### Peter Kahlig, Janusz Matkowski

# ENVELOPES OF SPECIAL CLASS OF ONE-PARAMETER FAMILIES OF CURVES

#### Introduction

In our recent paper [6] concernig some relations between the logarithmic and arithmetic means we have obtained a family of solutions  $\phi_{\alpha}$  of a relevant one-parameter system of functional equations which are of the form

$$\phi_{\alpha}(x) = q\left(\frac{x}{x}\right) + q(\alpha), \quad x > 0,$$

where  $\alpha>0$  is the parameter, and g is a particular solution of the functional equation corresponding to the parameter  $\alpha=1$ . Since g completely describes the one-parameter family of solutions  $(\phi_a)_{>0}$ , one call g to be its g-enerator. Being interested in the mutual dependence of the position of graphs of the family  $\phi_{\alpha}$  on the parameter  $\alpha$ , it is natural to ask what is the envelope  $E_g$  of the family of curves

$$G(g) := \{ \operatorname{graph}(\phi_{\alpha}) : \alpha > 0 \}.$$

This question, in the context of the family  $\mathcal{G}(g)$ , appears to be interesting. There are some relationships between the envelope  $E_g$  of the logarithmic functions.

We also show that there are structural similarities between behaviour of the above mentioned class of curves  $\mathcal{G}(g)$  and its envelope  $E_g$ , and the classes of three families of curves being the graphs of the functions

$$\begin{split} \phi_{\alpha}(x) &= g(x - \alpha) + g(\alpha), & x, \alpha \in \mathbb{R}, \\ \phi_{\alpha}(x) &= g(x - \alpha)g(\alpha), & x, \alpha \in \mathbb{R}, \\ \phi_{\alpha}(x) &= g\left(\frac{x}{\alpha}\right)g(\alpha), & x > 0, \end{split}$$

and their envelopes, where g is appropriate defined. Some connections, respectively, with linear, exponential, and power functions, will be exhibited.

## Envelopes for families G(g) of logarithmic type

By R we denote the set of reals.

For an arbitrary function  $g:(0,\infty)\to\mathbb{R}$  define the one-parameter family of functions  $\phi_\alpha:(0,\infty)\to\mathbb{R}$  by

$$\phi_{\alpha}(x) := q(\frac{x}{\alpha}) + q(\alpha), \quad x, \alpha > 0,$$

of the generator g; by  $\mathcal{G}(g)$  denote the family of curves being the graphs of  $\phi_{\alpha}$ ,  $\alpha > 0$ , and by  $E_{\alpha}$ , the envelope of the family  $\mathcal{G}(g)$  (provided it exists).

We often identify a function and its graph. Therefore we write down the envelope  $E_g$  in the form  $y=E_g(x),\,x>0$ , when it is possible and convenient

Remark. 1.1. If  $g(x) = c \log x + g(1)$ , x > 0, where c and g(1) are arbitrary real constant, then  $\mathcal{G}(g) = \{g\}$  is a singleton, and  $E_g$ , the envelope of g, obviously, coincides with the graph of g.

It turns out that the converse implication holds true:

Proposition 1.1. Let  $g:(0,\infty)\to\mathbb{R}$  be an arbitrary function. Then  $\mathcal{G}(g)$  is a singleton if, and only if, the function g satisfies the functional equation

$$g(xy) + g(1) = g(x) + g(y),$$
  $x, y > 0.$ 

If moreover g is continuous at least at one point, then there exists a constant  $c \in \mathbb{R}$  such that  $g(x) = c \log x + g(1), x > 0$ .

Proof. The family G(q) is a singleton if, and only if,

$$g\left(\frac{x}{\alpha}\right) + g(\alpha) = g\left(\frac{x}{\beta}\right) + g(\beta)$$

for all  $x, \alpha, \beta > 0$ . Setting  $x = \beta$  gives

$$q(\beta/\alpha) + q(\alpha) = q(1) + q(\beta), \quad \alpha, \beta > 0.$$

Hence, for  $\psi : \mathbb{R}_+ \to \mathbb{R}$  defined by the formula

$$\psi(\alpha) := q(\alpha) - q(1), \quad \alpha > 0,$$

one gets  $\psi(1) = 0$  and

(1) 
$$\psi\left(\frac{\beta}{\alpha}\right) + \psi(\alpha) = \psi(\beta), \quad \alpha, \beta > 0.$$

Hence, setting  $\beta = 1$  in this equation we obtain

$$\psi\left(\frac{1}{\alpha}\right) = -\psi(\alpha), \quad \alpha > 0.$$

Now replacing  $\alpha$  by  $\alpha^{-1}$  in (1) gives

$$\psi(\alpha\beta) = \psi(\alpha) + \psi(\beta), \qquad \alpha, \beta > 0,$$

which means that

$$g(\alpha\beta) + g(1) = g(\alpha) + g(\beta), \quad \alpha, \beta > 0.$$

The converse implication is obvious. Since  $\psi$  is a solution of the logarithmic Cauchy functional equation (2), the remainig statement is a well known fact (cf. for instance Aczél [1], p. 41). This completes the proof.

Remark 1.2. Note that the continuity of g at least at one point can replaced by the measurability of g, or by the boundedness above (or below) in a neighbourhood of a point (cf. for instance Kuczma [4], p. 218).

The main result of this section reads as follows:

Theorem 1.1. Let  $g:(0,\infty)\to\mathbb{R}$  be a differentiable function. Then the graph of the function

(3) 
$$(0, \infty) \ni x \rightarrow 2g(\sqrt{x}),$$

is contained in the envelope of the family G(q). If the function

(4) 
$$(0, \infty) \ni x \rightarrow g'(x)x$$
 is one-to-one,

then the envelope  $E_q$  has the representation  $y = Eg(x) = 2g(\sqrt{x}), x > 0$ .

Proof. According to a classical method (cf. for instance Favard [2], Chapter III), to find the envelope of the family of curves  $\mathcal{G}(g)$  it is enough to eliminate the parameter  $\alpha$  from the system of equations

$$y=g(\alpha^{-1}x)+g(\alpha),\quad g'(\alpha^{-1}x)(-\alpha^{-2}x)+g'(\alpha)=0, \qquad x,\alpha>0, y\in\mathbb{R}.$$

The second equation can be written in the following equivalent form

$$g'(\alpha^{-1}x)(\alpha^{-1}x) = g'(\alpha)\alpha, \qquad x, \alpha > 0,$$

If the function  $(0,\infty)\ni x\to g'(x)x$  is one-to-one, it follows that  $\alpha^{-1}x=\alpha$ , and consequently,  $\alpha=\sqrt{x}$ , x>0. Setting  $\alpha=\sqrt{x}$  into the first of the equations we get the function

(5) 
$$y = 2g(\sqrt{x}), \quad x > 0.$$

the graph of which is the envelope of the considered family of curves.

If the function  $(0,\infty)\ni x\to g'(x)x$  is not one-to-one, then, obviously, every point of the graph of the function (3), is a point of the envelope. This completes the proof.

Remark 1.3. If  $g(x)=c\log x+g(1)$  x>0, then g'(x)x=c for all x>0, i.e. the function (4) is constant. In particular it is not one-to-one. But of course (cf. Remark 1),  $E_g$  even coincides with the graph of g.

Remark 1.4. Denote by  $\mathcal{F}((0, \infty), \mathbb{R})$  the set of all functions  $\psi : (0, \infty)$   $\rightarrow \mathbb{R}$ . For a given function  $F : \mathbb{R} \rightarrow \mathbb{R}$  define an operator  $T : \mathcal{F}((0, \infty), \mathbb{R}) \rightarrow$   $\mathcal{F}((0, \infty), \mathbb{R})$  by the formula  $T(\psi) := F \circ \psi$ . Let  $\mathcal{G}(g)$  and  $\mathcal{G}(h)$  be the suitable families of curves of continuous generators g and h. Note that  $T(\mathcal{G}(g)) \subset$   $\mathcal{G}(h)$  if, and only if, there exists a function  $\beta:(0,\infty)\to(0,\infty)$  such that F,g and h satisfy the functional equation

$$F(g(x/\alpha) + g(\alpha)) = h(x/\beta(\alpha)) + h(\beta(\alpha)), \quad x, \alpha > 0.$$

Assuming that  $g:(0,\infty)\to\mathbb{R}$  is bijective and  $\beta(\alpha)=\alpha$  for all  $\alpha>0$ , we shall prove that  $T\left(\mathcal{G}(g)\right)\subseteq\mathcal{G}(h)$  iff T is affine. In fact, as

$$F(g(x/\alpha) + g(\alpha)) = h(x/\alpha) + h(\alpha), \quad x, \alpha > 0,$$

setting  $x:=\alpha^2$  gives  $F\left(\,2g(\alpha)\,
ight)=2h(\alpha)$  for all  $\alpha>0.$  It follows that

$$F(x) = 2h \circ g^{-1}(x/2), \quad x \in \mathbb{R}.$$

Substituting this function into the previous relation we get

$$2h\circ g^{-1}\left(\frac{g(x/\alpha)+g(\alpha)}{2}\right)=h(x/\alpha)+h(\alpha), \qquad x,\alpha>0.$$

Replacing  $\alpha$  by y, and x by xy, gives

$$2h \circ g^{-1}\left(\frac{g(x) + g(y)}{2}\right) = h(x) + h(y), \quad x, y > 0.$$

Replacing here x by  $g^{-1}(x)$ , and y by  $g^{-1}(y)$ ,  $x, y \in \mathbb{R}$ , we obtain

$$h \circ g^{-1}\left(\frac{x+y}{2}\right) = \frac{h \circ g^{-1}(x) + h \circ g^{-1}(y)}{2}, \quad x, y \in \mathbb{I}$$

It follows that there are  $a,b\in\mathbb{R}$  such that  $h\circ g^{-1}(x)=ax+b$  for all  $x\in\mathbb{R}$  (cf. for instance Aczél [1], p. 43), and consequently

$$F(x) = 2h \circ g^{-1}(x/2) = 2(a(x/2) + b) = ax + 2b, \quad x \in \mathbb{R},$$

which was to be shown.

Remark 1.5. Note that an element  $\phi_{\alpha}$  of the family  $\mathcal{G}(g)$  coincides with the generator g if, and only if, there is an  $\alpha>0$  such that g satisfies the functional equation

$$g(x) = \phi_{\alpha}(x) = g(x/\alpha) + g(\alpha), \quad x > 0.$$

In particular, if the generator g is strictly increasing and g(1)=0, then  $\phi_1{=}\mathrm{g}.$ 

Remark 1.6. In general, no member of the family G(g) will coincide with the envelope  $E_g$ . If it is the case, then there exists an  $\alpha_0 > 0$  such that q satisfies the functional equation

$$2g(\sqrt{x})=g(x/\alpha_0)+g(\alpha_0), \qquad x>0.$$

We shall prove that if g is differentiable at the point  $x=\alpha_0$ , and satisfies this equation, then there is  $ac\in\mathbb{R}$  such that

(6) 
$$g(x) = c \log x + g(\alpha_0), \quad x > 0.$$

Replacing x by  $\alpha_0^2 x$  we get

$$2g(\alpha_0\sqrt{x}) = g(\alpha_0x) + g(\alpha_0), \quad x > 0.$$

Now it is easy to see that the function  $\phi:(0,\infty)\to\mathbb{R}$ ,

$$\phi(x) := g(\alpha_0 x) - g(\alpha_0), \quad x > 0.$$

satisfies the functional equation

$$2\phi(\sqrt{x}) = \phi(x), \quad x > 0.$$

and  $\phi$  is differentiable at the point x=1. According to Fubini's result [3] (cf. also [5], p.394), there exists a constant  $c\in\mathbb{R}$  such that

$$\phi(x) = c \log x, \quad x > 0.$$

Hence we get the formula (6).

Thus, under the weak and natural assumption of the differentiability of the function g, the envelope  $E_g$  is a member of the family  $\mathcal{G}(g)$  if, and only if, G(g) is a singleton with  $g = \log x$ .

Geometrical comments 1.1. Let  $g:(0,\infty)\to\mathbb{R}$  be a differentiable function, and suppose that the function  $x\to g'(x)x$  is one-to-one in  $\mathbb{R}_+$ . Then  $E_g$  coincides with the graph of the function  $x\to 2g(\sqrt{x})$ , so we can write  $E_g(x)=2g(\sqrt{x})$ , x>0. Moreover, for every fixed  $\alpha>0$ ,

$$y = g\left(\frac{x}{\alpha}\right) + g(\alpha), \qquad x > 0,$$

the curve  $\phi_{\alpha}\in\mathcal{G}(g)$ , touches the envelope  $E_g$  at the point ( $\alpha^2,2g(\alpha)$ ). At this point of contact of the curves  $\phi_{\alpha}$  and  $E_g$ , the common tangent has the slope

$$\phi'(\alpha^2) = E'_{\alpha}(\alpha^2) = g'(\alpha)/\alpha$$
.

Example 1. For the generator  $g(x)=x,\,x>0$ , we get the family  $\mathcal{G}(g)$  of functions  $\phi_{\alpha}$ ,

$$\phi_{\alpha}(x) = \frac{x}{\alpha} + \alpha, \quad x > 0.$$

Applying the above commentaries, we get the envelope  $E_g$ :

$$E_g(x) = 2\sqrt{x}, \qquad x > 0,$$

points of contact:  $(\alpha^2, 2\alpha)$ ; slope of common tangent:  $1/\alpha$ .

#### 2. Envelopes for families G(g) of affine type

Analogously as in the previous section, for an arbitrary generator func-

tion  $g:\mathbb{R}\to\mathbb{R}$  define the one-parameter family of functions  $\phi_\alpha:\mathbb{R}\to\mathbb{R}$  by

$$\phi_{\alpha}(x) := g(x - \alpha) + g(\alpha), \quad x, \alpha \in \mathbb{R},$$

and introduce the same notations: G(g) and  $E_g$ .

Remark 2.1. If  $g(x)=cx+g(0), x\in\mathbb{R}$ , where c and g(0) are arbitrary real constants, then  $\mathcal{G}(g)=\{g\}$  is a singleton, and  $E_g$ , the envelope of g, coincides with the graph of g.

In an analogous way as Proposition 1.1 we can prove:

Proposition 2.1. Let  $g:\mathbb{R}\to\mathbb{R}$  be an arbitrary function. Then  $\mathcal{G}(g)$  is a singleton if, and only if, the function g satisfies the functional equation

$$g(x+y)+g(0)=g(x)+g(y), \qquad x,y\in\mathbb{R}.$$

If moreover g is continuous at least at one point, then there exists a constant  $c \in \mathbb{R}$  such that  $g(x) = cx + g(0), x \in \mathbb{R}$ .

Theorem 2.1. Let  $g: \mathbb{R} \to \mathbb{R}$  be a differentiable function. Then the graph of the function  $\mathbb{R} \ni x \to 2g(\frac{\pi}{2})$ , is contained in the envelope of the family g(g). If the function  $\mathbb{R} \ni x \to g'(x)$  is one-to-one, then  $y = E_g(x) = 2g(\frac{\pi}{2})$ ,  $x \in \mathbb{R}$ .

#### 3. Envelopes for families G(g) of exponential type

Suppose that  $g: \mathbb{R} \to (0, \infty)$  is a generator of the one-parameter family of functions  $\phi_\alpha: \mathbb{R} \to (0, \infty)$ :

$$\phi_{\alpha}(x) := g(x - \alpha)g(\alpha), \quad x, \alpha \in \mathbb{R},$$

and let G(g) and  $E_g$  be defined correspondingly.

Remark 3.1. If  $g(x)=g(0)e^{cx}$ ,  $x\in\mathbb{R}$ , where  $c\in\mathbb{R}$ , and g(0)>0, are arbitrary constants, then  $\mathcal{G}(g)=\{g\}$  is a singleton, and  $E_g$ , the envelope of g, coincides with the graph of g.

Proposition 3.1. Let  $g: \mathbb{R} \to (0,\infty)$  be an arbitrary function. Then  $\mathcal{G}(g)$  is a singleton if, and only if, the function g satisfies the functional equation

$$g(0)g(x + y) = g(x)g(y), \quad x, y \in \mathbb{R}.$$

If moreover g is continuous at least at one point, then there exists a constant  $c \in \mathbb{R}$  such that  $g(x) = g(0)e^{cx}$ ,  $x \in \mathbb{R}$ .

Theorem 3.1. Let  $g:\mathbb{R} \to (0,\infty)$  be a differentiable function. Then the graph of the function

$$\mathbb{R} \ni x \to \left[g\left(\frac{x}{2}\right)\right]^2$$

is contained in the envelope of the family G(g). If the function g'/g is one-to-one, then the envelope  $E_g$  has the representation

$$y = E_g(x) = \left[g\left(\frac{x}{2}\right)\right]^2, \qquad x > 0.$$

#### 4. Envelopes for families G(g) of power type

Suppose that  $g:(0,\infty)\to (0,\infty)$  is a generator of the one-parameter family of functions  $\phi_\alpha:(0,\infty)\to (0,\infty)$ :

$$\phi_{\alpha}(x) := g\left(\frac{x}{\alpha}\right)g(\alpha), \quad x, \alpha > 0,$$

and let G(g) and  $E_g$  be defined correspondingly.

Remark 4.1. If  $g(x)=g(1)x^c, \ x>0$ , where  $c\in\mathbb{R}$ , and g(1)>0, are arbitrary constants, then  $\mathcal{G}(g)=\{g\}$  is a singleton, and  $E_g$ , the envelope of g, coincides with the graph of g.

Proposition 4.1. Let  $g:(0,\infty)\to (0,\infty)$  be an arbitrary function. Then  $\mathcal{G}(g)$  is a singleton if, and only if, the function g satisfies the functional equation

$$g(1)g(xy) = g(x)g(y),$$
  $x, y > 0.$ 

If moreover g is continuous at least at one point, then there exists a constant  $c \in \mathbb{R}$  such that  $g(x) = g(1)x^\circ, \ x>0$ .

Theorem 4.1. Let  $g:(0,\infty)\to (0,\infty)$  be a differentiable function. Then the graph of the function

$$(0,\infty)\ni x\to [\,g(\sqrt{x})\,]^2$$

is contained in the envelope  $E_g$  of the family G(g). If the function

$$(0,\infty)\ni x\to \frac{g'(x)}{g(x)}x$$

is one-to-one, then the envelope curve has the representation

$$y = E_g(x) = [g(\sqrt{x})]^2, \quad x > 0.$$

#### References

 J. Aczél, Lectures on functional equations and their applications, Academic Press, New York and London 1966.

[2] J. Favard, Cours de géométrie différentialle locale, Gauthier-Villars, Paris 1957.

G. Fubini, Di una nova successione di numeri, Period. Mat. 14 (1899), 147-149.
 M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish

 [4] M. Kuczma, Functional equations in a single variable, Monographe Mat. 46, Polish Scientific Publishers (PWN), Warszawa 1968.

 [5] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics. Cambridge University Press. Cambridge-New York 1990.

[6] P. Kahlig, J. Matkowski, Functional equations involving the logarithmic mean, Z. Angew. Math. Mech. 76(1996), 385-390.

Peter Kahlig
INSTITUT METEOROLOGY AND GEOPHYSICS
UNIVERSITY OF VIENNA
AL1190 VIENNA AL1STRIA

DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY PL-43-309 BIELSKO-BIAŁA, POLAND

Janusz Matkowski

Received August 28, 1995.

