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BANACH TYPE FIXED POINT THEOREMS ON PRODUCT
OF SPACES

JANUSZ MATKOWSKIAND SHYAM LAL SINGH

(Received 26 June 1996)

‘The main purpose of this paper is to introduce Banach operators on a finite
product of metric spaces and obtain fixed point theorems for such
operators.

1. Introduction

Let (¥, d) be a metric space. A map T': ¥ — Y is said to be a Banach operator
if there exists a nonnegative number ¢ < 1 such that d(T 2x, Tx) < g d(Tx, x) for all x
in Y. (cf. [1], [11], [13]). T is called Banach contraction (or simply a contraction in
this paper) if there exists a nonnegative number g < 1 such that d(Tx, Ty) < g d(x, y)
for all x,y € ¥, and if g=1 then T is nonexpansive. Evidently a contraction. is a
Banach operator. A Banach operator T is more general than a map 7:Y =Y
satisfying

(x, Ty) + d(y.
d(Tx, Ty) < qmax{d(x,y),d(x, Tx), diy, Ty), 45D ;d Tx)} (L1

for all x, y € ¥ and some nonnegative g < 1, (cf. [6], [7]). (The condition (1.1) is (21°)
in Rhoades [12]). Indeed, a Banach operator has many peculiar properties. A Banach
operator need not be continuous and it may have more than one fixed point. For
example, Tx=0 for 0Sx< 1/2 and Tx=4/5 for 1/2<x<1. Evidently T is not a
contraction but a discontinuous Banach operator with fixed points 0 and 4/5. A
Banach operator may be even nonexpansive. For example, if 7 is the identity map on
Y then it is a Banach operator and nonexpansive both. A discontinuous Banach
operator need not have a fixed point. For further analysis and applications of Banach
operators on various settings, one may refer to [1]-[3], [51-[7], [11], [13], [15, p.
144] and [16]. In fact, the concept of a Banach operator is a variant of a condition
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essentially introduced by Cheney and Goldstein [3], and subsequently used by Cain,
Jr. and Nashed [2], Taylor [16] and others.

THEOREM | A continuous Banach operator T on a complete metric space (Y, d)
has a fixed point.

For its proof (indeed on more general settings) one may refer to Hicks and
Rhoades [7] and Naimpally et al. [11]. (See also Corollary.)

Matkowski [9]-[10] (sce also Kuczma et al. [8], and [14]) extended the concept
of Banach contraction to a system of equations on a finite product of metric spaces
and obtained a fixed point theorem for such a system of operators (cf. Theorem 2).
The intent of this paper is to introduce Banach operators for a system of equations on
a product of metric spaces and obtain some fixed point theorems for such operators.

2. Preliminaries

In all that follows, we generally follow the notations of Matkowski [9]-[10]
(see also [8] and [14]).

Let ay be nonnegative numbers, i, k= 1, -, n, and cip’ square matrices defined

in the following recursive manner:

aj for i#k

= . ik=1,2,m @n
l-ay for i=k
oo Mg+l for ivk
ol o ) 22
) OO ;
Mg -cliiclln  for i=k
Am=1=1,1=0,1, -, n-2.1fn =1, we define c}} = ayy.
In [10] it is shown that the system of inequalities
n
Y, axn<rii=1,2,n,
has a solution r; >0, i=1, 2, -, n, if and only if,
>0, izl n-t,t=0, - lin22. @3
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Indeed, there exists a positive number & < 1 such that

n

Y axncshr

k=1

@4

for some positive numbers ry, r3, -+, ry, [10] (sec also 8], [14]). Such an k may be
found by

.
h=max| ;' ¥ awre |- @s3)
i

k=1
Let (X;, dj), i= 1,2, -, n, be metric spaces. Put
X=X X X X e X Xy
Thus, in all that follows, x € X will mean x = (¥, -, %n).
Let us quote

THEOREM 2 ([9]-{10]) Let X;i=1
X=X i -, n, be such that

n, be complete metric spaces and

n
di(Tix Ti) S Y, ady (o e i

k=1

-, @6)

for every xy, yx € Xp, k=1, -+, n, where aj;, are nonnegative numbers such that the
matrices defined in (2.1) and (2.2) satisfy the condition (2.3). Then the system of
equations

@n

has exactly one solution p:=(pi,~.pn)€X. For an arbitrarily fixed

Tix=x;,

070 o, : e
x =(xy, - Xn) € X, the sequence of successive approximations

1,n m=0,1,-, 2.8

A =T

converges and

9)

pi= lim x:". i
meye
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System of maps (7y, -, T,) on X with values in metric spaces X;, i G
satisfying (2.6) may be called system of contractions on a product of metric spaces
(or simply contraction on product of spaces), wherein (2.1)~(2.3) hold.

3. Banach operators on product spaces

LetT;: X - X,

-~ n. Then T'= (T}, -, Ty) satisfying

5
d; (T{Tyx, Tox, =, Ty), To) < Y, ayedy (Tixs 3,
k=1

S 3.1

for all x € X, will be called a system of Banach operators on product of spaces (or
simply Banach operators on product of spaces), if ay are nonnegative numbers such
that the matrices defined in (2.1)~(2.2) have the properties (2.3). Such operators are
natural generalization of contractions on product spaces (see Proposition below), and
have porperties akin o its elder cousin **Banach operator on metric space”’. (See also
Examples 1-2 below).

Consider the following condition for T;: X — X;, i =
more general than (2.6) :

» - n, which is much

i (Tix, T;y) < 3.2)

n

max{ ¥, ai dy (%, Y, b max { d; (xi, T), d; 0, T y),

di (i, Ty y+d; (y,»nx)}
2
=

for every x,y € X, i=1,2,
b <1and (22)~(2.3) hold.

-, n, where b and aj; are nonnegative numbers such that

We remark that (3.2) with b =0 is (2.6), and that Theorem 2 with (2.6) replaced
by (3.2) remains true (see [14]). The single-valued version of the main result of
Czerwik [4] is a special case of Theorem 2 with (2.6) replaced by (3.2). In particular,
single-valued version of the condition involving a system of transformations for the
main theorem[4] is included in (3.2).

PROPOSITION. The following implications are true:
(a) (2.6) implies (3.2) and (2.6) implies (3.1);
(b) (3.2) implies (3.1).

PROOF. (a): It follows from the preceding remark and (b).
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() Let x,ye X, and y=Tx, ie., (1, )= (Tix -~ Tpx). In particular
k= Tix. Then setting y = Tx in (3.2) yields (3.1).

4. Main results

THEOREM 3 Let (X d;),i=1,--,n, be complete metric spaces and
T;:X X, i=1,,n, be a system of Banach operators on X, ie. (3.1) and
(.1)~(2.3) hold. If Ty, -+, T,, are continuous, then the system of equations (2.7) has a
solution p=(py, -, pu)s pi € Xiy i =1, n. Further, there exists a point x° in X such
that the sequence of successive approximations (2.8) converges and (2.9) holds.

PROOF. Let x°c X. Construct a sequence {x]'}, i=1,,n,m=0,1, by
A =74 We may assume (without any loss of generality [10]) that
A D S rpi=1, o, and £ 2o, =1, -, n, (since otherwise 4" = Ty, and

the theorem is proved). From (3.1),

1), Ta) <

6 xf) =i (T Tahy = s (T (10, T2, -,

n n n

0 0 1
Y awdy (Tex %) = 3, aixdy X< > axncs<hr;.
k=1 k=1 k=1

Similarly, d; (x5, ) <k (h r) =k r;. Inductively, d; (™", &) <A™ r; . This implies
that {x{"} is a Cauchy sequence which converges to some point p; € X, (i = 1, =, n).
Using the continuity of T;, we have that T; (py, -, p) =pjy i = 1, -+, n. This completes
the proof.

THEOREM 4 Theorem 3 with the matrix (ay) symmetrical (which means,
ag=ay, i,k=1,-,n) is equivalent to Theorem | with Y=X, T=(Ty, -, T,), and
d: X% X — R, (nonnegative reals) defined by

"
deey)= X, ridi (v x=(n %) y=01 Y € X.
i=1
In particular, (3.1) reduces to a Banach operator (on X) whenever (ay) is a
symmetrical matrix.

PROOF. The metric space (X,d) is complete. Define a map T:X — X by
Tx=(Tyx, -, T,x). We shall show that T is a Banach operator on ( X, d). Note that
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Th=T@)=T@w, Ty =

(Ty (Tyx, =, Tpx), To (Tix, -+, Ty o=, Ty (T1, -+, Tp).
Since Ty, i= 1, -, n, satisfy (3.1), we have for any x € X,

1

AT T =Y, rid; (T; (Tix, Tox, - Tpo), Tx)
1

n

o n
<Y Y and M= X | T aiers |de (Tex, 5 -

k=1{i=1

i=1 k=1

By the symmetry of (a;¢) and (2.4),
n

"
> awri= Y, agriShn.

i=1 i=1
Hence
"
A% TS Y, (hr) dy (Tyx, x) = h d(Tx, ) .
k=1

‘This completes the proof since 0 <h <1 .

COROLLARY. Theorem 1.

PROOF. Take (Y,d)=(X;d), T=Tyi=1,--,n, and n=1 with aj;=q in
Theorem 3.

In the following examples, conditions of Theorem 2 are not satisfied but

Theorem 3 s applicable.
EXAMPLE | Let X; = X, = [0, 1] be metric spaces with usual metric, X = X; X X3

and
Xi 3
3 for xe X vith xj=x=l,

To:=Ti(xnx) =
for x=(1,1%i=12.

ol
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It can be seen that T := (T}, T) is a Banach operator, i.e., it satisfies (3.1) for n=2.
Note that p = (0, 0) s the fixed point of T. Evidently, T does not satisfy (2.6).

EXAMPLE 2 Let X1, X; and X be as in the above example, and

T;:X - X, i=1,2, besuch that
X1
T meXx#l
Tix=
1
g @meXx=l
1
0, xmeX, 0sm<y
Tyx=

2 1}
2 L
3 x € Xy, 25;@-1.

Then T':=(Ty, T2) satisfies (3.1) but not (2.6). Note that p= (0, 1) and (0,2/3) are
fixed points of 7.
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