Janusz Matkowski, Jürg Rätz

EQUALITY IN MINKOWSKI INEQUALITY AND A CHARACTERIZATION OF L^p-NORM

Introduction

For a measure space (Ω, Σ, μ) denote by $S = S(\Omega, \Sigma, \mu)$ the linear space of all μ -integrable simple functions $x : \Omega \mapsto \mathbb{R}$, and by $S_+ = S_+(\Omega, \Sigma, \mu)$ the set of all nonnegative $x \in S(\Omega, \Sigma, \mu)$. It is easy to see that for an arbitrary bijection $\phi : (0, \infty) \mapsto (0, \infty)$ the functional $p_* : S \mapsto [0, \infty)$ given by

$$p_{\phi}(x) := \begin{cases} \phi^{-1} \Big(\int\limits_{\Omega(x)} \phi \circ |x| \, d\mu \Big) & \text{if } \mu(\Omega(x)) > 0 \\ 0 & \text{if } \mu(\Omega(x)) = 0 \end{cases}, \quad x \in S(\Omega, \Sigma, \mu),$$

where $\Omega(x) := \{\omega \in \Omega : x(\omega) \neq 0\}$, is correctly defined i.e. for every $x \in S(\Omega, \Sigma, \mu)$ the function $\phi \circ |x|$ is Σ -measurable and the integral $\int_{\Omega(x)} \phi \circ |x| d\mu$ is finite (cf. [4], Remark 5).

Note that for $\phi(t):=\phi(1)t^p,\,t>0,$ where $p\in\mathbf{R}\setminus\{0\}$ is arbitrary and fixed, we have

$$p_\phi(x) = \Big(\int\limits_{\Omega(x)} |x|^p \, d\mu\Big)^{\frac{1}{p}}, \quad x \in S(\Omega, \Sigma, \mu), \ \mu(\Omega(x)) > 0.$$

For $p\geq 1$ the functional ${\pmb p}_\phi$ becomes the ${\bf L}^p\text{-norm}.$ So, for $p\geq 1$ we have the Minkowski inequality

$$p_\phi(x+y) \leq p_\phi(x) + p_\phi(y), \quad \ x,y \in S(\Omega,\Sigma,\mu),$$

¹⁹⁹¹ Mathematics Subject Classification: Primary: 46E30, 26D15, 26A51, 39B12.

Key words and phrases: measure space, integrable simple functions, equality in the Minkowski's inequality.

and for p < 1, $p \neq 0$, the reversed "companion inequality"

$$p_{\phi}(x + y) \ge p_{\phi}(x) + p_{\phi}(y), \quad x, y \in S_{+}(\Omega, \Sigma, \mu).$$

It is well known that, in each of these inequalities, the equality occurs if, and only if, the functions x and y are positively proportional, i.e. there is a t>0 such that y=tx $(\mu-a.e.)$. It turns out that this fact allows to characterize the LP-norm.

We shall prove that if, for a class of measure spaces, a bijection $\phi:(0,\infty)\mapsto(0,\infty)$ satisfies the condition,

$$(\star)$$
 $p_{\phi}(x + tx) = p_{\phi}(x) + p_{\phi}(tx), \quad x \in S(\Omega, \Sigma, \mu), t > 0,$

then the function $\psi(t):=\phi(t)/\phi(1),\,t>0$, is multiplicative. Hence, under some weak regularity conditions, ψ must be a power function. Since the condition (\star) is an obvious consequence of the positive homogeneity of the functional p_{ϕ} ,

$$p_{A}(tx) = tp_{A}(x), \quad x \in S(\Omega, \Sigma, \mu), t > 0,$$

one of the results of this paper (Theorem 2) implies some characterizations of the L^p-norms given by Zaanen [6], Wnuk [5], and J. Matkowski [2].

1. Auxiliary results

Remark 1. Suppose that $\mu(\Omega) > 0$ and take an arbitrary $x \in S_+$ such that $\mu(\Omega(x)) > 0$.

Then there exist pairwise disjoint sets $A_1, \ldots, A_n \in \Sigma$, of finite and positive measure, and $x_1, \ldots, x_n > 0$, such that

$$x = \sum_{i=1}^{n} x_i \chi_{A_i},$$

(here χ_A stands for the characteristic function of A).

By the definition of p_{ϕ} we get

$$p_{\phi}(x) = \phi^{-1} \Big(\sum_{i=1}^{n} \phi(x_i) \mu(A_i) \Big).$$

In the sequel the following lemma plays an essential role (cf. the proof of Theorem 1 in [3]):

Lemma 1. Let $\phi:(0,\infty)\mapsto(0,\infty)$ be an arbitrary bijection. Then the function $\phi^{-1}\circ(a\phi)$ is additive for every fixed a>0 if, and only if, the function $\psi:(0,\infty)\mapsto(0,\infty)$, defined by

$$\psi(t) := \frac{\phi(t)}{\phi(1)}, \quad t > 0,$$

is multiplicative.

Proof. Suppose that for every fixed a>0 the function $\phi^{-1}\circ(a\phi)$ is additive. Since $\phi^{-1}\circ(a\phi)$ is positive, it must be linear. Thus there exists a function $m:(0,\infty)\mapsto(0,\infty)$ such that

$$\phi^{-1}[a\phi(u)] = m(a)u, \quad u > 0; \ a > 0.$$

Replacing a by b, we have

$$\phi^{-1}[b\phi(u)] = m(b)u, \quad u > 0; \ b > 0.$$

Composing separately the functions on the left and on the right-hand sides of the above equations gives

$$\phi^{-1}[ab\phi(u)] = m(a)m(b)u, \quad u > 0; \ a, b > 0.$$

On the other hand we also have

$$\phi^{-1}[ab\phi(u)] = m(ab)u, \quad u > 0; \ a, b > 0,$$

and, consequently,

$$m(ab) = m(a)m(b), a, b > 0,$$

which means that $m:(0,\infty)\mapsto (0,\infty)$ is multiplicative. Since $\phi^{-1}[a\phi(u)]=m(a)u,\,u>0,\,a>0$, we have

$$m(a)=\phi^{-1}[a\phi(1)], \quad a>0.$$

It follows that m is bijective, and consequently, the inverse function $m^{-1}:(0,\infty)\mapsto (0,\infty),$

$$m^{-1}(a) = \frac{\phi(a)}{\phi(1)}, \quad a > 0,$$

is multiplicative. Thus the function ψ is multiplicative.

Suppose that ψ is multiplicative. Then the inverse function ψ^{-1} ,

$$\psi^{-1}(u) = \phi^{-1}[\phi(1)u], \quad u > 0,$$

is multiplicative. Consequently, for a fixed and arbitrary a>0, and for all s,t>0, we have

$$\phi^{-1}[a\phi(s+t)] = \phi^{-1}\left[\phi(1)a\frac{\phi(s+t)}{\phi(1)}\right] = \psi^{-1}[a\psi(s+t)]$$

$$\begin{split} &= \psi^{-1}(a)\psi^{-1}[\psi(s+t)] = \psi^{-1}(a)s + \psi^{-1}(a)t \\ &= \psi^{-1}(a)\psi^{-1}[\psi(s)] + \psi^{-1}(a)\psi^{-1}[\psi(t)] \\ &= \psi^{-1}[a\psi(s)] + \psi^{-1}[a\phi(t)] = \phi^{-1}[a\phi(s)] + \phi^{-1}[a\phi(t)], \end{split}$$

which completes the proof.

2. Some results for the case when the union of of ranges of the admitted measures contains $(0,\infty)$

We begin with the following

Theorem 1. Suppose that $\phi:(0,\infty)\mapsto(0,\infty)$ is bijective. Then the following conditions are equivalent:

 1^0 . the function $\psi : (0, \infty) \mapsto (0, \infty)$,

$$\psi(t):=\frac{\phi(t)}{\phi(1)}, \quad \ t>0,$$

is multiplicative;

 2^0 , for every measure space (Ω, Σ, μ) , the functional p_ϕ is positively homogeneous, i.e.

$$p_{\phi}(tx) = tp_{\phi}(x), \quad x \in S(\Omega, \Sigma, \mu), t > 0;$$

 3^{0} . for every measure space (Ω, Σ, μ) ,

$$p_{\phi}(x + tx) = p_{\phi}(x) + p_{\phi}(tx), \quad x \in S(\Omega, \Sigma, \mu), t > 0;$$

there is a family of measure spaces ((Ω_i, Σ_i, μ_i))_{i∈I} such that

$$(0, \infty) \subset \bigcup_{i \in I} \mu_i(\Sigma_i),$$

and, for every $i \in I$,

$$p_{\phi}(x + tx) = p_{\phi}(x) + p_{\phi}(tx), \quad x \in S_{+}(\Omega_{i}, \Sigma_{i}, \mu_{i}); \quad t > 0.$$

Proof. First note that ψ is bijective,

$$\phi^{-1}(t) = \psi^{-1}\left(\frac{t}{\phi(1)}\right), \quad t > 0,$$

and, for all $x \in S$ we have

$$p_{\phi}(x) := \phi^{-1} \Big(\int\limits_{\Omega(x)} \phi \circ |x| \, d\mu \Big) = \psi^{-1} \bigg(\frac{1}{\phi(1)} \int\limits_{\Omega(x)} \phi(1) \psi \circ |x| \, d\mu \bigg) = \mathrm{p}_{\psi}(x).$$

Suppose now that condition 1^0 is fulfilled, i.e. that ψ is multiplicative. Then, clearly, ψ^{-1} is multiplicative. If (Ω, Σ, μ) is an arbitrary measure space, we have for all t > 0 and $x \in S(\Omega, \Sigma, \mu)$,

$$\begin{split} p_{\phi}(tx) &= p_{\psi}(tx) = \psi^{-1} \Big(\int\limits_{\Omega(x)} \psi \circ (|tx|) \, d\mu \Big) \\ &= \psi^{-1} \Big(\int\limits_{\Omega(x)} \psi(t) \psi \circ (|x|) \, d\mu \Big) \\ &= \psi^{-1} \Big(\psi(t) \int\limits_{\Omega(x)} \psi \circ (|x|) \, d\mu \Big) \\ &= \psi^{-1} (\psi(t)) \psi^{-1} \Big(\int\limits_{\Omega(x)} \psi \circ (|x|) \, d\mu \Big) \\ &= t \mathbf{p}_{\phi}(x) = t \mathbf{p}_{\phi}(x). \end{split}$$

which shows that condition 10 implies 20.

Suppose condition 2^0 . Then, for all t > 0 and $x \in S_+(\Omega, \Sigma, \mu)$,

$$p_{\phi}(x + tx) = p_{\phi}((1 + t)x) = (1 + t)p_{\phi}(x)$$

= $p_{\phi}(x) + tp_{\phi}(x) = p_{\phi}(x) + p_{\phi}(tx)$,

i.e. the condition 3 holds true.

The implication " $3^0 \Rightarrow 4^0$ " is obvious.

Suppose that condition 4^0 holds true. Take an arbitrary a>0. Then there exist $i\in I$, and $A\in \Sigma_i$ such that $a=\mu_i(A)$. Let s>0 be arbitrary. Since $x:=s\chi_s\in S(\Omega,\Sigma,\mu)_+(\Omega_i,\Sigma_i,\mu_i)$, we have

$$p_{\phi}[x + (ts^{-1})x] = p_{\phi}(x) + p_{\phi}(ts^{-1}x), \quad s, t > 0,$$

which, by Remark 1, can be written in the form

$$\phi^{-1}[a\phi(s+t)] = \phi^{-1}[a\phi(s)] + \phi^{-1}[a\phi(t)], \quad s, t > 0.$$

Thus, for every a>0, the function $\phi^{-1}\circ(a\phi)$ is additive. By Lemma 1, the function ψ is multiplicative. This completes the proof.

Remark 2. Let $(\Omega_a, \Sigma_a, \mu_a)$ be a measure space such that

$$\Omega_a := \{1\}, \quad \Sigma_a := \{\emptyset, \{1\}\}, \quad \mu_a(\{1\}) = a.$$

Then the family $((\Omega_a, \Sigma_a, \mu_a))_{a \in (0,\infty)}$ satisfies the assumption of condition 4^0 .

Remark 3. Note that each singleton family of measure spaces $((\Omega, \Sigma, \mu))$ such that $(0, \infty) \subset \mu(\Sigma)$ fulfils all the assumptions of condition 4^0 .

COROLLARY 1. Let $\phi:(0,\infty)\mapsto(0,\infty)$ be bijective. If ϕ is measurable, or $\log \phi$ is bounded above (below) in neighbourhood of a point, then the condition

10.
$$\phi(t) = \phi(1)t^p$$
, $t > 0$, for some $p \in \mathbb{R}$, $p \neq 0$;

is equivalent to each of the conditions 20-40 of Theorem 1.

3. A result for measure spaces with at least two disjoint sets of finite positive measure

The main result of this section reads as follows:

THEOREM 2. Let (Ω, Σ, μ) be a measure space with $A, B \in \Sigma$ such that $A \cap B = \emptyset$, and $\mu(A), \mu(B)$ are positive and finite. Suppose that $\phi : (0, \infty) \mapsto (0, \infty)$ is bijective, and ϕ or ϕ^{-1} is continuous at least at one point. If

(1)
$$p_{\perp}(x + tx) = p_{\perp}(x) + p_{\perp}(tx), \quad x \in S_{\perp}(\Omega, \Sigma, \mu), t > 0$$
:

then $\phi(t) = \phi(1)t^p$, t > 0, for some $p \in \mathbb{R}$, $p \neq 0$.

Proof. Put $a:=\mu(A),\,b:=\mu(B).$ Taking $x=s\chi_A$ and replacing t by $s^{-1}t$ in (1) gives

$$\phi^{-1}[a\phi(s+t)] = \phi^{-1}[a\phi(s)] + \phi^{-1}[a\phi(t)], \quad s,t > 0.$$

Thus there is a constant $\alpha > 0$ such that $\phi^{-1}[a\phi(u)] = \alpha u$, u > 0. Hence

(2)
$$a\phi(u) = \phi(\alpha u), \quad u > 0.$$

In the same way one can show that there is a $\beta > 0$ such that

(3)
$$b\phi(u) = \phi(\beta u), \quad u > 0.$$

Substituting $x = u\chi_A + v\chi_B$, with positive u, v in (1) gives

$$\phi^{-1}[a\phi(u+tu) + b\phi(v+tv)] = \phi^{-1}[a\phi(u) + b\phi(v)] + \phi^{-1}[a\phi(tu) + b\phi(tv)].$$

Making use of (2) and (3) we can write this equation in the form

$$\phi^{-1}[\phi(\alpha u + t\alpha u) + \phi(\beta v + t\beta v)] = \phi^{-1}[\phi(\alpha u) + \phi(\beta v)] + \phi^{-1}[\phi(t\alpha u) + \phi(t\beta v)].$$

Replacing αu and βv , respectively, by u and v we obtain

(4)
$$\phi^{-1}[\phi(u + tu) + \phi(v + tv)] = \phi^{-1}[\phi(u) + \phi(v)] + \phi^{-1}[\phi(tu) + \phi(tv)],$$

for all t, u, v > 0.

We shall prove that for every $k \in \mathbb{N}$,

(5)
$$\phi^{-1}[\phi(ku) + \phi(kv)] = k\phi^{-1}[\phi(u) + \phi(v)], \quad u, v > 0.$$

This relation is obvious for k=1. Suppose it is true for a $k\in {\bf N}.$ Then, taking t=k in (4) gives

$$\begin{split} \phi^{-1}[\phi((k+1)u) + \phi((k+1)v)] &= \phi^{-1}[\phi(u+ku) + \phi(v+kv)] \\ &= \phi^{-1}[\phi(u) + \phi(v)] + \phi^{-1}[\phi(ku) + \phi(kv)] \\ &= (k+1)\phi^{-1}[\phi(u) + \phi(v)]. \end{split}$$

and, by induction, (5) holds true for all $k \in \mathbb{N}$ and u, v > 0.

Taking the value ϕ of both sides, and then replacing u by $\phi^{-1}(u)$, and v by $\phi^{-1}(v)$, one gets

$$\phi[k\phi^{-1}(u)] + \phi[k\phi^{-1}(v)] = \phi[k\phi^{-1}(u+v)], \quad u, v > 0; k \in \mathbb{N},$$

which shows that for every $k \in \mathbb{N}$ the function $\phi \circ (k\phi^{-1})$ is additive, and consequently, linear. In particular, for k=2, and k=3 there are $\gamma>0$, $\gamma\neq 1$, and $\delta>0$, $\delta\neq 1$, such that

$$\phi[2\phi^{-1}(u)] = \gamma u$$
, $\phi[3\phi^{-1}(u)] = \delta u$, $u > 0$.

It follows that ϕ satisfies the simultaneous system of the functional equations

$$\phi(2u) = \gamma \phi(u), \quad \phi(3u) = \delta \phi(u), \quad u > 0.$$

Since $\log 3/\log 2$ is irrational, the continuity of ϕ at least at one point implies that $\phi(u) = \phi(1)u^p$, u > 0, for some $p \in \mathbb{R}$ (cf. [1]).

Similarly, the function ϕ^{-1} satisfies the simultaneous system of functional equations

$$\phi^{-1}(\gamma u) = 2\phi^{-1}(u), \quad \phi^{-1}(\delta u) = 3\phi^{-1}(u), \quad u > 0.$$

Again, since $\log 3/\log 2$ is irrational, the continuity of ϕ^{-1} at least at one point implies that, up to a factor, ϕ is a power function (cf. [1]). This completes the proof.

Remark 4. Replacing u by $k^{-1}u$, and v by $k^{-1}v$ in (5) gives

(6)
$$\phi^{-1}[\phi(k^{-1}u) + \phi(k^{-1}v)] = k^{-1}\phi^{-1}[\phi(u) + \phi(v)], \quad u, v > 0.$$

Now from (5) and (6) we obtain

$$\phi^{-1}[\phi(k^{-1}nu)+\phi(k^{-1}nv)]=k^{-1}n\phi^{-1}[\phi(u)+\phi(v)], \quad u,v>0; \ k,n\in \mathbb{N},$$
 which means that

$$\phi^{-1}[\phi(ru) + \phi(rv)] = r\phi^{-1}[\phi(u) + \phi(v)], \quad u, v > 0; \quad r \in \mathbf{O}_{+},$$

where \mathbf{Q}_+ denotes the set of all positive rational numbers. Thus the function of two variables $F(u,v) := \phi^{-1}[\phi(u) + \phi(v)]$ is rationally positively homogeneous without any regularity assumptions.

A result for a measure space with at least ons set of finite positive measure

In this section we assume that the function ϕ satisfies some asymptotic conditions.

THEOREM 3. Let (Ω, Σ, μ) be a measure space with a set $A \in \Sigma$ such that $0 \in (0, \infty) \mapsto (0, \infty)$ is bijective and $(\mu, A) \in \infty$, and $\mu(A) \neq 1$. Suppose that $\phi : (0, \infty) \mapsto (0, \infty)$ is bijective and there exists $a \neq 0$. $A \in \mathbb{R}$, $a \neq 0$, such that one of the limits

$$\lim_{u\to 0+} \frac{\phi(u)}{u^p}$$
, $\lim_{u\to \infty} \frac{\phi(u)}{u^p}$,

exists and is a positive real number. If

$$p_{\phi}(x + tx) = p_{\phi}(x) + p_{\phi}(tx), \quad x \in S_{+}(\Omega, \Sigma, \mu), t > 0,$$

then $\phi(t) = \phi(1)t^p$, t > 0.

Proof. Put $a := \mu(A)$. Setting $x := s\chi_A \in S_+(\Omega, \Sigma, \mu)$ for s > 0, gives

$$p_{\perp}[x + (ts^{-1})x] = p_{\perp}(x) + p_{\perp}(ts^{-1}x), \quad s, t > 0,$$

which, by Remark 1, can be written in the form

$$\phi^{-1}[a\phi(s+t)] = \phi^{-1}[a\phi(s)] + \phi^{-1}[a\phi(t)], \quad s, t > 0,$$

Thus, the function $\phi^{-1} \circ (a\phi)$, being additive and positive, is linear. Consequently, there is an $\alpha > 0$, such that

$$\phi(\alpha u) = a\phi(u), \quad u > 0.$$

As $a \neq 1$, we also have $\alpha \neq 1$. Write this equation in the form

(7)
$$\frac{\phi(\alpha u)}{(\alpha u)^p} = \frac{a}{\alpha^p} \frac{\phi(u)}{u^p}, \quad u > 0.$$

Assume, for instance, that the limit

$$c := \lim_{u \to 0+} \frac{\phi(u)}{u^p}$$

exists and c > 0. Letting u > 0 tend to 0 in (7) implies that $a = \alpha^p$, and consequently, from (7) we have

$$\frac{\phi(\alpha u)}{(\alpha u)^p} = \frac{\phi(u)}{u^p}, \quad u > 0.$$

Hence, for $\gamma:(0,\infty)\mapsto(0,\infty)$, defined by the formula

$$\gamma(u) = \frac{\phi(u)}{u^n}, \quad u > 0,$$

we get the functional equation

(8)
$$\gamma(\alpha u) = \gamma(u), \quad u > 0.$$

and

(9)
$$\lim_{u\to 0+} \gamma(u) = c.$$

Since $\gamma(\alpha^{-1}u)=\gamma(u), u>0$, we can assume, without any loss of generality that $\alpha\in(0,1)$. From (8) we have

$$\gamma(u) = \gamma(\alpha^n u), \quad u > 0, \ n \in \mathbb{N}.$$

Hence, letting $n \to \infty$, by (9) we get $\gamma(u) = c$ for all u > 0, and by the definition of γ , $\phi(u) = cu^p$, for all u > 0.

In the remaining case the proof is similar.

References

- J. Matkowski, Cauchy functional equation on restricted domain and commuting functions, Iteration Theory and its Functional Equations, Proc., Schloss Hofen 1984, Lecture Notes in Math. 1163, Springer Verlag (1985), 101-106.
- [2] J. Matkowski, On a characterization of L^p-norm, Ann. Polon. Math. 50(1989), 137-144.
- [3] J. Matkowski, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675.

- [4] J. Matkowski, On a-Wright convexity and the converse of Minkowski's inequality, Aequationes Math. 43 (1992), 106-112.
- W. Wnuk, Orlicz spaces cannot be normed analogously to L^p-spaces, Indagationes Math. 46 (1984), 357-359.
- [6] A. C. Zaanen, Some remarks about the definition of an Orlicz space, Lecture Notes 945 (1982), 263-268.

Janusz Matkowski
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY

Willowa 2 43-309 BIELSKO-BIAŁA, POLAND Jūra Rātz

INSTITUTE OF MATHEMATICS UNIVERSITY OF BERN Sidlerstrasse 5 CH-3012 BERN. SWITZERLAND

Received July 5, 1995.