JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 216, 69-85 (1997)
ARTICLE NO. AY975648

On the Composition of Homogeneous
Quasi-Arithmetic Means

Peter Kahlig
Institute of Meteorology and Geophysics, University of Vienna, A-1090, Vienna, Austria
and
Janusz Matkowski
Department of Mathematics, Technical University, PL-43309, Bielsko-Biala, Poland

Submitted by L. Debnath

Received December 3, 1996

Let ¢, ¥, v, B:(0,%) - R, strictly monotonic and continuous functions, be the

generators of the positively homogencous quasi-arithmetic means My, M, M,,

and Mj. The main result gives full characterizations of the functions &, ¥, ¥, and
B such that
My(My(x,9), M,(3,9)) = Mg(x,), %,y >0.
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INTRODUCTION
A mean on (0,%) is a function M :(0,%)> - (0,%) having the weak
internal property
min{x,y} <M(x,y) <max(x,y}, xy>0.
If M, N, and K are means on (0, ) then, obviously, the function
(x,y) = M(N(x,y), K(x,y)),

the composition of the means M, N, and K, is again a mean on (0, ).
Moreover, if M, N, and K are positively homogeneous then so is their
composition.
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A special role plays the class of quasi-arithmetic means. Recall that a
mean M is called quasi-arithmetic if there exists a strictly monotonic and
continuous function ¢:(0,%) —> R, a generator of the mean, such that
M = M,, where

L

My(x,y) = ¢'1(

It is easy to verify that in general the composition of three quasi-arithmetic
means is not a quasi-arithmetic mean. The main result of this paper gives a
complete characterization of the positively homogeneous quasi-arithmetic
means My, M, M,, M, which satisfy the composition equation

My(M,(x,7), My (%,)) = My(x,7)
for all x,y > 0. As a corollary we obtain the relations
G(A(x,y), H(x,)) = G(%,7),
A(4(%,7),6(x,7)) = (A7),

for all x,y > 0, where 4, G, and H stand, respectively, for the arithmetic,
geometric, and harmonic mean. It turns out that these relations are, in a
sense, exceptional, and play a basic role, as we show that the quasi-arith-
metic means satisfying the composition equation can be determined from
the identities

G((A(x?,y7) ", (H(x7,y7)"7) = G(x.3), P €R\(0),x,y>0;
A(A(x?,y7),G(x7, y7)) """
= (A(x?72,y?/2))?, p &R\ {0}, x,y > 0.
Since for any two means M, N:(0,%)* — (0,%) we have
M(N(x,y),N(x,y)) =N(x,y), xy>0,

the composition equation is trivially satisfied if M, = M, = Mj.

1. PRELIMINARIES

A function M :(0,%)* — (0, ) satisfying the inequality
min{x,y} <M(x,y) <max{x,y}, x,y>0,
is said to be a mean on (0, ). It follows that every mean has the property
M(x,x) =x, x>0. (1)
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A mean M is positively homogeneous if

M(x,ty) =tM(x,y), t,x,y>0.

Let ¢:(0,2) >R be a i and strictly ic function.
Then it is easy to see that the function M, :(0,)? — (0,) defined by
L[ $(x) + 6(y)
e = (B2 ys0 @
is a mean, and it is called quasi-arithmetic (cf. [1, p. 279; 2, p. 245)). The
function ¢ will be called a generator of the mean My, It is well known that
the quasi-arithmetic mean is positively homogeneous iff it coincides with a
power mean.
In this paper the one-parameter family of power mean m,:(0,%)* -
(0,) defined by

xP +yP\VP
=== 5 #0
min=| 2] 2

Vo, p=0

plays a key role. Let us note some of the most important properties of this
family of means.

x,y>0,

Property 1. For every p € R, m,, is a quasi-arithmetic mean. For every
p # 0, the function

@(x) =ax? +b, x>0
with arbitrarily fixed a,b € R, a # 0, is a generator of m,, and
¢(x) =alogx +b, x>0,
with arbitrarily fixed a,b € R, a # 0, is a generator of m,.
Property 2. For every p € R, m, is positively homogeneous.

Property 3. The function RS p — m, is continuous and strictly in-
creasing.

Property 4. For every p € R, m,, is strictly internal, i.e.,
min{x, y} <m,(x,y) <max{x,y}, xy>0,x#y,
In the sequel we denote by 4, G, and H, respectively, the arithmetic,
geometric, and harmonic means. Note that

m; =4, m, =G, m_, =H.
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2. MAIN RESULT ABOUT COMPOSITIONS
OF POWER MEANS
In this section we prove the following
THEOREM 1. Let p,q,r,s € R. Then
m,(m,(x,y),m,(x,y)) =m,(x,y), xy>0 3)
if, and only if, one of the following cases occurs:
(19 g =r=s,andp € R is arbitrary;
) q=p,r=0,5=p/2 andp € R is arbitrary;
(3 r=p,q=0,5=p/2, and p € R is arbitrary;
@) p=0=s,q+r=0.
Proof. 1t follows from the positive homogeneity of the power means
that Eq. (3) is equivalent to
m,(m,(x,1),m,(x,1)) =my(x,1), x>0. (4)

Suppose first that this relation holds true for some numbers p, g,r,s € R,
all different from 0, and such that g # r, i.e., that

X+ 1\ (x4 1\ ¥+ 1\P
R R A e

2 2

Without any loss of generality we can assume that g < r. From (4), by the
definition of mean, we have

min{m,(x,1),m,(x,1)} < m,(x,1) < max{m,(x,1),m,(x,1)}, x>0.
By Property 3, g <s <r, and

m,(x,1) <my(x,1) <m,(x,1), x>0
If 5 = g, then we would have m, = m,. Hence, in view of Property 4, and
(4), we infer that m, =m, =m,, and consequently g =r, which is a
contradiction. In the same way we show that s = r implies g = r. This

discussion proves that g < s < r. Taking the derivatives of both sides of (5)
gives

xI+1\P-9/a X +1\P/r x¥+1 (p=s)/s
bl Fal | —— =2| 5 x>0:

2 2 2
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Note that
x5+ 1\
if s > 0 then lim 2( ) =22p/s,
20+ 2
and
X +1 (p=s)/s
if s < 0then lim 2( ) =2p/s,
x>
On the other hand, as ¢ —s < 0 <r — s, we have
lim x?7° =0, and lim x"7% = oo,

x>0+ xoe

The above relation implies that the limits

) ¥+ 1\ X4 1\
lim x?°¢ 5 lim x"* 5
x50+ x>0+
as well as
9+ 1\(P-0/2 x4 1\@
lim x77 [ —— 5 lim x"~* 5
X ey

must be finite, and at least one of them is positive.
Suppose for instance that the first of these limits is positive. It follows
that ¢ —s =g — p, ie., s = p. Consequently ¢ —p <0 <r — p, and

x7+1 (r-a)/q X +1 (p=ni/r
o ZE T (2 s e

Taking the first and the second derivative of both sides and then setting
x =1 gives, respectively, p = (g + r)/2, and

2p* + 12p% — p(3¢* + 6q + 3r* + 6r — 16)
+2(q* —4q +r(r* —4)) =0.
Eliminating p from these relations easily gives
(a-ng+r) =0,

i.e., either r = —g, and consequently p = 0, or r = g, which is a desired
contradiction. If we assume that one of the remaining three limits is



74 KAHLIG AND MATKOWSKI

positive then a similar argument gives a contradiction. Thus we have
shown that if p,g,r,s € R, all different from 0, satisfy (3) then g = 5

Conversely, it is easy to see that for all p, g,r,s € Rsuch that g = 5,
Eq. (3) is fulfilled.

Assume now that, in relation (4), exactly one of the numbers p, g, 7, 5 is
equal to 0.

First consider the case p =0and g # 0, r # 0, s # 0. From (4), by the
definition of a mean, we have either g <s <rorr<s<gq. If g=sor
r = s, then, making use of Properties 3 and 4, we would have g = s, and,
consequently, ¢ = r = s. Since in this case relation (3) holds true, we can
assume that either ¢ <s <r or r <s < g. As the roles of ¢ and r are
symmetric, it is enough to consider the case

g<s<r.

We can write (4) in the form

NN et TV
F) =) -G e

Differentiating both sides of this equation gives

x7 4+ 1)“*-1)/4

X4 1\ar
; )

x""m,(x,l)( 5

i tm (%, 1)(

¥+ 1\C
=

for all x> 0. If s >0, and x = 0, then the right hand side tends to
2@s=2/s; similarly, if s < 0, and x — . Since

g—s<0<r-—s,

if x = 0 or x — o then the left hand side tends either to 0 or to . This is
a contradiction.

Now consider the case 7 = 0 and p # 0, g # 0, s # 0. By the definition
of the power means we can write (4) in the form

x4+ 1\ X+ 1)\
3 +xP/2 =2 5 , x>0
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Replacing here x by x*7 we have

2/ 4 1\P? X278 4 1\?/*
——| tx=f|——| . x>0 (6)

Dividing both sides by x and letting x — =, gives 277/9 = 2(:"#)/5 and,
consequently,
P9
§=— and p+qg#0. 7
T )

Hence, taking the first derivative of both sides of (6), for all x > 0 we get

X2/ 4 1

r/a
(a-p)/(p+q)
x L
2 )

w2a/p 41\ P/
2

x@a-PV/P 41 = 2[
(©]

Now we prove that p = g. For an indirect argument suppose that this
equation holds true for some p,g €R, p#0+#gq, p+ g # 0, and con-
sider the following subcases.

(1) 0<p <gq.Letting x = 0 gives 1 on the left and 0 on the right
hand side of (8).

(2) 0<g<pand2q > p. Letting x — 0 gives 1 on the left and =
on the right hand side of (8).

() 0<gand2q = p. Here we can write relation (8) in the form

2
X3 130,

x+1 X34
tl=2f———

and of course it is false.

(4) 0<gand2g <p. Letting x = o gives 1 on the left and 0 on the
right hand side of (8).

(5) p<0<g and p+gq>0. Dividing both sides of (8) by
x@ P (P+2) for all x > 0 we get

2

x2/p 41 (p-a)/a
2

2¢/(p+0) »/q
x +1
X2/ PR 4y a+P/ (-0 = 2( )

O]

Letting here x — 0 gives = on the left, and 2 "#”/¢ on the right.
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(6) p<0<gqand p+q <0. Letting x = = in (9) gives « on the
left and 2'77/4 on the right.

Observe that the relations (8) and (9) remain valid on replacing p and g
by (—p) and (—g). It follows that all the remaining possible subcases can
be reduced to the above already considered.

The above discussion shows that relation (6) implies ¢ = p. From (7) we
have s = p/2, and, by the assumption, r = 0.

On the other hand, making use of the definition of the family (m,), it is
easy to verify that, for every p € R, the numbers

satisfy Eq. (3).

Since the role of g and r is symmetric we can omit analogous considera-
tions in the case ¢ = 0 and p,r,s # 0.

If s=0and p#0, g#0, r#0, in (4), then either ¢ <0 <r or
r <0 < gq. It is easy to check that relation (4), having the form

X1+ 1\7° S B
( 5 ) +( 2 ) =2xP?, x>0,
cannot occur.

Now assume that exactly two of the numbers p, g, r, s are equal to 0.
Suppose first that p =0 =g, r # 0 #s. Properties 3 and 4 imply that
se€(0,r)if r>0,and s € (r,0) if r < 0. Suppose first that r > 0. From
(4) we have

T\ (e a1\
‘5(2):(2]’ ¥>0

Letting x — 0 gives a contradictory relation 0 = 2725, If r <0 then
s < 0, and setting r == m, s := —n, m,n > 0, allows us to write the above
equation in the form

Qu/m 21/n

[ R T

Letting x — 0 gives 2/™ = 0, which is a contradiction.
The same argument shows that if p = 0 =r then there are no real
numbers g and s5,g # 0 # 5, such that (3) is satisfied.
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Assume that p = 0 =, and g # 0 # r. From (4) we have

X+ 1\ x4 1
=) =

1r
) =x, x>0,

The internality of the mean m, and its increasing monotonicity with
respect to p imply that either ¢ <0 <r or r < 0 < g. Put g := —m. Then
m,r >0 and, with some simple calculations, we can write the above
relation in the equivalent form

2V/m(xr + 1)/ =2V (xm 1 1), x> 0.

Letting x — 0 gives 2'/™ = 2'/". Thus r = m and, consequently, r = —q.
Conversely, taking p = 0 = s, arbitrary ¢ € R, and r == —g, we have
forall x,y >0

m, (m,(x,y),m,(x, 7)) = mo(mg(x,y),m_y(x,))

X1y \ Vet ymay VR ey ye ppaye V)2
((2)( 2 ) J:(zxuyq))

=V» =m(x,).

‘With respect to the symmetrical role of ¢ and r, in the same way we can
show that the numbers p = 0 = s, and g < 0 < r satisfy (3) if, and only if,
r=-—gq.

Assume that p,q,r,s € R are such that g =0 =r, p # 0 # 5. If they
satisfy (4) then

x*+ 1\
Vx = ( ) 5 x> 0;
2
which is a contradiction.
Now assume that p,g,7,s €R,r =0 =5, p # 0 # g. Then (4) reduces
to the contradictory relation

(x"+1

/4
5 ) =xP/2, %550

Since it is easy to see that relation (4) is false if exactly three of the
numbers p, g, r, s are equal to 0, the proof is completed. [

Applying Theorem 1(4°) with p = 0 =, r = —g, where g # 0 is arbi-
trary, and Theorem 1(2°) with g =p, r =0, s =p/2, where p # 0 is
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arbitrary, we obtain the following

COROLLARY 1. Forall p,q € R\ {0} and for all x,y > 0

(2 = oo

( (G +9)/277) + (V5) ) —(p2 y) a

2 2
Remark 1. Note that the relations

G(A(x,5), H(x,y)) = G(x,y),  x,y>0; (12)
A(A(x,5),G(x,y)) =myo(x,y), x>0, (13)

play here a fundamental role. They are equivalent to the relations men-
tioned in the statements (2°), (3°), and (4°) of Theorem 1. To get for
instance (10) it is enough to replace x and y, respectively, by x7 and y? in
(12), and raise both sides to the power 1/q. Similarly, replacing, respec-
tively, x and y by x? and y” in (13), and then raising it to the power 1/p,
gives relation (11).

3. NOTES ON COMPOSITIONS OF HOMOGENEOUS
QUASI-ARITHMETIC MEANS

We need the following (cf. J. Aczél [1, 3.1.2, Theorem 2, p. 153])

LEMMA 1. Let ¢:(0,0) = R be a continuous and strictly monotonic
function. Then My is positively homogeneous if, and only if, either there exist
a, p € R\ {0} and b € R such that $(x) = ax? + b, x > 0, or there exist a
b €R, a # 0, such that ¢(x) = alog(x) + b, x > 0.

Now we can prove the following

THEOREM 2. Let ¢, ¢, y, B:(0,%0) = R be strictly monotonic, and con-
tinuous. Suppose that M,, and at least two of the means M,, M., M are
positively homogeneous. Then

My(My(x,5), M,(%,y)) = Mg(x,y), X,y >0, (14)
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if, and only if, one of the following cases occurs:
(1°)  there exist p,q € R\ {0}, such that
¢(x) =ax? + by, Y(x) =a,x? +b,,
y(x) = a;x? + by, B(x) =a,x? +b,,
(2°) there exists p € R\ {0} such that
B(x) =ax? + b, U(x) = ax? + by,
v(x) = aylog(x) + by, B(x) =ax?> +b,,
(3°) there exists p € R\ {0} such that
¢(x) =ax? +bi,  Y(x) =aylog(x) + by,
y(x) =ayx? +b;,  B(x) =a,xP/* +b,,
(4°)  there exists g € R\ {0} such that
é(x) = alog(x) + by, Y(x) = ax? +b,,
v(x) = a;x% +b;, B(x) =a,log(x) + by,
for some a;, b, €R, a; #+ 0 (i = 1,2,3,4), and all x > 0.

Proof. By assumption M, is positively homogeneous. First we show
that all the means M,,, M, M are positively homogeneous. To this end it
is enough to consider four cases.

If M,, M, are positively homogeneous, then by (14) so is M.

If M, My are positively homogeneous then for all ¢, x,y > 0,

My(tx,1y) = My(M, (26, 17), M, (85, 19)) = My(1M, (%, ), M, (8, 1y))
and )

Mp(x,y) = tMy(My(x,), M,(x, 7)) = My(1M,(x,y), tM,(x,y)).
The positive homogeneity of M, implies that
M,y(tMy(x,y), M(&,17)) = My(tMy(x,),M,(x,y)),  t,%,y>0.

Since every quasi-arithmetic mean is strictly increasing with respect to
each variable, it follows that M,(zx, ty) = tM,(x, y) for all £, x,y > 0.
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In the same way we can show that if M,, M, are positively homoge-
neous, then so is M. Now the result is a consequence of Lemma 1 and
Theorem 1. ||

Remark 2. Suppose that M,, M,, M, are positively homogeneous.
Then for all 7, x,y > 0 we have

My (2, 19) = My (M, (2, ), M, (22, 19)) = My (1M (x, ), 1M, (%)),
and

My (x,y) = tMy(My(%,), M,(,y)).
From the positive homogeneity of M, we get
My(1M,(x,), M, (x,y)) = tM,(M,(x,y), My(%,y)),  t,x,y>0.
Let u,v > 0 be such that the system of equations

My(x,y) =u, M, (x,y) =v

has a solution x,y > 0. Then we have

My(tu, ) = tMy(u,v), forallt>0.

To show that, in general, relation (14) and the positive homogeneity of
M,, M, do not yield the homogeneity of M,, consider the following
ExampLE 1. Let ¢:(0,) — R be an arbitrary non-power monotonic
and continuous function, and ¢, y, B:(0,%) - R, ¢(x) = y(x) = B(x) =
X, x > 0. Then
x+

y
My(x,y) = My(x,y) =My(x,y) = —=,  xy>0,

are positively homogeneous, and M, is not. However, we have

x+y x+y) x+y

My, (5,0, M, (5,9)) = 2 52 ) = 52 = by,

for all x,y > 0.

In connection with the first statement in Theorem 1 note the following
obvious

Remark 3. Let ¢, 4,7, B:(0,%) = R be strictly monotonic, continu-
ous, and such that y(x) = ay(x) + b, and B(x) = c¢(x) + d, x > 0, for
some a,b,c,d € R. Then, by (1),

My(M,(x,y), M,(x,y)) = My(x,y),  x,y>0.
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Remark 4. Let I CR be an interval. It is known (cf. J. Aczél and J.
Dhombres [2, p. 291]), that a continuous and strictly monotonic in each
variable function M : I? — I such that

M(x,x) =x, M(x,y) =M(y,x), =xy€l,
satisfies the bisymmetry functional equation

M[M(x,y), M(z,w)] = M[M(x,2), M(y,w)], x,y,z,wel,

if, and only if, M is a quasi-arithmetic mean, i.e.,

M(x,y)=¢"(w}, xyel,

where ¢ :1 — R is a continuous and strictly monotonic function.

Note that this result permits us to determine all continuous and strictly
monotonic functions M, N, K : I? - I such that

M(x,x) = N(x,x) =K(x,x) =x, xe&l, (15)
N(x,y) =N(y,x), K(x,y) =K(y.x), x,ye€l, (16)
and satisfying the functional equation
M[N(x,y),K(z,w)] = M[N(x,2),K(y,w)],  x,y,z,w el (17)
To show it first observe that M is symmetric, i.e.,
M(x,y) =M(y,x), % piel,
In fact, applying in turn (15), (17), (16), (17), and (15) we obtain
M(x,y) = M[N(x,%), K(y,)] = M[N(x,5), K(x, )]
=M[N(y,x),K(y,x)] = M[N(y,y), K(x,%)] = M(y,%),
for all x,y € I. From using (17), (16), and again (17), we have
M[N(x,y), K(z,w)] = M[N(x,2), K(y,w)] = M[N(z,x),K(w,)]
=M[N(z,w),K(x,)]
for all x,y,z,w € I Setting w := z in this relation gives

M[N(x,y),z] =M[z,K(x,y)], xy,z€],
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and by the symmetry of M we get
M[N(x,y),2] =M[K(x,),2],  xy.z€l
The strict monotonicity of M implies that N = K. Now from (17) we have
M[K(x,y),K(z,w)] = M[K(x,2),K(y,w)],  xy,z,wel
Setting z = x, w ==y gives
M[K(x,y),K(x,y)] = M[K(x,x),K(y,9)], xyel
which, in view of (15), means that K = M. Thus the Pexider type equation
(17) reduces to the bisymmetry equation. (A more general functional
equation than (17) was considered by J. Aczél and Gy. Maksa, cf. [3].)
A weaker form of the Pexider bisymmetry equation (17) is the functional
equation
M[N(x,y),K(z,x)] = M[N(x,2),K(y,2)], x,y,z€1, (18)
where M, N, K : I* = I are the unknown functions.
‘We shall prove the following
Remark 5. Let I C R be an interval.
(1°) Suppose that M, N, K : I? — I satisfy Eq. (18). If M is symmet-
tic, injective with respect to the first variable, and
N(x,x) =x=K(x,x), «xel, (19)
then
N(x,y) =K(y,x), xyel
If moreover N or K is symmetric then N = K.

(2°) If the functions M, N, K:I*> - I are such that M and N are
symmetric and K = N, then Eq. (18) is fulfilled.

Proof. (1°). Setting z := x in (18), and making use of (19) gives
M[N(x,y),x] =M[x,K(y,x)], =x,yel
The symmetry of M implies that
M[N(x,y),x] =M[K(y,x),x], x,yelL

Hence, by the strict monotonicity of M (with respect to the first variable)
we obtain N(x,y) = K(y,x) for all x,y € I. Hence, if N or K is symmet-
ric then N = K.

The proof of (2°) is obvious. [l
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Setting z == x and w =y in (17) gives the functional equation
MN(x,), K(x,7)] = M[N(x, %), K(y,y)] =M(x,3), xyel
Assuming condition (15) is fulfilled we get the functional equation

M[N(x,y),K(x,9)] =M(x,y), xy€el (20)

Suppose that M, N, K :(0,%) — (0,%) are homogeneous quasi-arithmetic
means. In particular, in this paper we have shown that M, N, and K satisfy
Eq. (20) if, and only if, there is a g € R such that

M=G, N:mq, K:m,q
In this connection let us note the following

COROLLARY 2. Let M, N:(0,%)> — (0,) be arbitrary means on (0,),
and f:(0,%) > R a function. Then K : (0,%)* — (0,%) defined by

K(x,y) =f(M(x,y) N(x,y)), (21
is a mean on (0,) if, and only if, f(x) = Vx for all x > 0, and, consequently
K(x,y) = G(M(x,y) -N(x,y)), xy>0. (22)

Suppose that M and N are p
means. Then, apart from the trivial case M = N(= K ) K guen by (21) is
quasi-arithmetic if, and only if, there exists a ¢ € R such that

M=m, and N=m_,
Proof. Suppose that K is a mean on (0, ). Setting y = x in (21) gives
x=K(x,x) =f(M(x,x)-N(x,x)) =f(x*), x>0.

Thus f(x) = Vx, for all x> 0, and consequently, (22) holds true. The
converse implication is obvious.

Now suppose that M and N are positively homogeneous and quasi-
arithmetic. Then K is positively homogeneous. If K is quasi-arithmetic,
then M, N, and K must be some power means. Therefore there exist g, r,
s € R such that

M=mq, N=m, K=m,
and, since G = my, from (22) we have
m,(x,y) = mo(m,(x,y),m,(x,y)),  xy>0.

Now the result follows from Theorem 1(4°).



84 KAHLIG AND MATKOWSKI

Remark 6. Suppose that M and N are means on (0,%), and g:(0,%)
— (0,) is an arbitrary function. It is easy to verify that if the function
K:(0,%)* - (0,),

8(M(x,y))

K(x,y) = E))

, x%4y>0,

is a mean, then g(x) =x?, x > 0, and consequently,

(M(x,))’

K(x,y) = Nry)

x,y>0.

Note that Corollary 2 answers the question when the function M2/N is a
positively homogeneous and quasi-arithmetic mean on (0, %), namely if so
are M and N.

In a similar way we obtain

COROLLARY 3. Let M, N:(0,%)* — (0,%) be arbitrary means on (0, ),
and f:(0,%) - R a function. Then K :(0,%)* > (0,=) defined by

K(x,y) =f(M(x,y) + N(x,y)),

is a mean on (0,%) if, and only if, f(x) =x/2 for all x > 0, and, conse-
quently,
M(x,y) + N(x,y)

K(x,y) = 2 x,y>0.

Suppose that M and N are positively
means. Then K is quasi-arithmetic if, and only if, M = N( K)

Remark 7. Suppose that M and N are arbitrary means on (0,%), and
£:(0,%) - (0,) a function. If K:(0,%)* - (0,),

K(x,y) =g(M(x,y)) —=N(x,5), xy>0,
is a mean on (0,), then g(x) = 2x, x > 0, and consequently,
K(x,y) =2M(x,y) = N(x,y), Xy >0,
Note that Corollary 3 answers the question when the function 2M — N is

a positively homogeneous and quasi-arithmetic mean on (0, %), namely if
so are M and N.
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