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One of the results reads as follows. Let (Q 3, 1) be a measure space with at
least two disjoint sets of finite and positive measure. Suppose that m, &, (0, )
> (0,%) are functions such that ¢ and v are bijective, and ¢(1) = 1 = y(1). Then

w([nmwxw) :”‘“”’(fmx)“’““””J o

for all nonnegative simple functions x: 2 — R, x # 0 u-a.e., and all > 0, where
Qx) = {w € Q: x(w) # 0}, if, and only if, m, ¢,y arc multiplicative and y =
me ¢~ If, morcover, arbitrary two functions chosen from the set {m, ¢, ¥} satisfy
some modest regularity assumptions then the homogeneity relation (+) holds true
if, and only if, m, ¢, and ¢ are the power functions.  © 1996 Academic Press, Inc.

INTRODUCTION

For a measure space ({2, 3, u) denote by S = S(Q, =, u) the linear
space of all u-integrable simple functions x:Q) - R, and by S,=
§,(Q,3, u) the set of all nonnegative x € S. It is easy to see that for
arbitrary functions ¢, ¢:(0,%) - (0,%) the functional p, ,:S - [0,%)
given by

w(fmx)qh!x\ .m) if w(Q(x)) >0

A x €S,
0 if w(0(x)) =0

Pou(x) =

where Q(x) = {w € Q: x(w) # 0}, is well defined [5, Remark 5].
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Note that for ¢(1) = ¢p(D)t?, ¢t >0, where p € R\ {0} is arbitrary
fixed, and ¢ = ¢! (the inverse of ¢), we have

1/p
Poo(%) = (fmx)\xv d/.l,) . xeS,p(Q(x) >0,

and for p > 1 the functional p,, ,, is the L”-norm.
In the present paper we show that, under some general conditions, if
m:(0,%) — (0,) is a function such that

P, (&) <m(t)py 4(x), x€8,,1>0,
then m is multiplicative, and

Py, (&) =m(1)py 4(x), x€8,1>0,

ie., the 1 ively h A ing that the

Po,y is mp

underlying measure :pface (Q,3, p) has at least two sets of finite and
positive measure, we show that the functional py,, is m-positively homo-
geneous if, and only if, the functions m, d(p~1(D)1), /(1) are multi-
plicative, and $(t) = y(Dm($~(£)/¢'(1)), ¢ > 0. This characterization
simplifies if we assume that ¢(1) = (1) = 1. If, moreover, arbitrary two
functions chosen from the set {m, ¢, ¢} satisfy some modest regularity
assumptions then the functional p,, , is m-positively homogeneous if, and
only if, there exist real numbers p and g, p # 0 # g, such that m(t) = ¢,
(1) = 19, and (1) = 17/ for all £ > 0. Taking m(r) = ¢ we obtain some
earlier results of Zaanen [7], Wnuk [6], and the first named author of the
present paper [3], as the special cases.

1. AN AUXILIARY REMARK AND A LEMMA

Remark 1. Suppose that () > 0 and take an arbitrary x € S, such
that u(Q(x)) > 0. Then there are the pairwise disjoint sets A,..., 4, €
3, of finite and positive measure, and xy,..., X, > 0, such that

n
x in)(,a,,
i=1

(here x, stands for the characteristic function of A). By the definition of
Py, y We get

Porg(¥) = ¢(z d>(x.-)u(Al))<



FUNCTIONALS RELATED TO L’-NORMS 247

In the sequel the following lemma plays an essential role [3, Theorem 1]:

Lemma 1. Let ¢:(0,%) — (0,%) be an arbitrary bijection. Then the
function ¢ o(t¢™") is additive for every fixed t > 0 if, and only if, the
function

(0,2) 21 - ¢(¢7'(1)1)
is multiplicative.

Proof. Suppose that for every fixed ¢ > 0 the function ¢o(t¢™!) is
additive. Since ¢ °(¢¢~") is positive, it must be linear. Thus there exists a
function M:(0,) — (0,) such that

B[t~ (w)] =M()u, uw>0;t>0,
and, of course M(¢) = ¢p[¢~'(1)z], £ > 0. Replacing ¢ by s, we have
S[so7 ()] =M(s)u, uw>0;5>0.

Composing separately the functions on the left, and on the right-hand
sides of the above equations gives

S[std7 ()] = M(s)M(t)u,  u>0;s,0>0.
On the other hand we also have
d[stp(u)] = M(st)u, u>0;5,6>0,
and, consequently,
M(st) =M(s)M(t), s5,t>0,
which means that M:(0,%) — (0,%) is multiplicative.
Since

M(1) = o[t ()], >0,
M is bijective, and consequently, M~':(0,%) — (0,%), the inverse of the
function M,
o'
6717

M(t) = t>0,
is multiplicative.

Suppose that M(u) == ¢[¢~'(Dul, u > 0 is multiplicative. Then so is its
inverse,

7 (W)

M (u) = o 470
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and, consequently, for a fixed arbitrary ¢ > 0, and for all u,v > 0, we have
¢ (utv)

$7(1)
= MM (u + )] = M(£)(u +v) = M(t)u + M(t)v
= M()M[M7 ()] + M()M[M ()]
= M ()] + M1 ()]
= #167 ()] + 9[197' ()],

which completes the proof.

B[te (u +v)] = ¢ 671 (1)t

2. MAIN RESULTS

To give a complete characterization of m-positively homogeneous func-
tionals p,, , we prove the following

PROPOSITION.  Let (Q, 3, w) be a measure space with at least two disjoint
sets of finite and positive measure and let, §, i:(0,%) — (0,%) be bijective.
Suppose that m:(0,%) = (0,) is a function such that

m(t)m(t™) <1, >0, (1)
If
Py, o(&) <m()py y(x), t>0,xES,, ()
then
Py, y (&) =m(t)py (x), t>0,x€S, 3)
the functions m, $(¢~)1), and /(1) are multiplicative, and
1
w(e) = w(l)M(:TEg), t>0, 4

Conversely, if the functions m, $(¢~'(1)t) are multiplicative, and y is given
by (4), then

g,y (80) =m(t)py, (%), 1>0,x€ES8.

Proof. Replacing x by fx, and ¢ by t~" in inequality (2) gives

[m()] Py, p(x) <P u(1), t>0,x€ES,.
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Hence, applying (1) and (2), we obtain

—1y] -1
()P, () < [m(7)] "o,y (x) < Pe,y(8) < m(Dps,o(3),
for all ¢ > 0, x € S, which proves (3). From (3) we have
Py, (sx) =m(st)py o(x), s,t>0,x€S,,
and
Po,y(5) = m($)py, (&%) = m(s)m(1)py, (%), $:0>0,xE8,,
and, consequently,
m(st)pg,4(x) =m(s)m(t)py, 4(x), s,t>0,x€8,.
By the assumption there are two sets 4,B € 3 such that a = u(A4)
b = u(B) are positive, finite, and 4 N B = . Taking here x = x, gives
m(st) = m(s)m(¢) for all s,¢ > 0, which proves the multiplicativity of .
Taking x == x, in (2), in making use of Remark 1, we get
¥(ag(1)) =m()y(ad(1)). %)
It follows that
P(t) =com(¢p~'(a"'t)), >0, (6)

where ¢, = y(ag(1)) is positive. Taking x = uy, +vxg in (1) with
arbitrary u,v > 0, and applying Remark 1 gives

U(ap(m) + bp(w)) = m(t)¥(ad(u) + bd(v)),
which, by (6), can be written in the form
m(¢ [ (ag(t) + bd(w))])
=m(tym(¢7'[a " (ad(u) + bg(v))])-
Hence, making use of the multiplicativity of m, we get
m($~'($(tu) +a"'bp(w))) = m(td™'(d(u) +a"'bd(v))),
u,v,t>0.

Since ¢ and ¢ are one-to-one, relation (5) implies that so is m. It follows
that (for short we put a = a~'b)

¢ (d(t) + ad(w)) =td7 (1) + ad(v)),  u,v,t>0.
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Taking the value ¢ of both sides, and replacing u and v by ¢~'(u) and
¢~ 1(v), respectively, gives

(171 () + ad(td7'(v)) = d(1¢7(u + @v)),  w,0,>0.
Putting f, = ¢ o(t¢"!) for an arbitrary fixed ¢ > 0, we hence get
f(u + av) = fi(u) + af(v), u,v>0. (@]
Since f, takes positive values in (0,), we have f(u + av) > f(u), u,v > 0.
1t follows that for every ¢ > 0, the function f, is strictly increasing, and, as

a bijection of (0,%), f, is an (increasing) homeomorphism of (0,%). In
particular,

lim f(u) =0.
u-0+
Hence, letting u tend to 0 in (7), we obtain
fi(av) = af(v), v>0.

This allows us to write (7) in the form f(u + av) = f() + f(av), or
equivalently,

fluw+v) =fi(w) +f(v),  w,0>0,
for all ¢ > 0. By the definition of f, we get
S(td7 (u +0)) = $(1¢7' () + ¢(1¢7'(v)), w0, t>0.
By Lemma 1 the function (0,%) 3 t > ¢(ct), ¢ == ¢~'(1), is multiplicative.
Hence, applying in turn, formula (6), the multiplicativity of the function

¢~'¢" (which is the inverse of the function (0,») 3 t — ¢(ct)), and then
the same property of the function m, we obtain

(1) = com(¢7(a7'1)) = com(e[e™67 (a"D)])
=com(c[(c$71(a™))(cTB7(1)])
= cm((¢71(a™))(c7$71(1)))
= cm(¢7'(a))m(c ™97 (1))

for all ¢ > 0. Setting here ¢ = 1, and taking into account the definition of
¢, and m(1) = 1, we hence get

W(1) = com(¢7'(a™)),
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and, consequently,

(1) = y(Hm(c™$7'(1)), >0,
which proves formula (4). This completes the proof of the first part of our
proposition.

Now take x € S with u(Q(x)) >0, and ¢ > 0. Applying in turn the
definitions of py, ,, the multiplicativity of ¢(ct), ¢ > 0, formula (4) for ¥,
the multiplicativity of the function ¢ ~'¢~" which is the inverse function of
the function ¢(ct), the multiplicativity of m, and, finally, formula (4), we
have

Py, o(2) = w(fmx)(boluldﬂ) - w(fmx)dw\ct(c"x)ldu)
= 0{[ er8 le(c sl ) = o) [ pelolan)
—vm[e 7 (ot [ oeloian
- vmfet7 oo ([ oe e
= ¢(1)m[l€"¢"(fmx)¢°lxl d-&”

=y () m(t)m|c " "( bolxld ”=mt %),
s @mmfes7([ seisian)| = mp,. 00
which completes the proof.

Remark 2. To prove that (1) and (2) imply (3) and the multiplicativity
of m, it is enough to assume that the underlying measure space (£, 3, p)
has at least one set of finite and positive measure.

As an immediate consequence of the proposition we obtain:

THEOREM 1. Let (Q, 3, u) be a measure space with at least two disjoint
sets of finite and positive measure. Suppose that ¢, s, m:(0,%) = (0,%) are
functions such that ¢ and s are one-to-one and onto. Then

Py, y() =m()pg, (%),  t>0,x€8,,
if, and only if, the functions m, ¢~' /¢~ '(1), and /(1) are multiplicative,
and
[0

Y(t) = w(l)m(m), t>0.
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Remark 3. It is easy to see that if m, ¢~' /¢~ '(1), are multiplicative,
and ¢ is given by (4), then

Py, y(¥) =m(1)p, 4(x), t>0,x€S.
If ¢(1) = ¢(1) = 1 then the formulation of Theorem 1 becomes sim-

pler:

THEOREM 2. Let (Q, S, ) be a measure space with at least two disjoint
sets of finite and positive measure. Suppose that ¢, s, m:(0,%) = (0,%), ¢
and y are bijective, and ¢(1) = ¢(1) = 1. Then

Pg,y() =m(t)py 4(x), t>0,x€8,,

if, and only if, m, ¢, and  are multiplicative, and = mo ¢~".

3. A CHARACTERIZATION OF m-POSITIVE
HOMOGENEOUS FUNCTIONALS p,, , FOR m, ¢, AND ¢
SATISFYING SOME REGULARITY CONDITIONS

Applying Theorem 1 with m(¢) = t?, and some well-known properties of
multiplicative functions, Aczél [1, p. 41] or Kuczma [2, p. 310}, we can
easily deduce Corollaries 1 and 2 presented below.

COROLLARY 1. Let (Q,3, ) be a measure space with at least two
disjoint sets of finite and positive measure. Suppose that ¢, s: (0,%) = (0,%)
are bijective and

Po,o() = 17Dy 4(x), t>0,x€S,,
where p # 0 is a fixed real number. If one of the following conditions is

satisfied:

(i) @ or y is bounded above in a neighborhood of a point;
(i) loge ¢ or loge ¢ is bounded below in a neighborhood of a point;
(iii) ¢ or Y is measurable,

then there exists a real g # 0 such that

&(t) = p(1)17,  P(r) =)t/ >0,

Remark 4. The above corollary remains true if we replace the functions
¢ and ¢ in the conditions ()-(iii), by ¢! and ¢~ '.
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In fact the following more general result holds true:

COROLLARY 2. Let (Q,3, ) be a measure space with at least two
disjoint sets of finite and positive measure. Suppose that m, ¢, i: (0,%) —
(0,%), ¢ and  are bijective, and

Py, () =m(t)py (%), t>0,Xx€8,.
If there is two-element subset A C {m, ¢, ¥} such that each function from A
is:

bounded above in a neighbourhood of a point,
or bounded below by a positive constant in a neighbourhood of a point,
or measurable,

then there exist real numbers p and q, p # 0 # q, such that

m(t) =e7,  ¢(1) =(D)t? (1) =g()er/?,  1>0.

Remark 5. Corollary 2 remains true if we replace the functions ¢ and
¥ in the conditions (i)-(iii) by ¢! and ¢~ 1.

Remark 6. The regularity assumptions in the above corollaries cannot
be relaxed by imposing the following continuity type condition: for every
t, €R, x, €8, if one of the sequences is bounded and the remaining
tends to 0, then

lim p, ,(2,x,) =
noo

To see this it is enough to take a discontinuous multiplicative ¢, and

y=0¢"
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