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i i izi ive concave ions in (0, c0)*

JANUSZ MATKOWSKI

Summary. Tn the present note we prove that every function f: (0, ) —[0, o) satisfying the inequality
of(5) + b)) Sflas +b),  5,1>0,

for some aand b such that 0 <a < 1 < + b must be of the form f(t) = f(1)t, (¢ > 0). This improves our
recent result in (2], where the inequality is assumed to hold for all s, ¢ >0, and gives a positive answer
to the question raised there.

An analogue for functions of several real variables of the above result characterizes concave
functions. Conjugate functions and some relations to Holder's and Minkowski's inequalities are
‘mentioned.

Introduction

In a recent paper [2] we have proved that, without any regularity conditions,
every function f: R, >R, (R, :=[0, 00)), satisfying the functional inequality

af(s) + bf (1) <flas+br),  (s,120),
for some a, b such that 0 <a <1 <a +b must be of the form f(1) =f(1)t, (t 2 0). It
has also been shown that, using this result, one can get its analogue for functions
of several real variables which, in turn, leads to a characterization of concave
functions defined in R% , (k >2), to a new concept of conjugate function and to a
simultaneous generalization of Hélder’s and Minkowski’s inequalities.

The long proof of this result heavily depended upon the assumption that 0
belongs to the domain of f. Nevertheless we conjectured that the theorem remains
valid for every function f: (0, 0) >R, .
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In the present paper, making use of the above result as a lemma, we give a
positive answer to the problem raised in [2]. This fact allows us to improve some
other results presented there.

1. Two lemmas
We need the following

LEMMA 1. Suppose that a and b are positive real numbers. If f: (0, ©) >R
satisfies the inequality

af(s) +bf(1) <flas + b0, (5,1>0),
then

5wt S )< 5 @ § s

. n
.,n,::1....,(k)and:k,>0.

The proof is exactly the same as that of Step 1 in [2] so we omit it.

for all n €N, k=0,

REMARK 1. In the proof of Step 1 in [2] it has been assumed that f is defined
on R, . Note that, if @ + b =1, then (0, c0) in the above lemma can be replaced by
an arbitrary interval. If @ > 1 and b > 1 then instead of (0, %) one can take (c, o)
or [e, o) where ¢ > 0.

LEMMA 2. ([2), Theorem 1). Let a and be be real numbers such that
O<a<l<a+b. If afunction f: R, - R, satisfies the inequality

af(s) +bf() <flas + b0, (s,120),
then f(1) = f(1)t, (t 2 0).

2. Nonnegative solutions of the basic inequality
In this section we prove the following

THEOREM 1. Let a and be be real numbers such that 0<a<l1<a+b. If a
Sfunction f: (0, o) >R satisfies the inequality
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af(s) +bf(1) <flas+bo),  (s,1>0), (1
then £(1) = f(1)t, (1 > 0).

Proof. Taking in (1) s = we have (a + b)/(1) </f((a +b)0) and, by induction,

(@+b)() <f(@+b)*), (>0 keN).

Since a+b>1 it follows that there exists a positive integer k such that
by+=b(a +b)*> 1. Now we have from (1)

af(s) + b f (1) = af (s) + b(a + b/ (1) < af(s) + bf(a + b)*1) < f(as + by1)

for all s, ¢ > 0. Thus, without loss of generality, we can assume that b > 1.
It follows from Lemma 1 that

@) <fl@bt +5),  (s,1>0;mmeN), @

We shall use this inequality to show that / is nondecreasing. To this end consider
the following two cases.

CASE 1. log b/log a is irrational.
Since 0 <a <1<b, the set

a"b™:n,m e N}
is dense in (0, o), (cf. [4], Lemma 4). Thus we can rewrite (2) as follows
Q) <fGL+s), (hed;s,t>0).

Now take arbitrary 1, r > 0. From the density of the set A it follows that there exists
a sequence 4, € 4, (n € N), such that

Se=r+(1=A) >0 Z,<1, (neN)
and

lim 4, =1.

Setting in the above inequality s:=s, and 7

L f(0) St +7)

4, we obtain

for every n € N. Hence, letting n — 20, we get £(1) </f(t +r) which shows that f is
nondecreasing.
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CASE 2. logb/log a is rational.
Since 0 < a <1 < b there exist positive integers n and m such that

log b
loga m

. ie. that a"b™ =1.
From (2) we get f(1) <f(t +5) for all s, £ >0 which means that f is nondecreasing.
The monotonicity of f, which we just proved, implies that for every 7 >0 there
exists the right limit of f:
ft+):= lim f(r),
r—rr
and, consequently, the function g: R, - R, given by the formula
g0)=f(t+), (t=0),

is well defined. Take now arbitrary nonnegative numbers s, ¢ and two sequences
(571 (L)1 such that

§<8,, t<t, (meN); ,,“2 8, =8, "li‘nl =t
We have as + bt <as, + bt,, (n € N), and, clearly,
af(s,) + bf(1,) < f(as, + bt,), (neN).
Letting n tend to the oo we obtain
af(s+) +bf(1+) <f((as + b1) +), (5,120),
or, equivalently,
ag(s) + bg(1) <glas +br),  (s5,1=0).
By Lemma 2 we have g(t) = g(1)t, (1 >0), i.e. f(t+) = g(1)t, ( > 0). This and the

monotonicity of f imply that f(r) = f(1)t, (z > 0), which completes the proof.

REMARK 2. One of the referees of this paper noticed that in the above proof the
full strength of Lemma 1 is not needed. It suffices to know (2). This can be
explained as follows: For all 5,7>0,

af(1) < af () + bf (s/b) < f(at + b(s(b)) = f(at +5)

and hence a%f(1) = a(a/(1)) < af(at + ) < f(a(at +3) +u) for all u > 0. This implies
that a*f(1) <f(a* +7v) for all t,v>0. By induction a*f(r) <f(a"t +s) for all
5,0>0and all n € N. Similarly 5"/(1) <f(b"t +5) for all s, 1 >0 and all m € N. The
last two inequalities imply (2).
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3. A finite dimensional counterpart and conjugate functions
variables.

The following result is a counterpart of Theorem 1 for functions of several

THEOREM 2. Let k € N, k =2, and suppose that 0 <a <1<a+b. A function
(0, o)k~ R, satisfies the inequality

af(x) + bf(y) <flax +by),  x,y (0, ),

if and only if the following two conditions are satisfied:
(i) f s positively homogeneous;

(i) for each i

Six,

Ca X,

3)

e v sk, the function f: (0, 0)*~ ' >R, given by the formula
Xppry oo XY= 00, X L X
is concave in (0, 00)* .

s Xe)

8(0):=/(1x),

(t>0).
From (3) we have

Proof. Suppose that f satisfies (3). For an arbitrary fixed x € R% define a
function g: (0, %0) >R, by the formula
ag(s) + be() = af(sx) + bf (1) <f((as + bi)x) = glas + br)

for all 5, > 0. In view of Theorem 1 we get g(r) = g(1)t, (¢ > 0), ie. f(tx) = f(x),
(1> 0), which proves (i).
Hence we get

x Zioh o ik X
SO x) = a2 FE R
% X, % >
X, X1 Xiay
=x -
’ﬁ(xl

. ﬁ) @
X; X; Xi
for each i=1,...,k and all x =(x,,

., x;) € (0, 00)¥. Substituting this formula
into (3) and then replacing x; and y; by x;/a and y, /b, respectively, we obtain
o, (‘i‘

e

N n
X+ ¥, X1+ Vi
s(x,w,)/,(; E i Bw1tdins
i+

Xt e
xty

Seees ©)
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for all x = (x1,. .. %)y 7= (Vs v s 34) €(0, 0)  and i = 1., k. It is easy to
verify that this inequality is equivalent to the concavity of £, which proves (ii).
Conversely, if a function f: (0, o0)*— R, satisfies conditions (i) and (ii) then
relations (4) and (5) hold true. Replacing in (5) x, and y, respectively by ax; and by,
(j=1,...,k), and making use of (4) we get (3). This completes the proof.

REMARK 3. This result improves Theorem 3 in [2] where inequality (3) is
assumed to hold for all x, y e RE .

REMARK 4. The functions f,,....f, mentioned in Theorem 2(i) are closely
interrelated. In fact, for i, j e {1,...,k}, i #/, we have

HRE

In this connection we introduced a notion of conjugate functions (cf. [2], [3], [5]).
It generalizes the power conjugate functions. Moreover, inequality (5) samﬁcd by
each of the functions fi, ..., f, izes Holder’s and Mi

Let us mention that the conjugate functions appear also in connection with some
mean value theorems (cf. J. Aczél [1]).
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