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Convex functions with respect to
an arbitrary mean

Janusz Matkowski and Jiirg Rétz

Abstract

For a mean M, a notion of M-convex function is introduced. A general cri-

terion for the M-convexity of the sum of M-convex functions is given. As an
ication, we present conditions under which polynomials and the expo-

nential functions are convex with respect to some of the Stolarsky means.

Introduction
Let J C R be a fixed open interval and M : J x J — J a mean in J, i.e.,
min {z,y} < M(z,y) < max{z,y}, z,y€eJ.

Let I C J be an arbitrary open interval. A function ¢ : I — J is said to be
convex with respect to M on I (shortly M-convez on I) iff

6(M(z,y)) < M(6(x),6(y)),  wyel.

Taking in the above definition J = R and M the arithmetic mean, M(z,y) =
(z + y)/2, we get the notion of Jensen convez function. The theory of Jensen
convex functions, strictly related to the classical convexity, is important and well
known (cf. for instance M. Kuczma [2], p. 122). This theory can be easily carried
out to the M-convex functions if M is a quasi-arithmetic mean, i.e., if M is of the
form

Me = (LE) - ayes,
where f : J — R is a continuous and strictly monotonic function. Actually, it is
easy to check that if f is increasing (decreasing) then 6 is M-convez on I C J iff
the function fo¢o f~ is Jensen convez (Jensen concave) on f(I). According to
our best knowledge there is no theory of M-convex functions yet where M is not
the (weighted) arithmetic or a quasi-arithmetic mean.

The only exception is [8] where the problem of M-convexity of the family of power
functions is considered. In [8] some earlier known inequalities are interpreted as
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M-convexity of special power functions with respect to a suitable mean M. This
approach permits to obtain natural generalizations as well as to look at some
inequalities from a more systematic point of view.

In this paper we give a general criterion for M-convexity of the sum of M-
convex functions (Theorem 1). Its version for a positively homogeneous mean has
easy to verify assumptions. As an application we give conditions under which spe-
cial polynomials and the exponential functions are convex with respect to some of
the Stolarsky [10] means. The power means and the Gini means are also mentioned
in this context.

1. itivity of mean A and M-
of sum of )M-convex functions

Let J C R be a fixed open interval, M : J x J — J ameanin J, and I C J an
arbitrary open subinterval. A function ¢ : I — J is said to be M-convez on I iff
6(M(z,y) < M(9(2),64), @ yel,

and strictly M -convex on I iff
6(M(z,5) < M(8(2).6(), wyel z#y.

If the inequalities are reversed, the function ¢ is said to be M-concave on I or
strictly M-concave on I, respectively. If ¢ is both M-convex and M-concave on I,
ie.,

6(M(z,9) = M (6(2),6(1)), zyel,
it is called M-affine on I.

These definitions are correct because M (I, I) = I for all intervals I C J.
Remark 1. Let M : J x J — J be an arbitrary mean. Then the identity function

¢(x) =z, z € J and, for every ¢ € J, the constant function ¢(z) = ¢, z € J, are
M-affine on J.

Let us note the following obvious
Remark 2. Let J C R be open an interval, M : J x J — J a mean on J, and
suppose that I C J is an open subinterval.

1°.If¢: I — Jand ¥ : J — J are M-convex and % is increasing, then ¢ o ¢
is M-convex.

2°. Let ¢ : T —» J be bijective and (strictly) M-convex.
If ¢ is increasing, then ¢~ is (strictly) M-concave on J.

If ¢ is decreasing, then ¢~ is strictly M-convex on J.
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In the sequel we put R} := (0, ).
Definition. A function M : R] xR} — RY. issaid to be superadditive on R xRY.
iff

M (1,91) + M (22,32) < M (@1 + 22,51 +32), @1, 72,91, 42 >0,
and subadditive iff the inequality is reversed.
Theorem 1. Let M : R} x R — RY be a superadditive mean and I C R}

an open interval. If ¢, ¢ : I — RY are M-convex then ¢ + % is M-convex; if
moreover, ¢ or ¢ is strictly M-convez, then so is ¢ + 1.

Proof. Applying in turn M-convexity of ¢ and ¥, and superadditivity of M, we
obtain

(6+9) M(z,y) = ¢(M(z,y)) +v(M(z,y))
< M(4(2),6(y)) + M (¥(2), % (v))
< M(¢(z) +¥(2), 6(y) + ¥(v))

= M((¢+¥)(2). (6 +¥)¥)

for all z, y € I, which means that ¢ + ¢ is M-convex. In view of the definition of
strict convexity, the remaining statement is obvious.

Remark 3. To get the counterpart of this result for M-concave functions it is
enough to replace the superadditivity of M by its subadditivity, and M-convexity
of ¢ and ¥ by M-concavity.

In connection with Theorem 1, let us note the following
Remark 4. For a mean M : R} xR} — R} and an open interval I C R%, denote

by Convy(I) the family of all M-convex functions 6 : I — RY. If the family
Convyy(I) has the two properties

1) for all 7,y € RY and for all s, ¢ € I, s # #, there exists ¢ € Convyy(I) such
that

ss)=z,  dB)=y.  S(M(s,t) = M((s),6(t)) ;
2) for all ¢, ¥ € Convar(I), ¢+ € Conva(I),

then M is superadditive on R} x RY.

Proof. Take arbitrary zy,22,y1,y2 > 0 and s,t € I, s # t. According to 1) there
exist ¢1, &2 € Convyy(I) such that

6i(s) =i, Gilt) =yir i (M(s,1)) = M ($i(s), 6u(t)) = M(i, 9:),
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for i = 1,2. Hence, making use of the relation ¢1 + @2 € Conv s (I), we get
M(zy,y) + M(z2,32) = 61 (M(s,1)) + 62 (M(s,1))

(1 + ¢2) (M(s,1))

M (61 + 62)(s), (61 + 62)(1))

= M(¢1(s) + 02(5), 61(¢) + 62(1)

M (zy + 22,51 +72).

IA

which was to be shown.

The superadditivity (resp. subadditivity) of a mean M plays a key role in
Theorem 1. Since there is no general criterion of superadditivity (subadditivity)
of functions of two variables, it is in many cases a nontrivial question to decide if
M has this property. Now we shall show that if M is positively homogeneous, the
situation is not difficult.

For a two place function M : R% x R} — R we denote the function Y 3
& — M(z,1) by M(-,1). Similarly we define the function M(1,-).

Let us quote the following result (cf. [6], Theorem 9):
Lemma 1. Let M : RY x R} — R}, be a positively homogeneous function, i.c.,
Mtz ty) = tM(z,y),  t.a,y>0.

Then M is superadditive if, and only if, the function M(-,1) (or M(1,-)) is con-

cave.

Proof. Suppose that M : R} x Ry — R} is positively homogeneous. Putting
h = M(-,1) we can write

M(z,y)=yh (5) ., TY>0
Now it is easily seen that h is concave if, and only if (cf. [4]),

I + z € x:
(1 +v2)h (y’ +y§) 2yh (y—:) +y2h (yf) s TL oYL Y >0,
1

i.e., if, and only if, the function M is superadditive.

A more general inequality as well as its integral counterpart are presented in
[5], [9], and in [7] where also the equality case is considered.
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Now we can prove
Theorem 2. Let M : R} x R}, — R} be a positively homogencous mean. If the
function M(-,1) (or M(1,-)) is concave, and I C R, is an open interval, then

1) for every two M-convex functions ¢, v : I — R, the function ¢ + v is
M-convex, and it is strictly M -convez if ¢ or 1 is strictly M -conves;

2) for every (strictly) M-conver ¢ : I — R} and a > 0, the function a¢ is
(strictly) M-convez.

Proof. Part 1) is a consequence of Theorem 1 and Lemma 1. Part 2) follows im-
mediately from the positive homogeneity of M.
Put N°:= NU {0}.

Corollary 1. Let M : Ry x Ry — RY. be a positively homogencous mean such
that the function M(-,1) (or M(1,-)) is concave, and I C R an open interval.
Suppose that for every k € N°, ¢y : I —s RY, is M-convew on I, and ¢ > 0. Then
for every n € NO, the function

n
fai= ckdk
k=0

is M-convez on I, and, if there is a k € {0,1,...,n} such that ¢y is strictly
M-conves, then f,, is strictly M-convez on I. Moreover, if the series

o
f= cudn
k=0

is pointwise convergent on I, then f is M-convez on I, and it is strictly M -convex
if at least one of the functions ¢ is strictly M-convez.
Proof. By Theorem 2, the function f, is M-convex on I, i.e.,

fn(M(@,y)) < M(fa(2): fa(v)), @z y€l,

for every n € NO. The function M(-1), being concave, is continuous.
Since M(z,y) = yM(x/y,1), o,y > 0, the function M is continuous. Hence,
letting n — oo in the above inequality, we obtain

f(M(z,y)) < M(f(e), fy), =yel,
which completes the proof.

Remark 5. Obviously Theorem 1 and Lemma 1 remain valid on replacing super-
additivity of M by subadditivity of M, and M-convexity of functions ¢ and ¥ by
M-concavity. Therefore the suitable counterparts of Theorem 2 and Corollary 1
also hold true.
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2. Convex functions with respect to the Stolarsky means

An important class of means, strictly related to the Cauchy mean-value theorem,
is the two parameter family of Stolarsky means Ey,, : R x B} — R (r,s € B)
defined by (ct. [10], also [L], p. 345)

(5.;;4:;4)”“"‘, rEs,  rs£0 z#y
(%'lngz*lﬂéﬁ)? rE0 S

By = (besdtym) . r=0 s#0 o#y
() ()77 e ary

r=s=0; z#y
r,sER;, =z=y

;
3
:

The family (Ej.)rscr of positively homogeneous means contains the arithmetic
(Es,1), geometric (Eq,p), harmonic (E_s _1), and logarithmic (Ey o) means as some
special cases.

Recently Losonczi and Péles [3] gave conditions under which the means E,,,
are superadditive or subadditive. We quote their result as

Lemma 2. Letr,s € R, r # s, be ficed.
1°. E,, is superadditive on R% x R} if min(r,s) <1 and r+s < 3.

2. E,, is subadditive on R% x R}, if min(r,s) > 1 and r+s > 3.
In [8] (Theorem 13) we have proved the following result.

Lemma 3. Let r, s € R.
1°. Ifr+s>0, then
Ry 3z — P is strictly B, .-convex on R} for pe R\ [0,1],

R% 5@ —aP is strictly Eys-concave on R} for p€ (0,1).

2°. Ifr+s <0, then
RL 32 — P is strictly E,-concave on R} for p€R\[0,1],

Ry 3z —aP is strictly Er,-conver on R} for p€ (0,1).

3% Ifr+s=0, then R} 3 & — a? is E,-affine on R}, for all p € R.
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Applying Lemma 1, Lemma 2, Lemma 3 and Corollary 1 gives
Theorem 3. Let 7, s € R, 7 # s, such that
min(r,s) <1, r+s<3,

be fized. Suppose that p, € R\ (0,1) and ¢ > 0, for every k € N. Then for every
n € NO, the function f, : R} — RY,

fa@) =) cpa®
k=0
is E, o-convex on RY.. Moreover, if the series
flr) = 3 e abs
k=0

is pointwise convergent on an interval I C RY,, then the function f is Er,s-conver
onl

Hence, applying Remark 2.2°, we get
Corollary 2. Let v, s € R, 7 # s, such that
min(r,s) <1,  r+s<3,
be fized. Then
1°. every polynomial

falz) =) ea*, zER},

such that

¢ >0,

ch >0,

k=0

is E;,;-convez on RY.;

2°. for every a > 1 the exponential function f : R} — RY,
f@)=a*, x>0,

is strictly Ey,s-conves on Ry ;

3°. for every a > 1 the function f = log, is strictly Ey.s-concave on the interval
(1,00).
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The assumption a > 1 is needed for applying Theorem 3 in Corollary 2.2°
since

& (loga)*
=Y ot with =22 50 forall keN;
P K
here log denotes the natural logarithm. We show now that a > 1 is really essential

for part 2° of Corollary 2.

Remark 6. Let a € (0, 1) be fixed. Then the exponential function f(z) = a®, z > 0,
is neither B o-convex nor Ej o-concave on RY..

Proof. We first show that the function h(z) := e~%, z > 0, is neither Ey g-convex
nor E o-concave on RY, i.e., that neither the inequality

a ( T—y ) Z T —
log(x) —log(y) / ~ log h(z) —logh(y)’
nor the reverse inequality holds true. For y := €2 put

2 z—y . __h@) -hy)
(0= (e ) )= i honky ©>0 F A

Then

z,y>0,

a(z) = exp (

_z—e?
" log(a)

Since

a(0+) := IIH&O(I) — 18 5(0)

we have a(0+) > 5(0). This shows that h cannot be Ey g-convex on RY.
On the other hand we have

e

al) =3,  B(1)=
‘We shall show that

o(1) < B(1).
It is easy to see that this is equivalent to the following inequality
& e
This inequality holds true because
g, S s,

In fact, the first of these inequalities is equivalent to € > 7, and the second one is
obvious.
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Suppose now that there is an a € (0,1) such that the function f(z) = a?,
>0, is Eyo-convex (or Ej g-concave) on R}.. Choose ¢ > 0 such that a = e~1.
Then, putting ¢(z) == cz, z > 0, we would have h = fog. Since g is By o-affine on
IR",, the function h is E g-convex (or Ej g-concave) on RY by Remark 2.1°. This

contradiction completes the proof.

Corollary 2 allows to produce a lot of new inequalities. Consider for instance
the following
Example. Taking 7 = 1, s = 0, and f() = e, z > 0, in Corollary 2.2° gives
f(Bro(@,y)) < Bro(f(2), ), = y>0.
By the definition of the logarithmic mean Ey o we hence get the inequality
v

= B
eFPtEm < & s ny>0,z#y.
z—y i

3. Remarks about some other means
Let us fix p € R. The function 4, : RY x R} — RY, defined by

(=282)} . nro
Ap(z,y) =
/@y, p=0
is a symmetric positively homogeneous mean, and it is called the power mean.
Moreover, Ag(-, 1) is concave, and for p # 0

d2
(@) =

so the function A(-,1) is concave for every p < 1 and convex for every p > 1.

P2 (@ + )P 4, )~ 1),  =>0,

Applying Theorem 1 and Corollary 1, it is easy to get the counterparts of
Theorem 3 and Corollary 2 for the Ap-convex functions.

Let us also mention that, using some results of Losonczi and Péles [3], one can
get more general results about M,.,-convex functions, where M, : R} x R} —
R?, is the two parameter family of Gini means, which for r # s is defined by

g\ V=9
"+
M, o (z,y) = (zs +Z,) o EYS0:
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