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Convexity of power functions with respect to
symmetric homogeneous means

Janusz Matkowski and Jiirg Rétz

Abstract

It is well known that the power function z — z” on R is strictly Jensen-
convex if p? —p > 0, strictly J ve if p? —p < 0, Jo and
Jensen-concave if p? — p = 0. These Jensen type properties are based upon
the amhmenc mean A : R} x IR+ — R}. It is the purpose of this paper
to i the convexity, 'y ion of the power functions
for symmetric homogeneous means on R other than A. In Section 3, a
convexity/concavity criterion is presented, and in Section 4 this is applied
to the families of Stolarsky means and Gini means (both containing A) as
well as to weighted geometric means.

Introduction

R_, R}

RZ, R* denote the sets of real, nonneg-

ative real, nonpositive real, positive real negative real, non-zero real numbers,
respectively. For p € R we define

ep RL=RL op(

?  (z€R}).

log denotes the natural logarithm.

Definition 1.

a) The function M : R}, x R — R}, is called a mean on R}, if

min {z,y} < M(z,y) < max {z,y}, ie,
M(z,y) € conv {z,y}, forall z,y€RL.

1)
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b) A mean M on R} is said to be homogeneous (more precisely: positively
homogeneous) if
M(az,ay) = aM(z,y)  forall a,z,y € RY, (3)
symmetric if
M(z,y) = M(y,z) forall z,y€R]. (4)

The set of all symmetric homogeneous means on R, is denoted by M(R?).
Note that the degree of homogeneity of a mean has to be one.

Definition 2. If M is a mean on RY, a function ¢ : R} — RY is called
a) M-convez on RY. if

P(M(z,y)) < M(p(z),p(y)) forall z,y € RY, (5)
b) strictly M-convez on RY if
P(M(z,y)) < M(p(z),¢(y) forall z,y €RL, z#y, (6)
¢) M-concave on R, if
P(M(z,y)) = M(p(2),¢(y)) forall 2,y €RY, (7)
d) strictly M-concave on R, if
P(M(z,y)) > M(p(2), ¢(y)) forall z,y R, x#y, (8)
) M-affine on R, if
P(M(z,y)) = M(¢(z), (y)) forall z,y €RY. 9)

Remark 3. It is clear that the convexity/concavity behavior of ¢, is strongly related
to the comparison (also called dominance) problem of the means involved: strict
M-convexity of ¢, for p € R* on R, e.g., means that
Mz,y) < (M(@,39)F  (2,y €RY; o #y)

which expresses a comparison result for two means being “conjugate by ¢,”. So our
convexity/concavity problem is a special case of the general comparison problem.
The proofs here are easier and more direct for our purposes and, accordingly, the
structure of the conditions is simpler that those for the general problem (cf., e.g.,
[9] , [14], [13] in connection with some cases in Theorems 13 and 16). The main
reason for our direct access, however, is that we intend to obtain strict inequalities
also in the limiting cases (e.g., for E,, and E, ¢ in Theorem 13), and this does
require an extra effort anyway.

Remark 4. For a different point of view leading to the functional inequalities in
Definition 2, cf., e.g. [16] , p. 38-39 or [18], p. 103-104.
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2. Preliminaries

Lemma 5. Let M be a mean on RY.
1°. Ifp: Ry =R} and¢: R} =R} are
M- GhEe%e on RL

and v is increasing, then Yo is M- GNUET. onRY. (There is no analogue
for ¥ decreasing.)

2°. Let p: R} — R, be bijective and (strictly) M- S3nY%, on RY.
If  is increasing, then @™ is (strictly) M- S3REAYe on RY.
If ¢ is decreasing, then ¢~ is (strictly) M- G3RY6E. on RY.

The immediate proof is omitted.

The next statement prepares the convexity/concavity classification of the
power functions @, (p € R) and focusses the interest to p > 1 and p = —1.

Theorem 6. Let M be a mean on RY.

1°. For every p > 1, the function @, is (strictly) M- SSBYT, on RY if, and
only if, the function y is (strictly) M- SSRSE% on RY.
2°. If all pp (p> 1) are (strictly) M- 005, on RY. and if p—y is
M- SGRYEE, on R, then all ¢, (q <0) are (strictly) M- S3RYET, on RY.
3°. Ifallgy (p>1) are M- IVEE, onRY, and if o_, is (strictly) M- SGRYEL,

on Ry, then all ¢, (g <0) are (strictly) M- SRYE. on RY.

4. o and g1 are M-affine on R,

Proof. 1°. is obtained by the substitution u = &P, v = yP.

2°. Assume that all ¢, (p > 1) are strictly M-convex and ¢_; is M-convex
on R?. Suppose first ¢ < —1. Then —¢ > 1, and by the assumption we have
(M(z,y))"? < M(z™%y™")  (zyeRLz#y).
Substituting z, y by 27!

M@ y™) T <M@%y!)  (@yeRL, a#y) (10)

1 we get

M-convexity of ¢_y on R}, yields

(M@y)™ <M@y™h)  (Yz,yeRY, z#y)
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Since (o is strictly increasing, it follows that
(M(z,y)? < M@y ™)™ (Vo,yeR}, z#y)
and together with (10)
(M(z,y)? < M(z%y?) (Vz,yeRL, z#y), (11)

i.e., that (g is strictly M-convex on R%.

Now suppose that g €] — 1,0[. Then —g > 1, and by the assumption, ¢_y is
strictly M-convex on R, and since it is increasing, ¢_g is strictly M-concave on
R} by Lemma 5.2°, i.e.,

(M(z,y))™* > M(z™%,y™")  (z,y€RL, z#y). (12)
M-convexity of ¢_; on RY implies
(M@= %y™)) ' < M@y  (zyeRy, z#y),
and together with (12) we obtain again (11).

The non-strict convexity case as well as the two concavity cases can be proved
along the same lines.

3°. The proof follows again the same lines, but here the possible strictness of
(g results from that of 1.

4°. is obvious, and the proof of Theorem 6 is complete. o
Lemma 7. If M is a mean on RY, p € B, 7 € R*, and ,M(z,y) := (M(a",y"))*
for all z,y € RY, then we have:

1°. .M is @ mean on RY, the r-conjugate of M.

2°. If M € M(RY), then -M € M(R}).

3°. Ifr €R", then , is ;M-affine on R <= ¢, is M-affine on R}.

4. Ifr €RY, then o, is M-SIIYEE, on R <= ¢, is M-S3PY%, onRY.
5°. Ifr €RY, then o, is M-3MUEL. on Ry <= @, is M-SROUE on RY.

The obvious proof is omitted.
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3. An M-convexity/-concavity criterion

After having dealt with arbitrary means on R}, in Section 2, we now turn to the
question as to how we can recognize whether all power functions ¢, (p > 1) have
the same convexity/concavity behavior with respect to a symmetric homogeneous
mean on RY.

Theorem 8. If M € M(RY,), then all @, (p > 1) are (strictly) M- GNYEE, on Ry
if, and only if the function

RS RYL, fu(e) = (M) (@eRy) (13)

increasing

s (strictly) decreasing

onRL.
Proof. We write the argument for the strictly convex case; immediate modifications
for the three remaining cases are available.

Using symmetry of M, putting ¢ = £, using homogeneity of M, dividing
by y?, putting e* = ¢, and exponentiating with Fiz (> 0) generate the following
sequence of mutually equivalent statements:

(M(z,y))P < M(zP,y?) (z,yeRy; c#y;p>1)

(M(z,y))P < M v?) (2,y€RY; z>y;p>1)
(M(ty,y))? < M(tPy?,yP)

yP(M(t,1)P < yPM(tP,1) (t>1, yeRy; p>1)
(M(t,1))P < M(,1) (&S 05upil)

(M(e2, )P < M(eP,1) (zeRy, p>1)
(M(e%,1)} < (M(eP,1))% (z€Ry, p>1)

fu(z) < fulpz) (z€Ry, p>1).

4. Applications

We first deal with the quasi-arithmetic means in M(R? ), which are precisely the
geometric mean G =: My and the power means M, (r € R) given by

i
P
My(z,9) = (%) for all z,y € R},

([6], p- 68, Theorem 84), the latter being the r-conjugates ,A of the arithmetic
mean A (cf. Lemma 7.1°). The result stated at the beginning of the Abstract,
Lemma 7, and the fact that all ¢, (p € R) are Mo-affine on R, lead to

strictly My-convex >
preER= |pyis M,-affine onRL &r(p?-p) = 0|. (14)
strictly M,-concave <
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Later we shall treat two distinct 2-parameter families (E;..)rscr and (M s)rscz
of elements of M(R?.) which contain the means M, (r € R); see Remark 17.

We begin by two specific members of the former family, the logarithmic mean
L and the identric mean I; L has numerous applications in physics (cf, e.g., [3]
p. 376-377; [7]; [12], sect. 8.7, 8.9; [15], sect. 6.2), and it is not a quasi-arithmetic
mean ([10], Theorems 2 and 4; [7], Theorem 1).

Theorem 9. Let L: R}, x R}, — R, be defined by

ot

Law) =2, L) = g pe

(z,y €RL, z#y).
Then we have
1°. LeM(RYL),
strictly L-convex

2°. peR= |pyis L-affine on R} <= p?—p
strictly L-concave

Al vV
o

Proof. 1°. is well known; the intermediacy property (2) easily follows from the
Mean Value Theorem.

2°. (i) For t > 1 we have z := }logt > 0, so, by looking at the Maclaurin
series, z < sinh z, i.e., 2z < €* — e, therefore logt < t3 —t~3(t > 1) (cf. also
[11], p-272, 3.6.15, where a different argument is used). If follows that

1

(logt)> <t—2+ 3 >0 (15)
Takez,y € R%, 2 >y and put ¢ = £. Then (15) yields (logz—logy)* < £—2+% =
(w—y)(2 1), which can be written in the form (L(z,9))~* < L(%, 1) (« 2>y >0),
and symmetry of L implies that

-1 is strictly L-convex on RY. (16)

@) fe@) E (Le )t

£=1)2 (z € R}). We show that
fr is strictly increasing on R. 17

To this end we define fi, fo: Ry — Ry by

£

fi=) 5 =1L folz) = log

(z €R1), f1(0):=0, f2(0) :=0. (18)
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f1, f2 are continuous on R, and differentiable on R.. From >ef (zeRL)

we obtain 1 > 255 (z € R}), therefore
e*(e” — 1) — ze® e®
(e -1 -1

@ = “lofE @eRp. (9

Applying the Mean Value Theorem to f; — f, and using (18) and (19) yields

filz) > fole) (@ E€RL). (20)
Finally f;(z) = f1(2) - 2 - (fil) - f2(2)) > 0 (z € R}), by (20), and (17) is
proved.

(iii) By (17) and Theorem 8, all ¢,(p > 1) are strictly L-convex on RY. By
Theorem 6.1°, all 5, (0 < p < 1) are strictly L-concave on R, and by (16) and
Theorem 6.2°, all @, (p < 0) are strictly L-convex on R’ Theorem 6.4° completes
the “=" part of 2°.

(iv) It is sufficient to prove the “¢=" statements because on both sides
of “<" we have threefold alternatives, the one on the right-hand side being
complete, i.e., a trichotomy. o

Theorem 10. Let I : R} x R} — RY, be defined by
1 g\ & .
I@,3) =g, Iy) =3 (5 (@Y €RY, T#7y).

Then we have

1°. I € M(RY),
strictly I-convex

2°. peER= |y is I-affine on R} «<=p?—
strictly I-concave

Proof. 1° is well known.

2°. (i) We start from 24 < log(1+1) (t € RL) ([11], p. 273, 3.6.18) and get
2< (1+2)log(1+1) (t€Ry). For 2,y € RL, o < y, ¢ := L=, we obtain by a

simple calculation 0 < log I(z,y) + log I(z™1,y™1), i, 1 < I(z,y) - I(z~1,y™")
(2,y € R, @ <y). By symmetry of 1, this is valid for all « # y, so

¢y s strictly I-convex on R} (21)

13)

(i) fr(2) 2 (1(e7, 1))} = e (z €RL).
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For z € R} we have cosh & > 1+ 2, e* + 7% > 2+2%, ¥ — 2+ 7% > 22,
:

2 5 02,0 <~y + & and finally ( 1)" > 0, which guarantees

that
fr is strictly increasing on RY. (22)

(iii) The proof is completed as for Theorem 9 with (21), (22) instead of
(16), (17). o
Definition 11. The Stolarsky means ([17), p. 88)

E.,:Ry xR, —R} (rs€R)
are defined by
Ero(z.2)=2 (z€R})

and for z,y € R}, z #y, by

Ers(zy) = if rs(s—1)#0 (23)
Bro(e,y) i= Boulz,y) = (%m) ifor0 ()
Erp(z,y) = e’(%)ﬂ if r=s#0 (25)
Eoo(z,y) = Glz,y)- (26)

Remark 12. a) All E, ; (r,s € R) are means on R : they are so-called mean-value
means, arising from the Cauchy Mean Value Theorem (1], p. 345); furthermore
Ey, € M(RS).

b) For numerous further properties of E,, c£.[8], p. 86. Some of them will be
niceded here, tamely

B2 = for all 7 € R”, @7
Bpep= forall7 € R, (28)
Epjr = forallr€R", k€R, (29)
Eyp = the logarithmic mean , (30)
Ei the identric mean . (31)

Theorem 13. For p,r,s € R we have
strictly E. s-conver
@p is E;s-affine on Ry < (r+s)p* —p)
strictly E,.-concave

Al vV
=)
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Proof. Tt is sufficient to prove the “<=" statements (see (iv)) in the proof of
Theorem 9.

The case (r+ 5)(p? —p) = 0 is settled by Theorem 6.4° (p*> —p = 0) and (28)
together with the remark before (14) (r + s = 0).

According to the structure of Definition 11 and taking into account that
r = —s s already settled, we treat the following three cases separately:

Casel: rs€R*, r#sr#—s (ch(23),
Case2: reR, s=0 (cf.(24)),
Case3: r=scR* (c£(25)).

Case 1. (i) By (23) and (13)

fE..(t) = (g . ﬁ)

(teRY).
Therefore

(log f,..(t))" = @) -et) (R}, (32)

_ Lo
(s—r)2
where g1,92 : Ry = R, gi(t) = 2=
log (- 533) (L€ R}), 2(0) = 0.

g1 and g are continuous on R and differentiable on R Furthermore

(@) - 0t) =t g;(t) (teRL), (33)

£ (t € RY), 01(0) = 0, galt) =

ot ) ot .
CaE -8 o1 (teR}). (34)

Because of (32), (33), sgn g4 (t) is of high importance. We define

gt)=r> {

V2etv

R =R ) =

(veR"; teR] fixed)

i 2
and get £2- hy(v) = (—%g:) (veRtERY).

The Maclaurin series (or strict convexity on RZ) of sinh shows that u
sinb ¥ g strictly increasing on RY, so for all ¢ € RY, the function h; is strictly
decreasing on R7, moreover it is even.

Now by (34),(33)

o 5 40 eexp  (pfichD).

0<|s|<|r|

0 3 @o-eor cexy  (QIHIH).
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The Mean Value Theorem and g;(0) = 0 = g2(0) imply

= _ . 0<|r| < |s|
0 5 a0-e0 cery  (PIHIM) e
Ohiass @) -e@®) (eRy), i, by (32)
1 -
0 < leefs.(0)  (teRi)
therefore by Theorem 8
i A E, s-convex . > _
all p,(p > 1) are strictly R onRL (r+s ¥ 0). (35)

(i) For every ¢ € R} we define

(Y em

v

Then )1, is strictly increasing on R’ and even, so
o > " 0<|r| <|s|
he(s) _ he(r)  (t€R) ( o<lsl<lrl )
By putting 2 := ef we obtain
200 _ 5 _ =5y < 29 v _ -1 0<|r| <|s|
r(@—gtognd) O sie-el -2t | (1) (0<\5\<M . (36)

Let be z,y € R}, arbitrary, z # y. Then 2 := max{Z,%} > 1, and (36) yields

oty L o<l <lsl
P =) -2 S ST - - 0") (R el
Dividing by the (negative) right-hand side gives
royT 71'5.r_y‘~a35> 0<|r| <|s|
s 0<ls|<|r )

Raising to the power with exponent - ~ 0 ( rs? ) and using (23) leads to

T s<r
=1t > r+s>0 F
Ers(@™y™) Ers(a,y) 2 1 ( A ) ie.
o By convex . 5
povisstrictly pPTONS o RL (r+s 2 0). 37)

(iii) In Case 1, the assertion follows from (35), (37), Theorem 6.1° and 2°.
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Case2. Herer +s=r. Epg 2 810 % L By Theorem 9.2° and Lemma
7.3°, 4°, 5°, the assertion follows.
(29) (31) -
Case3. Herer+s =2r. E,, = ,Ey1 2 ,I. By Theorem 10.2° and Lemma
7.3, 4°, 5°, the assertion follows. o
Definition 14. The Gini means My, : R} x R}, — R, (r,s € R) are defined by
M (w,2)=2 (z€R})

and for 7,y € R}, z #y, by

NIﬁu(Ly):{ ()™ itrss

T =

([4]; J. Aczél informed the authors about the earlier reference [5]). There are ap-

plications in statistics. For further references cf. [2].

Remark 15. It is well-known that M,,, € M(R%) for all r,s € R. Furthermore
Myo=M, forall reR", (38)
M,_,=G foral reR. (39)

Theorem 16. For p,r,s € R we have

strietly M, s-convex
@p is M, s-affine on R} <= (r+3)(p* —p)
strictly My, ;-concave

Proof. As for Theorem 13, proving “<=" is enough, and the case (r+s)(p*—p) =
can again be isolated (cf. (39)), so r # —s.

Casel: r#s.
(i) From Definition 14 and (13) we obtain

98 f., O = g Gil9) = ilr)) (€ RY) “0)

where j: : R — R,

tv- et

oy losle+1)  (vER; tER] fixed).

Je(v) ==
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Simple computations show that for every ¢ € R1, the function j; is even and
2petv

(£30(0) = £ (v ER), ie. jy is strictly increasing on Ry Hence
I oy (<l
Je(s)=ge(r) 2 0 (teRL) ( sl < Irl

(notice that the case 7 = —s is excluded), i.e. 72z - (je(s) — je(r)) > 0 (t € RY),
ie., by (40), 2 - (log far, (1))’ >0 (¢ € RY), and finally by Theorem 8

y M, o-convex . =
all p,(p > 1) are strictly { M, concave O R} (r+s  0) (41)
- . < |r| < |s| . -
(ii) For t € R}, coshtr 3 coshis ( sl <|r] ) and putting = :
have
g Sba e Ir] < |s]
s St (>0 (Isl<ir\ t (42)

Let be z,y € R}, & # y. Then 2 := max{i g} > 1, and (42) implies

@+ +y") : (@ +9°) (@™ +y7°) ( }:‘I z I‘:} ) ’

< oty enieyt Irl < sl
> ety Ty lsl<Irl }°

Raising to the power with exponent -1 Z 0 ( ::j ) and using Definition 14

leads to
15 Meslo) Mesta™) (r0 2 0),

oy is strictly ;f::;:c‘;"e on R} (r+s 5 n). (43)

(iii) In Case 1, the assertion follows from (41), (43), Theorem 6. 1° and 2°.

Case 2
(i) From Definition (14) and (13) fa,,,.() = e (¢ € Ry). This is

increasing > ’ B i
decreasing < 0), and since 7 + s = 2r, (41) holds again.

85

strictly onR} (r
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(i) Let be z,y € R, = # y. Then

L il
M) M) 21 (5) 7 20 (44)
a"—a" 5 > =
On the other hand, (f) Lt ('r z 0) | ie., by (44)
= o= & >
Myp(z,y) Mer(@™y™") 2 1 (r = 0>.
Since r + s = 2r, (43) holds again, and the proof ends as in Case 1. [m]

Remark 17. By (27), (28), (38), (39)
Ergr=M,=M,o forallreR,

and now (14) appears as a very special case of both Theorems 13 and 16.

Now we turn to a family of means which contains the limiting cases min and
maz of the family (Mc).ez of power means and of other 1-parameter families of
means (cf., e.g., [1], p. 346, for the generalized logarithmic means). The convex-
ity/concavity situation of the power functions will be completely different from
that of Theorems 13 and 16 (cf. Theorem 20). We begin by some characterization
results.

Lemma 18. Let M be a homogeneous mean on RY and
g iR = R, gu(t) = (M(eh, 1))} (teR). (45)
Then we have:

1°. For every c € [0,1]

RL z>y
gu(t)=e® for allte RE &M(zy)=ay'~ for all z,yeR}, o<y
R arbitrary

2. If M € M(RY,), then for every c € [0,1]

ou(t) =< forallte it & M(zy)= { EZ;’;‘{{;;}}))((:;& ﬁ))::

for allz,y € RY.
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3. If M € M(RY), then

gu is constant on R* <= M =G

Proof. By (45), we have for every ¢ € R*
gu(t) = e = M(e!,1) = e, (46)

so, by (2), necessarily ¢ € [0,1]. Conversely, for ¢ € [0,1], the expressions for
M(z,y) in 1°, 2°, 3° do provide homogeneous means on R}, namely weighted
geometric means; the ones in 1° need not be symmetric.

1°. <= immediately follows from (46).

= From the assumption and (46) and from M(e°, 1) = e we obtain
Ry
M(et,1) = et forallte R_ . (a7)
R
T2y
Now let be z,y € R}, z<y
arbitrary
For ¢ :=log £, the homogeneity of M and (47) yield
1 i 2\ ¢ T2y
“M(zy) =M (-,1) = (-) foralle,yeRy, <y
Yy Yy y arbitrary

2°. Ne(w,y) := (max{z,y})° - (min{z,y})!~¢, for all 2,y € RY.. Then

aeyi-e = { Ne(@:9) T2y
Nie(z,y) @<y’

and by 1° and symmetry of M, Ne, N1—.

Ne(e.y)

R} o(z . T
gu(t)=e for all e pF 4=n\1(z,y)={ Norlnyy forall zyeRy, 4

@<y

= M(z,3) ={ ‘]\\f(x(”) ) frllzyeR;.
3°. — is immediate from 1°.

=: By 1° (lowest case) there exists ¢ € [0,1] such that M(z,y) = z°y'~¢
for all RY. Symmetry of M implies c=1—c, i.e., cfl ie, M=G. o
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Corollary 19. For M € M(R?), the function ¢, is M-affine if and only if M = G.

Proof. ¢_y is certainly G — af fine. Conversely, by hypothesis (M(z,y))~! =
M@=ty (zy € Ry), so (M(z,271)™" = M(z!,2) = M(z,27"). Since
M(z,271) € RY, we get M(z,2™}) = 1 (z € R}). If t € R", gu(t) ©
(M(et, 1))t = (ef - M(e3,e7%))t = (ef - 1)} = e, and by Lemma 18.3°,
M=G.0O

Theorem 20. If ¢ € [0,1] and Ne(z,y) = (max{z,y})° - (min{z,y})!~¢ (2,y €
RY), then

1°. p€ Ry = g, is Ne-affine on RY..

strictly N.-convez
2. peRt = g, is N-affine Ry e
strictly N,-concave

Proof. 1°. By Lemma 18.2°, gy, is constant on RY. Since N, € M(R}), all o,
(p> 1) are N.-affine on R}, by Theorem 8, and by Theorem 6.1° and 4° so are all
¢p (0 <p<1) as well as go and ;. (There is also a simple autonomous proof for
i

2°. Let be z,y € R}, arbitrary,  # y. The fact max{z™
easily leads to

™ }=(minfz.y}) 7!

(Ne(@,y))™ = Ne(z™,y7") & (min{z,y}>*™

VA
VoIl A

c.2
(max{a. ) se = &
52

which says that the assertion holds for p = —1. The general assertion now follows
from 1° and Theorem 6.3°.

Remark 21. Theorem 20 shows that in Theorem 6.2° and 3°, the hypothesis on
Ny-concave

o is essential: All ¢ (p > 1) are OO

on R}, but no (g < 0) is

Ni-concave n
Np-conves, OBR%:

Also, strict convexity/concavity of all ¢,(¢ < 0) does not imply that of all
@p (p>1).
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5. i remarks and

Remark 22. For M € M(R7), the function p_; is M-convex on RY if, and only
if,

Vi< M(t,1) forall t>1
(see Corollary 19 for a related result). In fact: (M(z,y))™* < M(z™',y7}) (z,y €
RY) is equivalent to (M(t,1))~! < M(¢71,1) (¢t > 1) (see the procedure in the
proof of Theorem 8), and this latter is equivalent to 1 < M(t,1)- M(¢71,1) (¢ > 1),
t < M(t,1)- M(1,¢) (¢ > 1) and finally to t < (M(t,1))? (¢ > 1).

Remark 23. The fact G(z,y) < L(z.y) < A(z,y) (2.y € R}, z # y) is well-
known (cf., e.g.[1], p. 348). In the light of Remark 3, this can be interpreted
as the strict L-convexity of ¢_; and g» on R, the latter being guaranteed by
Theorem 9.2°. In fact: For 2,y € Ry, z # y, (G(z,¥))? < (L(z,y))? is equivalent
to (L(z.y) A <Ll :=1, y~1), and (L(z,y))? < A(z.y) - L(z.y) is equivalent to
(L(z,y))? < L(2?,9?).

Remark 24. All means M € M(R?.) occurring in Section 4 are continuous in each
variable (notice that the contraharmonic mean M, 2, in the sense of Definition 14,
is not monotonic in « and in y; cf. [2], bottom of p. 604). It then turned out that
every g, (p € R) is convex on R} and/or concave on R} (see Theorems 9, 10,
13, 16, 20). This is not so in general (a more general discussion will follow in a
forthcoming paper).

Example 25. For M(z,y) == min{z, y} - [L(—yi] (2,y € R%), we have M € M
(R%) and far(t) = [e!]* (¢ € RY), so far is not monotonic on R,.. Accordingly, by
Theroem 8, (g is neither M-convex nor \1 concave on R : M(13,(28)3) =2 >

= (M(1,2%))3, while M(1%,2%) =2< M(1,2))%. Furthermore, ¢_ 1 has
the same behavior: M(2,3) - M( 2 1371) = 2 < 1, but M(1,2)- M(171,27%) =
2>
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