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On a class of composite functional equations in a single variable

P. KAHLIG, A. MATKOWSKA AND J. MATKOWSKI

Stmmary. We prove a general result on continuous functions of the type /: (0, %) —(0, o) which
satisfy the functional equation

S = (f) s
where p is an arbitrary fixed real number. Applying this result we determine all continuous solutions

/210, ) [0, o) for p >0, as well as all the continuous solutions /: R~ R for a positive integer p.
For p =1 this equation is relevant to a division model of population.

Introduction

A functional equation is of the composite type if an unknown function acts on
a combination of the variable and the function itself. To find the general solution
or the general continuous solution of such an equation is difficult mainly because of
its nonlinearity. There are some important examples of functional equations which
are of the form

SEBS(x)) =l £(x)), ()

where the functions « and f8 are given. This equation has an interesting property.
Namely, the problem to find all bijective solutions / leads to the linear iterative
functional equation

Px) = px)d(x). & =

which has a well known theory (cf. Kuczma [4], Chapter II, also Kuczma,
Choczewski, Ger [5]). However, if f is not bijective, the problem to determine all
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continuous solutions is nontrivial. A good example is, for instance, the following
functional equation related to a division model of population (cf. Dhombres [2],
p. 6.1):

fOf(x) = (f(x0)*

In this paper we deal with the composite functional equation (x) where « and f
are power functions of the form

a() =t2<Y, B =17,

for a peR, p#0. A main result of this paper, Theorem 1, gives the general
continuous solution defined on the open interval (0, o) for p # —2. In section 3,
applying Theorem 1, we prove Theorem 2 which describes all continuous solutions
defined on the closed interval [0, %) for p >0. In the case p =1 Theorem 2
coincides with a result presented by Dhombres in [2], p. 6.1. As a corollary we
obtain all nonnegative continuous solutions defined on R. In section 3, assuming
that p is a positive integer, we determine the general continuous solution of the type
f: R—R. We also show that there are a lot of discontinuous solutions. In particu-
lar, for p = 1, each rational homogeneous function f: [0, o) —[0, o) with rational
values satisfies this functional equation.

. Continuous solutions defined on (0, x0)

A Dbasic result of this paper reads as follows.

THEOREM 1. Let p e R, p #0, be fixed.

1°. If =2#p # —1 then a continuous function f: (0, 30) — (0, ) satisfies the
Sfunctional equation

SOLEN) = (ST x>0, W

if. and only if, there exist a,b [0, +®), a <b, and a #b if a =0 or b = w0, such
that

xla (0<x<a),
flx)=41 (a<x<b),
x[b (x=b).



262 P. KAHLIG, A. MATKOWSKA AND J. MATKOWSKI AEQ. MATH

2°. If p = —2 then every function described in part 1° is a solution of equation (1).
Moreover, for every continuous function fy:[1, ) —[1, ) such that f;(1) =1,
and

LX)

x

X

is increasing on [1, %),

there exists a unique continuous solution f of equation (1) such that f(x) = f,(x) for
all x > 1. Furthermore, the function f is an increasing homeomorphic mapping of
(0, ) onto itself.

3% If p = —1 then a continuous function f: (0, 20) — (0, ) satisfies (1) if, and
only if, there are a,b €[0, ], a <b, and a #b if a =0 or b = w0; and continuous
Sfunctions f,: (0, a] = (0, ), fy: [b, 00) = (0, ®0) satisfying the conditions

sf,,(x)sf. x€(0,d: ig/[,(x)sf x €[b, ©);
a b a

S

lim £,() =1= lim f,()
such that

fux) 0<x<a
S =11 a<x<b.
S(x) x>b

Proof. First we prove 1° and 2°, i.e. we assume that p # —1.
Define the functions M, D: (0, «0) —(0, ) by

M(x)=x{f(x)]”. D(x)- ﬂ\—x’ x>0. ®)
We can write equation (1) in the form
D(M(x)) =D(x),  x>0. 3)

If M(x,) = M(x,) for some x,, x, >0, then, by (3), we get D(x,) = D(x,), i.e.

S _f(xa)

X A
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or, equivalently,

[l 6l fea)l

Pl Ao
Since M(x,) =x,[f(x,)]? = %[ f(x,)]? = M(x,), it follows that x?*' =x2*'. Now
the assumption p # —1 implies that x, = x,. Thus M is one-to-one and, conse-
quently, strictly monotonic.

Suppose first that M is strictly increasing. Put

Fix(M) :={x > 0: M(x) =x},
and note that

Fix(M) = {x > 0: f(x) =1}.

‘We shall prove that Fix(M) is a nonempty subinterval of (0, c0). For contradiction,
suppose that Fix(M) = . The continuity of M implies that either

M(x) <x, x>0,
or
M >x, x>0
In the first case, by the definition of M, we would have

for p >0: S <1, x>0
(4)
forp<0:  flx)>1, x>0.

Since M and D are continuous, and M is strictly increasing, equation (3) implies
that

D((0, x)) = D((M(1), 1]).

(Of course, instead of 1 we could take an arbitrary point x,). It follows that the
numbers

c:=inf D((0, 0)), C:=sup D((0, )),
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are positive and finite. Hence ¢ < D(x) < C for all x >0, i.e.

e (%) <iCx; x>0,
which contradicts (4). In the case M(x) > x for all x > 0 the argument is analogous.
Thus Fix(M) # &.

Now we show that Fix(M) is an interval. For a proof by contradiction suppose
that this is false. Then there would exist an interval [c,d], ¢ <d, such that
¢, d eFix(M), and (c¢,d) nFix(M) = . Consequently, either M(x) <x for all
x €(c,d), or M(x) > x for all x €(c, d). In the first case we would have

lim M"(x) =c,  xele,d),

where M" stands for the n-th iterate of the function M. From equation (3), by
induction, we get

D(x) =DM"(x)), n=0,1,2,...;x€(0, ),

n=—1,-2,...;xeM™((0, ). )
Therefore the continuity of D implies
D(x) = "1121( D(M"(x)) = D(c), x€le,d).
Hence, again by the continuity of D, we get D(c) = D(d), i.e.
flod=f(d)e.
On the other hand we have M(c) = ¢ and M(d) = d, which means that
f=1, fld=1
The last two relations imply that ¢ =d, which is the desired contradiction. If

M(x) > x for all x €(c, d) we can argue in the same way.
Put

a:=inf Fix(M), b :=sup Fix(M).
According to what we have proved,

0<a<+co, 0<b<+o0.
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Since M is continuous we have

Fix(M) =[a, b] 1 (0, + ), 0<a<b<+w.
Hence,

fx) =1, xela,b]n(0, +o).

Now we shall consider the following cases.

Casel. a=0and b= +o0.
Then (6) implies that

=1, x>0.

Case 2. a=0and b < +o0.
In view of (6)

fx)=1, 0<x<b.

265

(6)

Moreover, we have either M(x) <x for all x >b, or M(x)>x for all x >b.

Suppose first that M(x) < x for all x > b. Then, for a fixed x > b,
,}Lnl M"(x) =b.
Hence, by (5) and the continuity of D,
D(x) = ,,ltnf D(M"(x)) = D(b), x>b.
If M(x) > x for all x > b, then
,’lAn‘f M"(x)=b, x>b,
and, for the same reason,
D(x) = lim D(M~"(x)) = D), x> b.
Therefore in both cases

f)=b"B)x=b""x, x>b.
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Thus we have proved that

1 0<x<b
(x) = :
&) x/b x>b
In the same way we obtain the form of the solution in the remaining two
cases:

CASE 3. @ >0 and b = +c0. Then

fe) = xla 0O<x<a

1 x>a’
CaseE 4. 0<a <b < +0o0. Then

xfla 0<x<a.
f)=<1 a<x<b. (W]
x/b x>b

It is easy to verify that the functions given by the above formulas satisfy
equation (1). Note also that, with obvious conventions, the formula (7) describes
the general continuous solution of equation (1) in the considered general case when
M is increasing.

Now suppose that M is strictly decreasing. Then the function x —[ f(x)]? is also
strictly decreasing on [0, o).

Hence for p >0 the function f is strictly decreasing. This is a contradiction
because the function /= M on the left-hand side of equation (1) is strictly increasing
and on the right-hand side, x —[f(x)]”~", is decreasing on [0, ).

For p <0 the function f is strictly increasing. Let us consider two subcases:
pe(—1,00and p < —1.

If —1<p <0 then fo M is strictly decreasing and the function (0, o) 3
x —[f(x)]7*" is increasing, which is a contradiction.

Now suppose that p < —1. For convenience put 7+
equation (1) can be written in the form

—(p +1). Then r >0, and

x 1
oo *>® 4
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Since M is decreasing, and

%
Mx) =—"r, x>0,
o=
the function f must be an increasing homeomorphic map of (0, ) onto itself.
Hence, putting ¢ :=/~", one can write equation (8) in the equivalent form

o _

X

Suppose that p # —2. Then r >0 and r # 1. Setting (x) :==x ~'¢(x), x >0, we
can write equation (9) in the form y(x) =y(x "), x > 0. Iterating this functional
equation, and making use of the continuity of y at the point 1, it is easy to see that
9(x) =7(1) for all x>0. Hence ¢(x) =a(1)x, and consequently, f(x)=/(1)x,
x > 0. This completes the proof of 1°.

Now suppose that p = —2. Then r = 1, and equation (9) is of the form

() =x*p(x7"), x>0
Take an arbitrary continuous function f;:[1, %) —[1, o) such that f,(1) = 1, and

L)

x ——— is increasing on [0, ).
x

Of course f, is strictly increasing and £, ([1, o)) = [1, o). It follows that ¢,
strictly increasing, continuous, ¢,([1, %)) =[1, ), and the function

x -

¢.ix) is decreasing on [0, o). (10)

Define ¢,:=(0, 1] —(0, ) by
Po(x)=x¢;(x7"),  xe(0,1].
Of course ¢, is continuous, ¢4(1) = ¢,(1), and ¢: (0, 20) = (0, ) defined by

$o(x),  xe(0, 1)

)= {¢\(X), x €[1, )
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satisfies equation (9). By the definitions of ¢, ¢, and property (10), we have

Sr(x~

x

lim ¢(x) = lim ¢o(x) = lim x
x=0+ x=0+ X0+

Take arbitrary x,y €(0, 1), x <y. Then x~' >y ~', and by (10) we have

Consequently,

-1
Po(x) = xw

Thus the function ¢ is an increasing homeomorphism of (0, ). The function
f+=¢"is a solution of equation (1) and |, .., = f;. This completes the proof of 2°.
Now we prove part 3°. Setting p = —1 in (1) gives

x
f<m>:l' x>0. (1n

Put
aumf{m \>0} -—sup{fA :x>0}.

Since f is continuous and positive, the range of the function x —x/f(x) is a
nonempty interval I with the endpoints @ and b which, of course, satisfy the
conditions @, b €[0, ], a<b, and a#b if a=0 or b=o0. By (11) and the
continuity of f we have f(x) =1 for all x &[a, 5] (0, ). Denote by £, and f,,
respectively, the restrictions of the function f to the intervals (0, a] and [b, ). By
the definition of ¢ and » we have

<b,  xe(0a; as<—

S <b, x €[b, 0);

Jroma
T
and. by the continuity of £,

lim /,() =1= lim /().
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Take now arbitrary a, b €[0, ], such that a <b, and a #bif a =0 or b = o0,
and two arbitrary continuous functions f,: (0, a] = R, f: [b, %) — R satisfying the
above conditions. An easy verification shows that the function f (0. %) — (0, %)
such that fo, g = /o flib.y =f5- fliaey = 1. is a continuous solution of equation (11).
This completes the proof.

REMARK 1. The above result gives the general continuous solution for all
p # —2 such that p # 0. To explain the assumption p # 0 let us note that for p =0
equation (1) becomes the identity /= /. Thus every function f: (0, ) — (0, =) is a
solution.

REMARK 2. The graphs of the general continuous solutions of equation (1)
for p e R\{0, —2}, and p = —1, are given by Figures 1 and 2, respectively. Note
that if @ = b then, in both cases, the solution is a linear function f(x) = f(1)x, x > 0.

REMARK 3. Suppose that p = —1. Then f: (0, 20) — (0, 20) is a (not necessar-
ily continuous) solution of equation (1) if, and only if, there exists a nonempty set
A =R such that f(x) =1 for all x € 4, and x/f(x) € 4 for all x € (0, ®0)\4.

2. Continuous solutions defined on [0, 5c), and continuous nonnegative solutions
defined on R

‘We begin this section with a generalization of a result presented by Dhombres
in [2], p. 6.1, where the case p = 1 was considered.

& b

Figure 1. peR\{0. —2}.
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Figure 2. p= —1.

THEOREM 2. Let p >0 be fixed. Then a continuous function f:[0, o0) —[0, o)
satisfies the functional equation

SOLAP) = (f)*!, x 20, (12)

if, and only if, either f =0 or there exist a, b€[0, + ), a <b,and a #b if a =0 or
b = o, such that

xla 0<x<a
f)=<1 a<x<b.
x/b x>b

Proof. Of course the function f = 0 satisfies equation (12). Suppose that f # 0 is
a solution of (12), and put

A={x2=0:f(x) =0}.
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First we prove the following
CLAIM. Either A = & or A is a closed interval.

For contradiction, suppose that there exist ¢, d € 4, such that ¢ <d and f(x) >0
for all x & (c, d). Define M: [0, o) = [0, c0), and D: (0, oc) —[0, o0) by the formulas

ME)=:f@F,  x20;

and note that from equation (12) we obtain

D(M(x)) = D(x), x>0,
Now, by the same argument as in the proof of Theorem 1, we can show that M is
one-to-one on the interval (¢, d). This is a contradiction because M(c) =0 = M(d).
Thus the claim is proved.

If A = {0} the result is an easy consequence of Theorem 1.
Suppose that there exists a z € 4 such that z > 0. Then

£O) =fE/@P) =[f@P*' =0,

which proves that also 0 € 4. According to our Claim the set 4 is a closed interval.
‘We are going to show that 4 =[0, «). To obtain a contradiction suppose that

supA4 < w.

Consequently, 4 = [0, z,]. Since p > 0, by the continuity of M, there exists a point
¢ >z, such that

M(x) <x, xe(0,c).
Take an arbitrary x € (2o, ¢]. If M(x) =0 then f(x) = 0. If M(x) # 0 then there exists
neN such that M*(x) € (0, z,], and, consequently,

D(x) = D(M"(x)) =0.

The definition of D implies that f(x) = 0. Thus we have shown that [0, c] = 4. This
contradicts the definition of z, and proves that A = [0, o). Thus f = 0, and the proof
is completed.

REMARK 4. The assumption p > 0 in the proof of Theorem 2 plays an impor-
tant role. The problem to determine the continuous solutions f: [0, ©0) — [0, ) of
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equation (12) in the three remaining cases p € (—1,0), p = —1,and p e(—0, —1)
is open.

For arbitrary fixed a, b € R such that 0 <a <b < +o0 we define a function
fus: [0, 0) [0, 50) by the formula

xla 0<x<a
fas)=<1  a<x<b
x/b x>b

Now we shall prove

COROLLARY 1. Let p >0 be fixed. Then a continuous function f:R—[0, %)
satisfies the functional equation

S =/, xeR,

if, and only if, f has one of the following forms:
1°. there exist a,beR, —0 <a<0<b < + w0, such that

Xla x<a
FG)i=ig il a<x<b;
x/b xzb

2, f=0;
3°. there exist a,beR, 0<a <b < + o0, such that

0 x<0 _ [fas(=x) x<0,
{/Mm ST '{

JS(x)

x=0’ 0 x20’

4°. there exist a,b,c,deR, 0<a<b <+, 0<c<d< +w, such that

_feal=x) x<0
A {[a.h(x) x>0

Proof. This is a consequence of Theorem 2 and of the obvious fact that
f:R—[0, ) satisfies the considered equation iff the function g:R—[0, o),
g(x):=f(—x), x R, does.
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3. Continuous solutions defined on R for p € N

In this section we show that Theorem 2 can be applied to find all the continuous
solutions of the functional equation

SO = (S, xeR, (13)

where 7 is a fixed positive integer. It is convenient to consider separately the cases
when 7 is odd and even. The case when 7 is odd is more interesting (for n =1 we
get the functional equations mentioned in the Introduction), and a little more
difficult (for even n the function x{ f(x)]" is nonnegative for x >0 and nonpositive
for x <0, which simplifies the considerations). Therefore we give a detailed theory
of the continuous solutions f: R — R of equation (13) where n is a fixed odd positive
integer.
Let us make some obvious remarks.

REMARK 5. Let neN be fixed, and suppose that /:R—R is a solution of
equation (13). If # is odd then either f(0) =0, or f(0) = 1. If # is even then either
S(0)=0,7(0) =1, or f(0) = —1.

REMARK 6. Let n €N be fixed. If /: R— R is a solution of equation (13) and
there exists a point z, € R such that f(z,) =0, then f(0) =0.

REMARK 7. Let n € N be fixed. A function f: R — R satisfies (13) iff the function
g R—R defined by g(x):=f(—x), x €R, does. Moreover, if » is even, then f
satisfies (13) iff the function (—f) does.

Let us also make the following obvious

REMARK 8. If n € N is odd and f/: R—R is a nonpositive solution of equation
(13) then f=0.

We need the following

LEMMA 1. Let n € N be fixed. Suppose that f: R— R is a continuous solution of
equation (13) and there exists a point z #0 such that f(z) = 0.
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If z <0 then f(x) =0 for all x <0.
If 2> 0 then f(x) =0 for all x > 0.

Proof. Tn view of Remark 7, without any loss of generality, we may assume that
z>0. Put 4:={x >0: f(x) =0}. The same reasoning as in the proof of the Claim
shows that A is a closed interval. By Remark 6 we have f(0) = 0, and consequently,
OeA. Put

up A4,

and suppose that z, < o0. According to what we have already shown, f(x) = 0 for
all x €[0, z,]. Moreover, either

Sfx) >0, x>z,
or
flx) <0, x>z
In the first case, by the continuity of fand f(z,) = 0, there would exist an ¢ > 0 such

that 0 <x[ f(x)]" <z, for all x €[z, z, + ¢]. Hence, from equation (13), we would
have

(SO =fGLf)) =0, xelz, 2+

This contradicts the definition of z,, and shows that z, = 0.

Now consider the second case: f(x) <0 for all x > z,.

If n is even, then x[f(x)]” > 0 for all x > z,. The continuity of f and f(z,) =0,
imply that there exists an ¢ >0 such that 0 < x{f(x)]" <z, for all x €[z, z, + &,
and, by (13),

SN =fGLf)) =0,  xelz, 2+
This contradiction completes the proof for even n.

Let n be odd. Suppose first that there exists a z <0 such that f(z) = 0. In the
same way as in the previous case, we can show that f(x) =0 for all x € (x,, 0],

where

xor=inf{z: f(z) = 0} < 0.
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We are going to show that x, = —oo. For contradiction, suppose that x,> — o0
Then we have either f(x) <0 for all x < x,, or f(x) >0 for all x > x,. By Remark
8 the first possibility cannot happen. Suppose that f(x) > 0 for all x < x,. Then, in
view of Remark 7, the function g: R— R, given by g(x) :=f(—x), x € R, would be
a continuous solution of equation (13), such that g(x) = 0 for all x € [0, —x,], and
f(x) >0 for all x > —x,. This is impossible as we have already shown in the first
case. Thus x, = —c0, and, consequently,

f(x)=0, X <zo5 flx) <0, X > zy,

which contradicts Remark 8. Now suppose that f(x) # 0 for all x <0. Then, by the
continuity of £, either f(x) <0 for all x <0, or f(x) >0 for all x <0. By Remark
8 the first case cannot happen. In the second case the function g: [0, o) — [0, «0)
defined by

is a continuous solution of equation (12) where p =n. Since g(0) =0, and g is
positive on (0, 20), by Theorem 2 there is an @ >0 such that

g(x)=i, 0<x<a,
a
and, consequently,

—a<x<0.

Since f(x,) =0 and f(x) < 0 for all x > x,, the continuity of f implies that there is
an ¢ >0 such that

X)) e(—a,0)  for all x &(xg, X+ ).
Therefore, making use of the functional equation (13), we get

= @ = ()™, xe(xo, Xo+8),

S(x) =

X € (X, Xg+8).
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Now the continuity of fimplies that f(x,) = (—x,/a) is negative. This contradiction
completes the proof.

LEMMA 2. Let n =2k — 1, k € N, be fixed. Suppose that f> R — R is a continuous
solution of equation (13) such that

flx) <0, w0,
and
Sf(x) >0, x>0,
Then there exist a,b e (0, +x], a <b, and a #b if b = o0, such that

—fes(—X) x<0

4 :{ Jap®)  x20°

Proof. The continuity of /implies that /(0) = 0. Therefore, by Theorem 2, there
exist a,b (0, + 0], @ <b, and a # b if b = oo, such that

S =fop(®),  x20.
Since the function M(x) :=x[ f(x)]*~" is one-to-one and continuous on ( — o, 0], it
follows that M is strictly decreasing on (—o0,0] and M(0) =0. In particular
M(x) >0 for all x <0, and, by equation (13), we have

(feN* =fop(M(),  x <0. (14)
Take now arbitrary x <0. Note that, by the definition of f, ;. we have

M) =2 f0)* " ela,d) = (f)*=1 = flx)=-1,
so, by (13), f(—x) =1, and, consequently, x € (—b, —a]. Since M(—a) =a, the

monotonicity of M implies that for all x € (—a, 0) we have M(x) € (0, a). Now (14)
and the definition of f, , give

%, xe(—a,0),

(fap*=
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which means that f(x) =a~'x for all x €(—a,0). Assuming that b < %, in the
same way we prove that f(x) =b~'x for all x (—o0, —b). This completes the
proof.

Now we can prove the main result of this section.

THEOREM 3. Let k € N be fixed. A function f: R—R is a continuous solution of
the functional equation

fO)*,  xeR,

SOLA*Y

if, and only if, f has one of the following forms:
1°. there exist a,beR, —o0 <a <0<b < + o0, such that

xla x<a
Sx) =<1 a<x<b;
xlb x>b

3°. there exist a,beR, 0 <a <b < + 0, such that

0 x<0
Jap(®) x20°

(fur(—=x) x <0,

f(*):{ or f(X)={o x50

4°. there exist a,b,c,deR, 0<a <b < +00, 0<c<d< +w, such that

{fed(—¥) x <0,
s {f,_h(X) x=0

5°. there exist a,beR, 0 <a < b < + o0, such that

—fap(—%) x<0
Jar(®) x=0’

Jaup(®)  x<0
~fas(=%) x20°

f(Y):{ or f(XJ:{

Proof. Suppose first that f(x) #0 for all x € R. By Remark 8 the function /
must be positive everywhere. In particular f(0) = 1. By Theorem 2 there exists a
be(0, 0] such that f(x)=1 for all x €[0,b), and f(x) =b~'x for all x >b. In
the same way, making use of Remark 7, we show that there exists an a €[ —c0, 0)
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such that f(x) =1 for all x €(a, 0], and f(x) =a~'x for all x <a. This shows that
fis of the form 1°.

Suppose that there exists z € R, z # 0, such that f(z) = 0. If z < 0 then by Lemma
1 we have f(x) =0 for all x <0. By Remark 8 we have f(x) >0 for all x >0.
Therefore, applying Theorem 2, we get that either /=0 or there exist a,b R,
0<a <b <+, such that f(x) =, ,(x) for all x >0, i.e. f'is given by the first of
the formulas 3°. If z > 0, making use of Remark 7 and applying the same reasoning
as above, we show that either /=0, or fis given by the second formula in 3°.

Now suppose that f(z) = 0 iff z = 0. Then, in view of Remark 8, only one of the
following three cases can occur:

@) f(x)>0, xeR  x#0;

(i) f(x) <0, x<0, and f(x)>0, x>0;

(i)  f(x) >0, x<0, and f(x) <0, x>0,

In case (i), applying Theorem 2 and Remark 7, it is easy to see that f must be

of the form 4°.

In the case (ii), by Lemma 2, we get the first formula of 5°.

In the case (iii), by Remark 7 and Lemma 2, we get the second formula of 5°.
Since all the functions given in the formulas 1°-5° satisfy the considered

functional equation, the proof is completed.

In a similar way, applying Remarks 5, 6, 7, and Lemma 1, we can prove the
following:

THEOREM 4. Let k € N be fixed. A function f: R— R is a continuous solution of
the functional equation

SOLSGN?) =(f)**!,  xeR,

if, and only i, has one of the following forms:
o

2 rheze exist a,beR, —0 <a<0<b < +o0, such that

xla x<a
f) =41 a<x<b;
x/b x=b
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3°. there exist a,beR, 0 <a <b < + 0, such that

0 x<0

i {fa.,,m x>0’

4°. there exist a,b,c,deR, 0<a<b< +w, 0<c<d< +o0, such that

_[feal=0) x<0
iy {/u.»(X) x20

Sea(—x) x<0

o S ={—/a.,(x) x>0’

5°. x >f(—x), x € R, where [ is defined in 2°, 3°, or 4°;

6°. (—f) where f is defined in 2°, 3°, or 4°.

The proofs of Theorems 3 and 4 are based on Theorem 2.

Applying Theorem 1 one can get the following characterization of the sign

function.

COROLLARY 2. Let k €N be fixed. Suppose that f: R— R is bounded on (a, )
Jfor some a >0, continuous on (— 0, 0) U (0, ), left and right discontinuous at 0,

lim inf /() >0,
and there is an x <0 such that f(x) < 0. Then f is a solution of the functional equation
JESEI*) = (/) xeR

if, and only if,

-1 x<0
fx) = 0 x=0.
I x>0

Proof. Put g:=f|, .., and suppose that there is a point z > 0 such that g(z) =0.
Since g is continuous, and positive in a right vicinity of 0, we may assume that
g(x) >0 for all xe(0,z). Take an arbitrary sequence x,€(0,z) such that
lim, .. x, =z, and put

Ya=%[fx)*!,  neN.
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Then of course y, >0 for all neN, and lim,_, y, =0. From the functional
equation we have

Tim g(3,) = lim f5,LAGs)1*1) = lim (/(6,)* =0,

which is a contradiction. thus g(x) # 0 for all x >0 and, by the continuity of g, it
is positive on (0, ). It follows that

(g = (gx)*, x>0

As g is bounded and lim inf,_,. g(x) is positive, applying Theorem 1 we obtain
f(x) =g(x) =1 for all x>0.

By assumption, the function f has negative values for some x <0. We shall
show that f takes only negative values on (— 0, 0). Indeed, otherwise we could find
a z <0 such that f(z) =0, and a sequence x, <0 such that lim,_x, =z, and
f(x,) <0 for all n € N. Then

=iv: [ e %2> 0, neN.

Making use of what we have already shown,
D> = L N> =f(r) =1, neN.

It follows that f(x,) = —1 for all n € N, and consequently
1) = lim f(x,) = =1,

which is the desired contradiction. Thus we have proved that f(x) <0 for all x <0.
Hence

(fEN* =f(Lf)*~ ) =1 forall x <0,
and, consequently, f(x) = —1 for all x <0. Since fis left and right discontinuous at
0, the relation f(0) =0 follows from Remark 5. This completes the proof.
4. Discontinuous solutions

Denote by @ the set of rational numbers.
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PROPOSITION. Let peR, p#0, be fixed and suppose that a function
£:(0, ) = (0, ) is rationally homogeneous, i.e.

Srx) =rf(x) r,x>0,reqQ.

If the range of the function (0, ) 3 x —[ f(x)}? is contained in Q, then f is a solution
of equation (1).

The proof is obvious.

EXAMPLES. Let F: [0, ©0)>—[0, 20) be an arbitrary homogeneous function.
Then for two arbitrary additive functions «, §: R — R with rational values only (cf.
Kuczma [3], p. 120), the function f: [0, c0) = [0, o0) defined by

S =F(la)], [p)]),  x =0,

is rationally homogeneous. Taking here for instance

F(x,y)=x, or F(x,y)=y/x+ x,y20,
in view of the above proposition, we get discontinuous functions f which satisfy
equation (12) for every p > 0. Note that the graphs of these solutions are dense in

[0, )2
5. Final remarks

The functional equation (1) is a special case of

S f()) = A f ()P, (15)
where p, /> 0 are fixed constants. This equation for p =1 and u =2 comes up in
connection with some functional equations of several variables (cf. Aczél, Dhom-
bres [1], p. 321). Note that equation (15), with three parameters p, x, and 4, can be
written in an equivalent form in which only two parameters occur. In fact, we have

the following:

REMARK 9. Setting g(x) :=A"?f(x), and s:= ="'/, we can write equation (15) in
the form

g(s™'x[g(x))?) = (g(x))?*".
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Now it is easy to see that g =1 is a solution of this equation. Consequently, the
constant function f=4~'"7 is a solution of the functional equation (15). Moreover
we get the following

COROLLARY 3. Let peR, and p>0 be fixed numbers. Then a function
£:(0, 00) = (0, 00) is a solution of the functional equation

S f())) = u(fG)? (16)
if, and only if; the function p'"f is a solution of equation (1).

Applying this corollary and Theorem 1, we can find the continuous solutions of
equation (16).

REMARK 10. Let peR, p#0. Suppose that a continuous function
/:(0, 0) — (0, o0) satisfies the functional equation

ST X)) = (P!
with s >0, s # 1. Setting

L9
=L3,

M) =s"M/X)), x>0 D) x>0,

we can write this equation in the form
D(M(x)) =sD(x),  x>0.

A similar argument as in the proof of Theorem 1 shows that M is one-to-one and,
consequently, strictly monotonic. Since s # 1, and D >0, the function M is fixed
point free. Thus M is strictly increasing and, consequently, either M(x) < x for all
x>0, or M(x) > x for all x >0. Note also that, according to the definition of M,
either [f(x)]” <s, for all x >0, or [f(x)}* >s, for all x >0. However the form of
the general continuous solution for s # 1 is an open question.

REMARK 11. Let ¢ >0. Note that f is a solution of (16) if, and only if, the
function x —f{(cx) is a solution. All functional equations considered here have this
property. Moreover, if the domain of an unknown function f'is R, this is also true
for ¢ <0.
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