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ABSTRACT. Let C be a cone in a linear space. Under some weak regularity conditions
we show that every subadditive function p: C— R such that p(rx) < rp(x) for some
re(0,1) and all x e C must be positively homogenous. As an application we obtain
a new characterization of LP-norm. This permits us to prove among other things
the following converse of Minkowski's inequality.

Let (@ 5,4 be a measure space such that there exist disjoint sets A, Be X
satisfying the condition u(B) = 1/u(4), p(4) # 1. If ¢: R, — R, is an arbitrary bijec-
tion such that

([ omtes )< { [, et e[ oor)

for all the pintegrable step functions x, y: 2 =K. then ¢ is a power function.

Introduction

Let R, R, and N denote respectively the set of reals, nonnegative reals
and positive integers.
For a measure space (2, Z, p) let S = S(, Z, y) stand for the linear space
of all the p-integrable step functions x: @ — R and let S, := {xeS:x >0}.
It can be easily verified that for every bijection @: R, — R, such that
©(0) =0 the functional P,:S— R, given by the formula

) P,(x):= a"(J. @o Jxldy), xeSs,
2

is well defined. In [4] we have proved the following converse of Minkowski’s
inequality.
Let (2, Z, p) be a measure space with two sets A, Be X such that

(v)) 0<pu(4)<1<p(B)<w
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and : R. - R.. a bijection such that ¢(0) = 0. If ¢~* is continuous at 0 and
(3) P(x +y) S P(x) + P(y),  x yeS,,
then (1) = (1)t%, (¢ > 0), for some p > 1.

It has also been shown that condition (2) is essential. In this paper we
show that modifying the definition of P, one can eliminate the assumption
@(0)=0. The remaining assumption of the continuity of ¢~ at 0 plays a
key but technical role. We conjecture that the above result is valid without
this assumption. However it seems to be a difficult problem to get rid of
it completely.

In a recent paper [7] we have attempted to replace the continuity of
@' at 0 by the following assumption: there exist disjoint sets C, De X of
positive measures such that u(C)+ u(D)=1. This approach leads to some
open problems in the theory of convex functions. Nevertheless we were able
to prove that in the case when u(C)= (D) the continuity of ¢~* at 0 is
superfluous.

In section 3 of the present paper we show that the continuity of ¢~' at
0 together with assumption (2) can be replaced by one of the following
conditions:

() there exist neN, n> 1, and A, Be X such that

ANB=gh  pd)=—;  wB)=n

1
n
or

(i) there exist n, meN, n#m, n>1, and A, B, Ce X such that

ANB=@i A =" uB=T wO=n

The proof of this theorem is based on the following characterization of LP-
norm which is the main result of section 2.

If (2, Z, ) is a measure space with two disjoint sets A, B€ X such that
w(A) = u(B)=1; a function : R, — R, is bijective, inequality (3) holds and
there exists an re(0,1) such that P,(rx) <rP,(x) for all xe5, then ¢(t)=
o(1)t?, (t > 0), for some p> 1.

This is a partial generalization of a theorem in [5] where P, is supposed
to be positively homogeneous. A keystone of the proof is a recently obtained
theorem which roughly speaking states that (under some weak regularity
conditions) every real subadditive function p defined on a cone C in a linear
space satisfying condition that there exists an r (0, 1) such that p(x) < rp(x)
for every xeC must be positively homogeneous (cf. [8] and [9]). In the
preparatory section 1 we give a sketch of the proof of this result.
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1. Auxiliary results

Let X be a real linear space. A set Cc X is said to be a cone in X
# C+CcC and tCcC for every ¢t > 0.

Lemva 1. Let X be a real linear space and C a cone in X. If p:C—R
satisfies the following conditions:

1°. p is subadditive ie. p(x + y) < p(x) + p(y) for all x, yeC;

2°. for every xe€C the function f.: (0, 0)— R given by the formula

(1) := pltx), t>0,
is bounded above in a neighbourhood of a point;
3. there exists an re (0, 1) such that
prx) <rplx),  xeC,
then p is positively homogeneous i.. p(tx) = tp(x) for all t>0, xeC.

Proor. (Sketch) Take an arbitrary xe C. By 1° the function f:= f,
is subadditive in (0, ). This together with 2° implies that f is locally
bounded above, (ie. bounded above on every compact subset of (0, )), and,
consequently, locally bounded. Therefore (cf. [2], Theorem 7.6.1, p. 244 and
the remark coming after its proof; also [3], p. 407)

/(r)

4 lim, ., — f(l) =inf,o—

induction from 3° we have

MOS0 nen
o Ry 2 é

Letting n— co and making use of (4) we hence obtain for all ¢ >0

10 g, 10,
2 <indot 2

ch means that f(t) = f(1)¢ for all £>0. Now by the definition of f we

P(x) = £(0) = f(0) = f(1)t = f(1)t = p(x)t
which was to be shown.

RemaRK 1. The same argument permits us to get more general result.
Namely, instead of 1° we can assume that for every x € C the function f; is
subadditive in (0, co) and instead of 2° that for every x € C there is r, € (0, 1)
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such that every ¢ >0 we have fy(rytx) < rfultx) (cf. [8] where a detailed
proof is given).

We quote the following result due to T. Swiatkowski and the present
author (cf. [6]).

LemMaA 2. Let f:R. - R, be a subadditive bijection. If f is continuous
at O then it is a homeomorphism of R..

REMARK 2. Let xeS. Then there exist disjoint 4,, ..., 4, % and x,,
..., X, € R such that

.
x=Y xui  MA) <o,

(¢ denotes the characteristic function of a set E). For an arbitrary bijection
R, >R, we have

X
@olx|= ; (x4, + 901 g-4,-

If 9(0)=0 then xeS=go|x|cS, and, consequently, the functional P, is
well defined for every measure space (2, Z, ).

It is casily seen that in the case when u(®) < oo the functional P, is
well defined by the formula (1) even when the condition @(0)=0 fails to
hold. One can also avoid this assumption in the case (%)= o modifying
the formula (1) as follows

Pw= (p(J wo\xw), xes,
o
where Q,:={weQ:x(w)#0}. Thus the assumption ¢(0)=0 in [4] was

made to simplify the notations. From the next lemma it follows that it could
be done without any loss of generality.

Lemma 3. Let (, %, ) be a measure space with at least one set A€ X
of positive finite measure such that p(A)# 1 and ¢: R, — R, an arbitrary
bijection satisfying inequality (3). Then (0) = 0.

Proor. Let a:=p(4). Putting in (3) x =y:=tz,, t >0, we obtain
@ (ap(2) <207 (ag(), =0,
which means that the function f:= ™' o (ap) satisfies the inequality
fen<o@,  t=0

Since f is a bijection of R, there is a to€ R, such that f(i)=0. From
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the above inequality we infer that f(2t,) = 0 and, consequently, f(2to) = f(t,).
Now the bijectivity of f implies that t, =0. Hence we get ¢(ap(0)) =0
2nd since a# 1, ¢(0)=0. This completes the proof.
2 A characterization of L”-norm

In this section we prove the following

THEOREM 1. Let (R, Z, u) be a measure space with at least two sets A,
BeZ such that

) ANB=g,  w(A)=puB) =1,
and suppose that ¢: R, — R, is bijective. If
© P(x + ) S P(x) + P(y), x, yeS,,
and there exists an re(0,1) such that for every xeS.
) Py(rx) < 1P,(x),
then oft) = p(1)t%, (£ >0), for some p> 1.

Proor. To apply Lemma 1 put X := R2, C := R? and define p: C— R by

PO = P(xaza + Xadsh X =(xy, %) € R

= (6) and (7) the assumptions 1° and 3° of Lemma 1 are satisfied. To
v that condition 2° of this lemma is also fulfilled, we note that by the
detinitions of p and P, and (5) we get

& P =07 (@) + 0(x2)),  x=(x;,x;) e RE.
As p is subadditive in C we have

o (olx + y1) + 0(x2 +12)) 7 0(xy) + 0(x2)) + 07 o) + @(y2)

all nonnegative X,, X;, y;, ¥2. Since u(4UB) =2 it follows from Lemma
that ¢(0)=0. Therefore substituting y, = x,:=0 we obtain ¢~ (p(x,) +
@i5:)) < x; + y, or, equivalently,

5 ) =07 (@) + 0(x2) S X1+ x5, Xy, X200

Hence £(1) 1= p(tx) = ¢~ (@(tx,) + @(tx,)) < t(x; + x,) which shows that con-

o2 2° of Lemma 1 is fulfilled. According to this lemma we have p(tx) =
sp¢x) for all xe C and >0 which, in view of (8), can be written as

o7 o(tx,) + 9(tx2) = 197 @(x1) + 0(x2)), X1, X320 £>0.
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Replacing here x, by ¢™'(x) and x, by ¢~'(x,) and making use of the
bijectivity of ¢ we obtain

0007 (%1 + x2)) = 09T (%)) + @97 (x2)), X1, X220, >0,

which means that for every ¢ >0 the function ¢ (to™) is additive. Since
@o(te™) is nonnegative, it must be a linear function (cf. J. Aczél [1],
p. 34). Consequently, for every ¢ > 0, there exists an m(t) > O such that

10 0(to™ (x)) = m(t)x, x=0.

Note that this relation remains valid if we additionally define m(0):= 0. Take
arbitrary s, ¢>0. Composing the functions ¢ (sp™) and o (tg™) and
making use of relation (10) we get

Plstp™ (x) = mE)m()x, x>0,

On the other hand the same relation says that

olstoT () =m(st)x, x>0,
Hence we infer that

m(st) = m(s)m(t), 5 t20,

ie. m is multiplicative, and, in view of (10), m is bijective and

o7t =07 Mm@, 20
Now from (8) and from the multiplicativity of m and m™ we have

m7m(xy) + mxa)),  x=(xy,x;) € R,

P(x)
and, as p is subadditive,

(1
mHm(xy + y1) + m(x + y2)) < w7 () + mixs)) + m7Hm(p) + m(y2)

for all x,, X3, ¥y, y2 > 0. Setting here x, = y, := s and x, = y, := 1, we get
m7t@2m(s + 1) < 2m7'(m(s) + m(), s, t20.
From the multiplicativity of m™ we obtain
m2)(s + ) < 2m7Hm(s) + m(r), s, 120,
This implies that for s, £ >0 and c:=m™(2)/2 we have
em™ () <mTHs + 1), >0,

and, consequently,
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¢+lim sup,.o m™(t) < inf {m™(s): s > 0}.
Since m is bijective it follows that
lim,o m™(f) = 0 = m™(0)
ie. the function m™ is continuous at 0. Setting in (11): x, :=m™'(s), y,:=
m7(f), x, =y, =0 we get
mi s+ <m () +m@e), s 20,
ie. m™! is subadditive in R.. By Lemma 2, m™ is a homeomorphism of
R.. Consequently (cf. J. Aczél [1], p. 41), there is a p > 0 such that m(t) = t*
for all t>0. Hence o(t) = @(1)t?, (t = 0), which completes the proof.
REMARK 3. It is quite obvious that condition (7) of Theorem 1 is fulfilled
if there exists an r > 1 such that for every xeS,:
P,(rx) > rP,(x).

Moreover, according to Remark 1, both these conditions can be replaced by
more general ones.

Taking in Theorem 1 the measure space (%2, Z, y) such that Q:= {1,2};
29 pu({1}) = p({2}):= 1 and making use of Remark 3 we obtain the

following
COROLLARY 1. Let ¢: R, — R, be a bijection such that
07 0%y + 1) + 0(x2 +2)) S0 7Ho(x1) + 0(x2)) + 07 (@(r1) + @(y2))

Jor all nonnegative xy, yy, X5, y2. If there exists an re(0,1), (resp. r > 1),
such that

07 0xy) + 0(rx2)) Sre7Ho(x) + 0(xa)), Xy X220,
resp. the reversed inequality holds), then o(t) = @(1)t?, (t > 0), for some p > 1.
REMARK 4. If a bijection ¢: R, — R. satisfies the functional equation
o) =po(t),  t>0,

some positive r and p, r # p, then

97 @xy) + 9(rx2)) =ro7Ho(xy) + 0(xz)), Xy, X, 20.
Indeed, we have ¢~ (pt) = ro 7 (t), (t > 0), and, therefore
97Holrx;) + 0(rx2)) = 07 (pLo(x1) + 9(x2)])
=107} (@(x;) + ¢(x2)).



284 Janusz MATKOWSKI

3. A converse of Minkowski’s inequality

In the previous section we have proved that if the functional P, satisfies
the triangle inequality and a kind of substitute of the homogeneity condition,
(cf. e.g. (7)) then ¢ must be a power function. Now we assume that P,
satisfies only the triangle inequality.

The main result of this section reads as follows.

TeEorem 2. Let (2, Z, 1) be a measure space such that there exist A, B,
CeZ and m, neN, m#n, satisfying the following conditions:

ANB=@;  wA=T:  wB=1i WO =n
If :R. >R, is a bijection such that
Px + ) S B(x)+ By),  x yeS,,
then o(t) = o(1)t*, (t > 0), for some p > 1.

Proor. By Lemma 3 we have ¢(0) =0. Hence, substituting in the as-
sumed triangle inequality
= ;)
(u(m A2 |

-:(j ) ;
Ny e P
o +)<e O+ 070, s 120,

we get

ie. ¢! is subadditive. By induction we have for every ke N
oM+ SO + o+ 07 M)ty e, 520
Setting here t; =+ =1, :=1 we get ¢ '(kt) < k¢~}(f) and, consequently,
o 'ko(t) <kt, keN, t=0.

This implies that for every ke N the function ¢~ o (kg) is continuous at
0. Substituting in the triangle inequality in turn

Xi=5 V= (s V=g x

Tas Ses V= 1es

we infer that the functions w*'nc‘l‘@), ¢"o<$¢) and g™ o (ng) are

subadditive in R,. From Lemma 2 it follows that @™ o (ng) is a homeomor-
phism of R,. Since the composition of an increasing subadditive function
and subadditive one is subadditive, the relation
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8 £ L, (m
97 o (mg) = (¢ ‘D(nw))o(w ‘0(?47))
implies that ¢™' o (mg) is subadditive and, by Lemma 2, a homcomorphism
of R. The function ¢~ o (o being the inverse of ™ o (ng) is a homeo-

morphism of R,. Now the relation

o7to (;w) =(p7 o (mg))o (w“ ° Gw))

implies that ¢~ o(gw) and its inverse ¢~ a(£¢) are homeomorphisms.

Because these functions are inverses of one another and subadditive, they
must be superadditive and, consequently, additive. Therefore (cf. J. Aczél [1],
p. 34) there exists an r > 0 such that
ot ('! w(z)) =r, t20
n

Denoting a:= u(4) =, we hence get
7

12) ap)=o(rt), @ a)=ro '), t>0.
Setting in the triangle inequality

X124 + X2 1B, Yikat Vadss X1 X2 Yis ¥2 20,

1 &
and taking into account that ANB = & and u(B) =W obtain

1 1
@ (w(n )+ el + y;)) <o (zw(xn B ;azm))

1
+o7 (aw(y,) + ;w(y;)).

Applying (12) we can write this incquality as follows

11 1
ot (w(m +ry) + V’(;Xz i ;y;)) <o (W(m) + w(;X:))
s 1
+9 ‘(w(m) G w(;y;))

Replacing here rx;, r™'x;, ryy, r™iy; 1esp. by x;, X2, Vi, ¥ We get
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97 +y1) + 0(x2 +32)) < 97 0(x1) + 9(x2)) + 07 (0(y1) + 0(r2))
for all nonnegative x;, X;, y;. ¥, Applying once more (12) we obtain
97 0(rx) + 0(rx,)) = 07 (ag(xy) + a0(x;))
= ¢ Halo(x,) + 0(x2)])
=197 o(xy) + 0(x2)).

Now our theorem results from Corollary 1 because, clearly, r # 1.
If in the above theorem n =1 we can take C = B. Therefore we have
the following

COROLLARY 2. Let (@, %, 1) be a measure space such that there exist A,
BeX and me N, m# 1, satisfying the following conditions:

1

ANB=g; A =m  pB)=—.

If ¢: R, —R. is a bijection such that
Px+))SP(x)+ Py, x yes,,
then o(t) = p(1)t?, (t > 0), for some p > 1.

Finally let us note that using Lemma 3 we can write the converse of
Minkowskis inequality quoted in the introduction in a little more general
form (cf. [4]).

THEOREM 3. Let (@, Z, ) be a measure space with at least two sets A,
BeX such that 0 < p(A) <1< u(B) < co. If ¢:R.— R, is a bijection such
that @~ is continuous at 0 and

P(x+ ) S PX)+ Py, X yeS,

then (t) = 9(1)e?, (¢ > 0), for some p> 1.
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