.1b) that u(z),v(z) and v(f(2)) are all nondecreasing, i..,

f@1) =121 < f(22) =722, 21 = f(21)/7 < 72 — f(2) /1, (5:2)

for 21 < z,. It follows that
f(z2) - fla1) =7(z2 — 1), (5.3)
i.e., for a fixed z; and an arbitrary z, f(z) = rz + ¢, where ¢ = f(z;) — r2; is a constant.

Similarly for r < 0, /() must be decreasing and then both u(z) and v(z) are nonincreasing
but v(f(z)) is nondecreasing. In the same way as above we also get the same form of f.
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Furthermore, substituting f(z) = rz + ¢ in (1.6r) we get ¢(r — 1) = 0. Thus ¢ = 0 when r # 1,
This completes the proof.

Remark 4 Obviously the characteristic roots of Eq. (1.3) are r; = r = 1. By Theorem
6 all continuous solutions of Eq. (1.2), proposed by Bivens!'?), are of the form f(z) = mz +c
for some c € R.

In the remaining case where r; = —r and r, = r for r > 0, Eq. (1.6) is just the problem of
iterative roots

Fiz)=rz. (54)

Kuczma’s Theorems 15.7 and 15.9 in Chapter XV of (1] indicate that (5.4) has not only in-
creasing continuous solutions but also decreasing ones, all of which depend on arbitrarily given
functions. In particular, when r = 1 his Theorem 15.2 shows that Eq. (5.4) has a decreasing
solution, the so-called “involutory function” depending on an arbitrary function, but f(z) = z
is its unique increasing solution.

6  Critical Cases

In all critical cases there must be a characteristic root with absolute value 1.

Theorem 7 Suppose r2 = 1 and 0 < 11 # 1. Then a continuous solution f : B — R of
Eq. (1.6) has one of the following forms
z, z<a,
=2,2€R, = 5

SRS @) {nz+(1—n)a, z>a,
nr+(l-ra, z<a
z, r>a,

fle)=

=,

{r,r+(1—r,)a, z<a,
mz+(1-r)b z>b

1@ ={

where a,b € B and a < b. Conversely all these functions are solutions of Eq. (16).

Proof Tn the case where 0 < 11 < 1, F := {z € R : f(z) = £} is a connected closed interval
(or single point); otherwise, if f(z) # = when z € (a,b) for some a,b € F with a < b, or more
concretely if f(z) > z (resp. < z) when z € (a,b),

(f(x) = f(a)/(z—a)>1=72, z€(a)d), (6.1a)

resp.

(f(b) = f(2)/(b=2)>1=r3 z€(ab), (6.1b)

and then by Lemma 3 i) we get a contradiction. In what follows we discuss F' case by case.
When F = R, f(z) = « for z € B. When F = (—co,a], Lemmas 1 and 3 i) and the fact
F(F) = F imply that f(z) is strictly increasing from (a, o) onto itself. By Lemma 3 i) we have
a < f(z) < z for z € (a,00). Hence f"(z) — a as n — co. It follows from (2.6) in Lemma 2
that f(z) = r1z + (1= 1)a for > a. Similar discussions for F = [a,00) and F = [a,}] give
the desired solutions. The other case where 1 > 1 can be reduced easily to the previous one
by considering the dual equation (1.6d).

Theorem 8 Supposery =1 and =1 # 1 < 0. f: R — R is a continuous solutions of
Eq. (1.6). Then f(z) =z for z € R or f(z) =iz +c for € R where c € R is a constant.
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Proof  In the case where —1 < 1y < 0, (2.6a) implies

9(a) = Jim 1) = (2 = 1) (f(2) ~ ). (62

If § is increasing then g is strictly increasing and continuous from R onto R. Thus
foe) = £ (lm f"@) = im /@) =g(e), z€R. ©3)

This means that f(z) = & for @ € R. On the other hand, if f is decreasing then Lemma 3 ii)
implies f(z) = 11z + ¢, € R, for some ¢ € R. The other case where r, < —1 can be reduced
to the previous one by considering the dual equation (1.6d).

Theorem 9 Suppose i = —1 and 0 < r2 # 1. f is a continuous solution of Bq. (16).
Then f(z) = —z for z € R or f(z) = raz for z € R.

Proof In the case where 0 < 3 < 1, by Lemma 3 iii), f(z]

—z for z € R is the unique
decreasing solution, and if f is increasing then

0< (f(z) = f@) /(@2 —21) ST <1, Voy # s 64

Tn this circumstance f, as a contraction, has a unique fixed point, which must be 0 by Lemma
4. Naturally from (6.4) we have f(z) <  (resp. > z) for @ > 0 (resp. < 0), so f*(z) — 0 for
7€ Rasn — co. However, by Lemma 2,

@) = (3 /(r2 + D)(f(2) + 2) = (=1)"/(72 + D)(f(z) - 22), (6.5)

for = € R. Thereforef(z) = ryz for x € R. The other case where r; > 1 can be reduced to the
previous one by considering (1.6d).
Theorem 10 Suppose 1y = 1 and —1 # ry < 0. Then the functions f : R — R defined
by
f@)=-z, z€R (6.6)
and
fl@)=rz, z€R (6.7)
and continuous solutions of Eq. (1.6).
Proof  Substituting the functions f defined by (6.6) and (6.7) in (L6r) we can verify
directly our result.

7  The Case of No Real Roots

Theorem 11 Eg. (1.6) has no continuous solutions on & if it has no real characteristic
roots.

Proof Assume Eq. (1.6) has a continuous solution f : R — R and a pair of complex
characteristic roots

r=a—ib=Sexp(=if), r2=a+ib=Sexp(if), @.1)

where a,b € R,b > 0,5 > 0 and # € (0,7). By Lemma 1 f is monotone and f? is strictly
increasing, By Lemma 4 f(z) # z for @ # 0. Thus the sign of the sequence {f™+!(z) — f"(x)}
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is the same (resp. alternates between —1 and 1) for arbitrary fixed z # 0 when f is strictly
increasing (resp. decreasing). However, from (2.62)

@) = (3/(r2 = r))(f(2) = 11) + (rF/(r2 = r2))(raz = f(2))
=b"18"sin6 - f(z) - b~ 5™+ sin(n — 1)8 - 2.

Then

i (z) = fr() = 13U ) + 17V (2), (7.3)
where U(z) = ((r2 = 1)/(r» = 1))(f(2) = 1) and V(z) = ((r1 = 1)/(r2 = 11))(r22 ~ f(2)).
Clearly T(x) = V(z), so for a fixed  # 0 we can let

U(z) = Texp(it) and V(.

T exp(—it), (7.4)
where T > 0 and ¢ € [0,27). Hence

P (z) — fM(z) = S"T(exp(i(nf +t)) + exp(—i(nb + t)))

(75)
= 25"T cos(nf +t)
Since § > 0, when T > 0 (7.5) conflicts with the property of the sign of {f"*(z) — f"(2)}

stated as above; when T = 0 we see U(z) = V(z) =0, i.e., f(z) = iz = rp for all z # 0, and
thus we get a ridiculous result that 7y = r. This completes the proof.
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