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i Equations Involving the L ithmic Mean

Dle drbl bhandalege Jigare Evainise G Fnktonlgechunge, d il dos logermischen Mt ssarmer-
hingen,das bt aufirit. Indem die auf altemative Weise neu interpretiert
wird Kanm ene ichival Lowun gendon werden

The paper deals with some recent results concerning a functional equation involving the logarithmic mean which occurs in a
heat conduction problem. By reinterpreting the functional equation in an alternative way, a nontrivial solution can be found.

MSC (1991): 39B22, 65Q05, 35K05, 86A10

1. Introduction

‘The present paper was motivated by a consideration of the use of various means in meteorology, for instance:
(i) The arithmeric mean is traditionally used for averaging certain climate data. — A functional equation connecting
two arithmetic means in the form
o G y) () + p0)
2 2

X yeRu= (=00, ) )

(Jensen’s equation, cf. [1], [2]), may describe the hydrostatic pressure of an incompressible liquid as a function of depth,
leading to the continuous solution (pressure-depth relation) p(x) = po + cx, x €R (po, ¢ positive real constants).

(i) A variant of Jensen's equation, connecting arithmetic and geomerric mean, can describe the pressure-height
relationship in a compressible isothermal gas atmosphere:

x4y
K ( 2 )
yielding the continuous solution (barometric height formula)

P(x) = poexp (—x/H), xeR ®

&) PN, xyeR, @

roH pusmvz real constants).
Equijen\ (symmetric) Pexider zqummn: areg(x + 7
in etiveen g,
e q( = o, lading to (1) and. 2). (Foe n ahernative P T 5])

) The logarithmic mean is useful in some thermal transfer problems (cf. [11] sects. 87, 89), and appears also in
the barometric height formula for a polytropic atmosphere (cf. [12] sect. 6.2):

= P9+ pO)and gl + 9 = (&) pO respesively
= [()?, hence g(x) = 2p(x/2)

Pe) = poexp (—cx/L),  xeR @
(Po: ¢ positive real constants), where L denotes the logarithmic mean temperature in the layer between heights x, and x
(with corresponding absolute temperatures T, and T):

L=(T - Tlog (Ty/T), T, Te(0,c0) )

(log = natural logarithm). [For isothermal conditions we get Ty
real consm.n( H=T,
n this vein, it appears expedient to investigate the applicabilty and usefulness of functional equations of the general

T = L, thus reverting from (4) to (3) with a positive

form
S (%30 = Malf(x), /) ©
(for certain domains, ranges, and regularity conditions), where M, and M, denote two given arbitrary means. If M, M,

are quasi-arithmetic means, according to numerous known results (cf. [1], p. 281, [2], pp. 245—252), equation (6) has a
nontrivial family of solutions. However, if one of the means s not quasi-arithmetic, only few results have been published.
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In particular, M. Hossz(s [4] proved that if M, is the logarithmic mean, and M, the arithmetic mean, the equation (6)
in the form

("’y) ,f‘x;;'@ xy>0, )

log (x/y),

which occurs in a heat conduction problem (cf. [14) where the equation appears for the first time), has no nontrivial
differentiable and strictly monotonic solutions (see also [13)). In section 2 we prove some new supplementary results
showing a significant structural difference between arithmetic and logarithmic means; moreover, we strongly improve the
original theorem of Hossz0. In section 3 we deal with the well-known Schrdder functional equation ¢ = i = 4 o, where
h(x) = (x — 1)/log x, which in a natural way arises from equation (7), and we prove the basic Lemma 4. In section 4 we
treat equation (7) as an infinite system of functional equations in a single variable with the parameter & += y, interpretable
as inhomogeneous Schroder equations. Applying Lemma 4, we give the general form of solutions which are differentiable
at the point x = &

2. An improvement of a theorem of Hosszi

We begin with recalling the following
function L: (0, 0) x (0, 0) - (0, o),

Definition

Lix,y) for x#y; Ly =x for x

is said to be the logarithmic mean (cf. 3}, p. 345).
Some properties: It is easy to see that
min {x,5} S L(x,y) S max {x,}, xy>0,
and
min {x} < L(x,y) <max{xy}, xy>0; x#y.
Moreover, for every fixed x, the function of the second variable L(x, .), namely y+ L(x,),y > 0, is an increasing
homeomorphism of (0, @0, ie., L(x; . is strictly increasing, continuous, and

lmL(x,)) =0, lim L(x))=
I o

The symmetry relation L(x, y) ), %,y > 0, implies that for every fixed y > 0 the function L(.,y) is an increasing
homeomorphism of (0, co). It follows, in particular, that L has the mean value property, i.c., that for every interval
1< (0,e), we have L(Ix 1) = I.

Bl | homal (4 doat b e i e el iy i s i i s il il

Solution of the functional equation (7) i the trivial constant (. also 1], But in his (indirect) argument the expres

log f(x) — 1og '(y) appears, ie., he tacitly assumes that '(x) is px 1% A i Careion B4 e win

the form g LF ()1 O) i argoment aso orks when /() s negativ forall x > 0. Actully,assaming that / s defned
(0, ), Hossz( proves the following

Theorem: Suppose that J: (0, ) R is differentiable, and f(x) > 0 for all x > 0 (or f(x) < 0 for all x > 0).
Then f is not a solution of (7).

course this result is weaker than Hossz('s claim. In the following we shall prove the more general Theorem 1
‘which shows that there is a significant structural difference between quasi-arithmetic and logarithmic means. (In particular
it shows that the second one is not quasi-arithmetic) Moreover, after introducing Lemmas 1 to 3, we can prove Theorem 2
which is the main result of this section.

Theorem 1: Let I < (0, ) and J < R be arbitrary intervals. There is no bijective function g:1 — J such that

g(i) s e0) ®
log x — log y, 2
Proof: Equation (8) can be written in the equivalent form

(M) I e ®
2 logx — logy
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Suppose, for an indirect argument, that such a bijection exists. Take arbitrary a, b, ¢, d I, and put
(g(a) + g(b)) . (gm + grm)
2 v 2
Since J is an interval, and g a bijection of [ onto J, we have x, y € . Substituting x and y into (9) gives the identity

,,(gmwg(b)ﬂqqﬂm)_( a=b __c-a )(, a=b o c-d )
7 = \loga—1og® logcflogd/ Toga—logh  Floge —logd,

for all a, b, ¢, d e I. Since
' (zm) +80) + 860 + g(d)) &
3

g

(K(ﬂ) +8e) +gb) + g(rf))
& e 5

we hence get
( a-b c-d )/(, a-b e-d )
= —log
loga —logh logc — logd, loga —logb log ¢ — log d,

7( a-c b—d )‘. amc o b-d )

= \loga —toge logbflogd/ Toga—loge “logh —logd,

Il by d . By e sttty o s oo Iog i (02 i gl would bkt ol ., 0 T
Howerer, i not the case which can b casily checked, taking fo instance & = &0, b = ¢, ¢ = ¢1%, = e:the diflrence
between the lft and the right hand sides is about 13 x 102, (]

Lemma 1: Let I < (0, ) be an open interval. If f:1 R is continuous at least at one point and satisfies the
functional equauon

o

7y) M+/0) g (10)
log x — log y, 2

then f is continuous at every point of L.
Proof: Suppose that f is continuous at a point z € I, and let x € I, x 2, be arbitrarily fixed. By the mean value

property of Z, there exists a y € I such that x = L(z, y). Since the function L(z, ) is an increasing homeomorphism of (0, cc),
the point y is uniquely determined (see “Some properties” above). Take an arbitrary sequence x, & I such that lim x, = x.

Again, by the above properties of L, for every positive integer n, there exists a uniquely determined z, & I such that
(z,¥). Since the function L(,y) is a homeomorphism of (0, ), L(z) = %, and lim x, = x, it follows that
lim 2, = z. By the functional equation we have oL

LRSI

J0o) = fL@wy) =
Hence, by the continuity of f at the point z, letting n — o0, and making use of the functional equation, we have

1@ + 1)
2

lim flx) = =Lz y) = f(x),

which proves that f is continuous at the point x. [I

Lemma 2: Let I < (0, o0) be an open interval. Suppose that f :1— R is a solution of the functional equation (10).
17 is constant on a nonempty open subinterval of I, then f is constant on 1.
(% ). Suppose that there is a ¢ R, and a nonempty open interval (, b) < I such that f(x) = ¢
for all e (6,5 Wo can stsume st (a5 is masimel, 16, ifJ < 1 1 an open mterval such that / s constant on ¢ and
(@) < J, then J = (4, b). Because every constant function satisfies equation (10), we may also assume, without any loss
of generality, that ¢ = 0.

For an indirect argument suppose that I\ (a, b) + 0. Setting in equation (10) x €1, y € (4, b), we get

/(A%@, x>0, ye@b) an
logx — log y, 2
We shall need the following inequality (cf. [3], p. 348):

y x4y

%y>0, x+y 2

logy 2
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Suppose first that b < f, and put B, ==min {b + (b — a)/2, f}. For y = (a+by2b S x <f,, by (12) we have
a < (x = y)/llog x — log ) < b. Hence, setting y = (a + b)/2 and arbitrary x € [b, §,) in (11) gives

1) zzj(L) =0, ¥E|:b,b +2 "’)
Jog x — log , 2

which contradicts the maximality of the interval (a, b). Thus b = f. In a similar way we can show that a = . (]

mma 3: Let I < (0, o0) be an open interval. Suppose that f :1 — R is a continuous solution of the functional
equation (10). If there are a, be I, a + b, such that f(a) = f(b), then f is constant on I.
of: We may assume that a < b. Put C i= {x € [a, b]: f(x) = f(@)}. We shall show that C = [a, b]. For an indirect
proof: s\lppoM that [a, b] \, C is nonempty. By the continuity of f the set C is closed. It follows that there exists a nonempty
open maximal interval (c,d) < [a, b] \ C. Thus f(c) = f(d) = f(a), ie. ¢, de C. From (10) we have f(i
logc — logd,
10 + @) ; c—d i
=— = ). Thi because ¢ < < d, and C. Now,
2 JloxTris s e fogc— logd fogc — logd
by Lemma 2, f(x) = f(a) for all x € I, which was to be shown. [

Theorem 2: Let I (0, o0) be a nonempty open interval, and suppose that [ 1 — R satisfes the functional equation

( x-y ) SIAHER gy
Jogx — logy, 2
If  is continuous at least at one point, then f is a constant function.

Proof: By Lemma 1 the function f is continuous on L. In view of Theorem 1 the function f cannot be one-to-one
because, by its continuity, it would be a bijection of I onto the interval J = f(1). Thus there are a, b € I such that f(a) = /(b).
By Lemma 3, f is constant on I.

3. A special Schriider functional equation

In this section, applying some known facts from the theory of iterative functional equations (cf. for instance [6], [T}, [8]),
we consider a special Schroder functional equation @ < h = 4 @, where the given function h is described below.
Remark 2: Define h: (0, &) - R by the formula

h=2= for x>0, x#1; h(x for 3)
logx
and note some of its properties:
(&) h:(0, ) = 0, i (0, %) onto itsell. Moreover, k(1) = 1,

hO+) = lim h(x)
sy

()= lim h(x) = +o0,

2/x-D<Ah@) - <x—1, x>0.
(B) his analytic in (0, co), and H(1) = 4,
KO+)= lim )=,  K(w)= lim Kx) =

(©) Foreveryx > 0,x # 1,0 < [A(¥) — 1}/(x = 1) < 1,0r,equivalently, x < h(x) < 1,x€ (0, 1),and 1 < h(y) < x,
xe(l, o
(D) Let i stand for the rth terate of h. Then for every x > 0, im () = 1, and the convergence is unilorm

on every compact subset of (0, ). Moreover, x*™" 5 I'(x) £
for x = 1),

*(x+7 = 1), x>0, neN (cquality holing only

Proof: According to (12), arithmetic and geometric means constitute bounds for the logarithmic mean. Fixing
= 1 gives the inequality of (A). The remaining stalements are casy to verify.

Remark 3: Let us note that the function s convex conjugate (cf. [10]); it means that h = h* where I*(x) = xh(x ™),
x>0,
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Now we can formulate the following

Lemma 4: Let h: (0, o) — R be defined by (13).
(A) If 9:(0, %) ~ R is a solution of the functional equation

o] =10, x>0, (14)
such that g is differentiable at 1, then the sequence of functions V,: (0, o) R defined by

V)= 2000 — 1], x>0, neN, (15)
converges for every x > 0, and

oW =cV), x>0, (16)
where ¢ :=g'(1), and V: (0, @) — R is defined by the formula

V()= lim Gx), x>0, an

The function V' is analytic, increasing, and concave in (0, o), and
logx £ VX) sV (x)sx~1, x>0, neN (18)

(B) The formala (16) gives a unique one-parameter family of solutions of equation (14) which are differentiable at 1.

In fact, these solutions are analytic in (0, ). Moreover, ¢ is increasing and concave for ¢ > 0, and decreasing and convex.

fore <.

A) From Remark 2(D) we get 2°(x*" — 1) < V,(x) £ >0, neN. Since (cf. [6], p. 161)
— 1) = log x, x > 0, the sequence ¥;(x) is bounded. The inequality 2[h(x) — 1] < x — 1, x > 0, in Remark

2(A) implies that ¥, ,(x) £ V,(x), x > 0, ne N, ie, the sequence of functions ¥, is decreasing. It follows that V(x) exists
and relations (17) and (18) hold true.
Suppose that o' (0, 00) - R is differentiable at 1 and satisfies (14). Then (1) = 0, and the function : 0, o) » R,

v= - DT ek,  x+1i ()=o),
is a solution, continuous at 1, of the functional equation
hx)— 1

W) =2 whe), x>0, x#*1

x=1

Hence, by induction, we obtain

=20 e, x>0, k41, neN,
rae

which can be written in the equivalent form

@) = ") V,(d, x>0, neN. (19)
By the continuity of y at 1, and the first part of Remark 2(D), we have lim {#"(x] = (1) = ¢'(1), x > 0. Consequently,
letting n — o0 in (19), we get @(x) = p(1) lim ¥,(x) = cHx), x > 0.

(B) In view of Remark 2(B) and 2(C), the function h satisfies all the assumptions of Koenigs' theorem (cf. 6], p. 140).
Therefore, the solution ¢ given by (16) is analytic in a neighbourhood of the point 1, the fixed point of the function h.
Now (14), the global analyticity of h, and the first of the inequalities of Remark 2(C) easily imply that ¢ is analytic in
(0, o). — The remaining statements are consequences of well-known results (cf. [6], p. 142, Theorem 67, and p. 143,
Theorem 6.8).

Remark 4: Note that V(1) = 0 and V(1) = 1. Therefore, (16) allows to interpret the real constant c as ¢'(1).

Remark 5: Let us note that (16) gives a unique one-parameter family of concave solutions for ¢ 2 0, and convex
for ¢ = 0, separately in the intervals (0, 1) and (1, ) (cf. 6], pp. 142, 143).

Remark 6: Note that (cf. [6] p. 143) the solutions  of (14) can also be presented in the following way:

B -1

(9 = c lim 90—~

= a1

where x, > 0, xo + L, is arbitrarily fixed. This form of the solution is termed the principal one.

x>0,
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4. A relinterpretation of functional equation (7)
As a consequence of the negative results of Theorems 1 and 2, we will formulate the problem in an alternative (but
necessarily weaker) way: we will look at (7) as a functional equation in a single variable with a parameter, interpretable
as an inhomogeneous Schrader equation. In fact, (7) is an infinite system of inhomogeneous Schroder equations. — The
main result reads as follows.
Theorem 3: Let o > 0 be fixed. If @,: (0, o) R is a solution of the functional equation

x—a)_1
2 <—> =Sl + @), x>0, @0
log (x/x)/ 2
such that @, is differentiable at the point =, then there exist real constants ¢ and k such that
0.0) = cV(xl) +k, x>0, e

where V:(0, 0) » R is defined by (17) and (15). Equation (21) gives a unique two-parameter family of solutions of (20)
which are analyiic in (0, <0); moreover, ¢, is monotonic and either concave or convex.
Proof: Suppose that g, satisfies (20). Writing this equation in the form
( (xfo) = 1
g I
log (x/a)
we see that the function : (0, c0) - R defined by p(x) = ¢,(xx) — ,() x > 0, satisfies the functional equation

-1\ _1
("""‘) > = o), x>0.
log (x/a)) 2
Replacing x/a by x, and setting h(x) = (x — /log x, x > 0, with h(1) = 1, we get o[h(x)] = 4 p(x), x > 0, which means
tatip i foion of (14— Stppdse tatg, s dillmninte st 218 point a. Then g is differentiable at 1, and by
Lemma 4, there exists a constant c such that ¢(x) >0, where V is defined by (17) and (15). Hence
) = <V 4 (s x > 0, and, consequenty, () = eV (412 + 0.(eh x = 0. Snge the funcion s ¥ (s/ah x 5
vanishes at the point x = o, and every constant function satisfies equation (20), or @, (x) one can take an arbitrary constant
keR. — The remaining statements of the theorem follow from Lemma 4. (]
ark 7: Relation (21), for every fixed « > 0, represents a two-parameter family of solutions. Replacing k in this

formbla by the constant k 4 £V{e) we éan write (21) i he orm &) = dD(</®) + V(e + k. > 0. Ths epresentation
is especially interesting: defining a two-place function F (0, 00) x (0, @)

Foa)= V@) + V@, x>0,
it turns out that, under some general conditions, the one-parameter family of graphs of the functions x - F(x, 2), x > 0
(where o is the parameter) has an envelope which is the graph of the function E: (0, c0)

E() =2V(x"?), x>0.

) Sloatei) — .l x>0,
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