NONLINEAR CONTRACTIONS ON SEMIMETRIC SPACES J. JACHYMSKI, J. MATKOWSKI, and T. ŚWIĄTKOWSKI* Abstract. Let (X,d) be a Hausdorff semimetric (d need not satisfy the triangle inequality) and d-Cauchy complete space. Let f be a selfmap on X, for which $d(fx,fy) \leq \phi(d(x,y))$, $(x,y \in X)$, where ϕ is a non-decreasing function from \mathbb{R}_+ , the nonnegative reals, into \mathbb{R}_+ such that $\phi^*(t) \to 0$, for all $t \in \mathbb{R}_+$. We prove that f has a unique fixed point if there exists an r > 0, for which the diameters of all balls in X with radius r are equibounded. Such a class of semimetric spaces includes the Frechet spaces with a regular eart, for which the Contraction Principle was established earlier by M. Cicchese [5], however, with some further restrictions on a space and a map involved. We also demonstrate that for maps f satisfying the condition $d(fx,fy) \leq \phi(\max\{d(x,fx),d(y,fy)\})$, $(x,y \in X)$ (the Bianchini [2] type condition), a fixed point theorem holds under substantially weaker assumptions on a distance function d. ¹⁹⁹¹ Mathematics Subject Classification. 47H10, 54H25. Key words and phrases. Fixed point, nonlinear contraction, semimetric, symmetric, space with a regular ecart, E-space, d-Cauchy completeness. ^{*}The author passed away in October 30, 1994 1. Introduction. A distance function for a set X is a function d from X × X into R₊, the nonnegative reals, such that d(x, y) = 0 iff x = y, and d(x, y) = d(y, x) for all x, y ∈ X. A distance function is also called a symmetric. The space (X, d) in which limitting points are defined in the usual way is called an E-space. The idea of E-spaces goes back to Frechet and Menger. The pioneer works in this setting were the papers of E. W. Chittenden [4] and W. A. Wilson [17]. In every symmetric space (X,d) one may introduce a topology τ_d by defining the family of closed sets as follows: a set $A\subseteq X$ is closed iff for any $x\in X$, d(x,A)=0 implies $x\in A$, where $$d(x, A) := \inf\{d(x, a) : a \in A\}.$$ A topological space (X, τ) is symmetrizable iff there exists a symmetric d for which τ_d coincides with τ . A space (X, τ) is semimetrizable iff there is a distance function d such that for any $A \subseteq X$, $\overline{A} = \{x \in X : d(x, A) = 0\}$. In this case d is said to be a semimetric. In other words, without involving a topology, d is a semimetric if the operator $$cl(A) := \{x \in X : d(x, A) = 0\}, \text{ for } A \subseteq X,$$ is the closure operator (it suffices here that cl is idempotent, i.e., cl(cl(A)) = cl(A) for all $A \subseteq X$). For a discussion of the differences between a semimetric space and a symmetric space, see [1] and the references in [3]. Further, a symmetric or semimetric space (X, d) is d-Cauchy complete if every d-Cauchy sequence is τ -convergent (a sequence $(x_n)_{n=1}^{\infty}$ is d-Cauchy if given $\epsilon > 0$, there is a $k \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $n, m \ge k$. We emphasize here that there are several concepts of completeness in semimetric spaces (see [15, [8]), but for our purposes we shall employ only the above concept. Similarly, an E-space (X, d) is complete if every d-Cauchy sequence $\{x_n\}_{n=1}^{\infty}$ is d-convergent, i.e., $d(x_n, x_0) - 0$, for some $x_0 \in X$. Since in semimetrizable spaces d-convergence coincides with τ -convergence (see, e.g., [8]), we may conclude that a semimetric space (X, d) is d-Cauchy complete if the E-space (X, d) is complete. Our main purpose is to extend some fundamental metric fixed point theorems to a non-metric setting. Namely, we generalize Theorem 1.2 [13] of the second named author (see also [6], Theorem 3.2, or [14], Theorem 2) by considering selfmaps on some d-Cauchy complete semimetric spaces. This class of spaces is large enough to include the spaces (X, d) studied in [4] (called by Frechet spaces with a regular ecard), for which d is assumed to satisfy the following condition, a relaxation of the triangle inequality. (1) $$d(x,y) \le \epsilon(\max\{d(x,z),d(z,y)\}), \text{ for } x,y,z \in X,$$ where a function $\epsilon: \mathbf{R}_+ \mapsto \mathbf{R}_+$ is such that $\lim_{t \to 0^+} \epsilon(t) = 0$. (Recently, a comprehensive study of such spaces with ϵ being linear has been made by the third named author [16] in connexion with studying the so-called small system convergence [12].). Our Theorem 1 generalizes an earlier result of M. Cicchese [5], who has considered the Banach contractions on a semimetric space with d satisfying a strengthened form of (1). Moreover, a restriction on a contractive constant was made in [5]. We also give an example of a fixed point free Banach contraction on a d-Cauchy complete semimetric space in order to demonstrate that an additional condition imposed on d in Theorem 1 cannot be omitted (see Example 2). On the other hand, our Theorem 2 shows that this condition is unecessary if one considers a map f satisfying the inequality introduced by R. M. Blanchini [2]. $$(2) \quad d(fx, fy) \le h \max\{d(x, fx), d(y, fy)\},\$$ for an $h \in (0,1)$ and all $x, y \in X$. Then, however, a continuity argument must be used to ensure the existence of a fixed point (see Example 3 and Remark 3). Finally, we would like to call the reader's attention to the recent papers [9], [10] and [11] of T. Hicks and B. E. Rhoades, in which the authors have obtained several fixed point theorems for maps on so-called d-complete topological spaces. Here a distance function d need not be even symmetric. However, they use a different concept of completeness: a space (X, d) is said to be (Σ) d-complete iff for any sequence $(x, \gamma)_{m=1}^{\infty}$, $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$ implies that $\{x_n\}_{n=1}^{\infty}$ is τ -convergent. This notion let to obtain almost immediately an extension of the Contraction Principle and many other theorems to such spaces. However, in a semimetric setting, this concept of completeness is rather strong (see Proposition 2). Preliminary results. We begin with the following simple extension of the Contraction Principle. The letter fⁿ denotes the nth iterate of a map f. Proposition 1. Let (X,d) be a Hausdorff semimetric and d-Cauchy complete space and let f be a selfmap on X satisfying the Banach contractive condition: (3) $$d(fx, fy) \le hd(x, y)$$, for an $h \in (0, 1)$ and $x, y \in X$. If (X,d) is bounded, i.e., $M:=\sup\{d(x,y):x,y\in X\}<\infty$, then f has a unique fixed point p, and for any $x\in X$, $\{f^nx\}_{n=1}^\infty$ converges to p. *Proof.* Fix an $x \in X$. That $\{f^n x\}_{n=1}^\infty$ is d-Cauchy follows easily from the inequality $$d(f^n x, f^{n+m} x) \le h^n d(x, f^m x) \le h^n M$$, for all $n, m \in \mathbb{N}$ because of the convergence $h^*M \to 0$. By the completeness, there is a $p \in X$ such that $\{f^*x\}_{n=1}^\infty$ τ -converges to p. Since d is a semimetric, (3) implies that f is τ -continuous. Therefore, $\{f^{n+1}x\}_{n=1}^\infty$ τ -converges to fp. Since (X,d) is Hausdorff, we may infer that p=fp. Clearly, (3) guarantees the uniqueness of a fixed point. \Box The following example shows that under assumptions of Proposition 1 a space (X,d) need not be (Σ) d-complete. Example 1. Let X := N. Define the function d by putting $$d(n,n+1):=\frac{1}{2^n}=:d(n+1,n),\ d(n,n):=0,\quad \text{for } n\in \mathbb{N},$$ and d(n, m) := 1, for all $n, m \in \mathbb{N}$ with |n - m| > 1. Then d is the semimetric. Clearly, $\sum_{n=1}^{\infty} d(n, n+1) < \infty$ and the sequence $\{n\}_{n=1}^{\infty}$ is not convergent. Thus, (X, d) is not $(\Sigma) d - \text{complete}$. On the other hand, every d-Cauchy sequence is constant for sufficiently large n, hence convergent, so (X, d) is d-Cauchy complete. Moreover, for a large class of semimetric spaces, (Σ) $d\text{-}\mathrm{completeness}$ implies $d\text{-}\mathrm{Cauchy}$ completeness. Proposition 2. Let (X,d) be a semimetric space satisfying Wilson's Axiom IV [17], i.e., given $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ and an x in X, $$d(x_n, x) \rightarrow 0$$ and $d(x_n, y_n) \rightarrow 0$ imply that $d(y_n, x) \rightarrow 0$. If (X,d) is (Σ) d-complete, then (X,d) is d-Cauchy complete. Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a d-Cauchy sequence. Then there exists a subsequence $\{x_k\}_{n=1}^{\infty}$ such that $d(x_k, x_{k,1}) < \frac{1}{2}$. By hypothesis, $\{x_k\}_{n=1}^{\infty}$ is τ -convergent to an $x \in X$. Since d is a semimetric, we get $d(x_k, x) \to 0$. Simultaneously, $d(x_n, x_k) \to 0$ because of the Cauchy condition. So, by Axiom IV, we may infer that $d(x_n, x) \to 0$, which implies that $\{x_n\}_{n=1}^{\infty}$ is τ -convergent to x (this implication also holds if d is a symmetric). The following example shows that Proposition 1 cannot be extended to unbounded semimetric spaces. Example 2. Let $X := \mathbb{N}$, fn := n + 1 for $n \in \mathbb{N}$, and $$d(n, m) := \frac{|n - m|}{\operatorname{quirle } m!}, \quad \text{for } n, m \in \mathbb{N}.$$ Then d is the semimetric. Let $\{x_n\}_{n=1}^{\infty}$ be a d-Cauchy sequence. Then $\{x_n\}_{n=1}^{\infty}$ is bounded; for otherwise, there is a subsequence $\{x_k\}_{n=1}^{\infty}$, $x_k \to \infty$, and then, for any $n \in \mathbb{N}$ $$\lim_{m \to \infty} d(x_{k_n}, x_{k_m}) = \lim_{m \to \infty} \frac{|x_{k_n} - x_{k_m}|}{2^{x_{k_n}}} = \infty,$$ violating the Cauchy condition. Therefore, we may infer that $\{x_n\}_{n=1}^\infty$ is constant for sufficiently large n, since it is d-Cauchy. Thus (X,d) is d-Cauchy complete, but f has no a fixed point though it satisfies (3) with $h=\frac{1}{4}$. Now, we give some equivalent formulations of a condition imposed on a function d in our Theorem 1 (see Section 3). Proposition 3. Let (X,d) be an E-space. The following conditions are equivalent. (i): There exists an r > 0 such that $$R := \sup\{diam\ K(x,r) : x \in X\} < \infty,$$ i.e., the diameters of open balls with radius r are equibounded. (ii): There exist δ, η > 0 such that, given x, y, z ∈ X. $$d(x, z) + d(z, y) \le \delta$$ implies that $d(x, y) \le \eta$. (iii): There do not exist sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$, $\{z_n\}_{n=1}^{\infty}$ such that $$d(x_n, z_n) \to 0$$, $d(z_n, y_n) \to 0$ and $d(x_n, y_n) \to \infty$. Proof. To prove (i) implies (ii) it suffices to put $\delta := \frac{r}{2}$ and $\eta := R$. To prove (iii) implies (iii) suppose, on the contrary, there exist sequences as in (iii). Then $d(x_n, x_n) + d(x_n, y_n) \le \delta$ for n large enough so, by (ii), $d(x_n, y_n) \le \eta$, which contradicts the convergence $d(x_n, y_n) \to \infty$. Further, it is easy to verify the implication $\gamma(i) \Rightarrow \gamma(iii)$. 3. Nonlinear contractions on a semimetric space. Obviously, condition (iii) of Proposition 3 is satisfied if there do not exist sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=n}^{\infty}$, $\{x_n\}_{n=n}^{\infty}$, such that $$d(x_n, z_n) \rightarrow 0$$, $d(z_n, y_n) \rightarrow 0$ and $d(x_n, y_n) \not\rightarrow 0$. By Theorem 1 of Wilson [17], the last condition holds iff (X, d) has a regular ecart. So, in particular, the following fixed point theorem may be applied to selfmaps on such a space. Theorem 1. Let (X,d) be a Hausdorff semimetric and d-Cauchy complete space satisfying one (hence all) of conditions (i)-(iii) of Proposition 3. Let f be a selfmap on X, for which (4) $$d(fx, fy) \le \phi(d(x, y)), \text{ for all } x, y \in X,$$ where $\phi: \mathbf{R}_+ \mapsto \mathbf{R}_+$ is a non-decreasing function such that $\lim_{n \to \infty} \phi^n(t) = 0$, $(t \in \mathbf{R}_+)$. Then f has a unique fixed point p and $f^nx \to p$, for all $x \in X$. *Proof.* Assume that condition (ii) of Proposition 3 holds. Fix an $x \in X$. By (4) and the monotonicity of ϕ , we get that $$d(f^n x, f^{n+m} x) \le \phi^n(d(x, f^m x)), \text{ for all } n, m \in \mathbb{N}.$$ In particular, $d(f^nx, f^{n+1}x) \leq \phi^n(d(x, fx))$, which implies, by hypothesis, that $d(f^nx, f^{n+1}x) > 0$. Therefore, there is a $k \in \mathbb{N}$ such that $d(f^kx, f^{k+1}x) \leq \min\{\frac{\delta}{2}, \eta\}$. Assume that $\phi(\eta) \leq \frac{\delta}{2}$. We shall apply induction with respect to n to show that, for all $n \in \mathbb{N}$. (6) $$d(f^k x, f^{k+n} x) \le \eta.$$ By the definition of k, (6) holds for n=1. Assume that (6) is satisfied for some $n \in \mathbb{N}$. Since $d(f^k x, f^{k+1} x) \leq \frac{\delta}{2}$ and $$d(f^{k+1}x,f^{k+n+1}x) \leq \phi(d(f^kx,f^{k+n}x)) \leq \phi(\eta) \leq \frac{\delta}{2},$$ we get that $d(f^kx,f^{k+1}x)+d(f^{k+1}x,f^{k+n+1}x)\leq \delta$, which, by (ii), implies that $d(f^kx,f^{k+n+1}x)\leq \eta$, completing the induction. Hence and by (5), we may infer that $$d(f^{k+n}x, f^{k+n+m}x) \le \phi^n(\eta)$$, for all $n, m \in \mathbb{N}$, which easily yields the Cauchy condition for $\{f^*x\}_{n=1}^\infty$. Further, use the same argument as in the proof of Proposition 1 to obtain that $f^*x \to p = fp$. Thus the proof is completed if $\phi(\eta) \leq \frac{\delta}{2}$. If not, then, however, there exists a $j \in \mathbb{N}$ such that $\phi'(\eta) \leq \frac{\delta}{2}$. Since the iterate f^j satisfies (4) with ϕ replaced by ϕ^i , we may conclude by the preceding part of the proof, that f^i has a unique fixed point p and for all $x \in X$, $f^{in}x \to p$ as $n \to \infty$. It is well-known that this implies that p is a unique fixed point of f and $f^{n}x \to p$, for all $x \in X$ (clearly, the proof of this fact in a metric setting remains valid for semimetrics). \square Remark 1. Theorem 1 generalizes Theorem 2 of Cicchese [5], who has imposed on d the condition $$d(x, y) \le \epsilon(d(x, z)) + kd(y, z)$$, for all $x, y, z \in \mathbb{R}_+$, where $k \ge 1$, $\epsilon : [0, a) \mapsto \mathbb{R}_+$, (a > 0) and $\lim_{t \to 0^+} \epsilon(t) = 0$. By Theorem 1 [17], this condition is stronger than (1). Furthermore, Cicchese has assumed that f satisfies (3) with $h < \frac{1}{\epsilon}$. REMARK 2. Theorem 1 can be carried over to a complete E-space (X,d) satisfying (i) of Proposition 3 and Wilson's Axiom III [17] given in our Theorem 2 4. Bianchini's maps on an E-space. The following example shows that Proposition 1 cannot be extended to maps satisfying condition (2). EXAMPLE 3. Let $X := \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ and $fx := \frac{x}{4}$ for $x \neq 0$, f0 := 1. Further, let $$d(0,1) := 1 =: d(1,0), \quad d(1,\frac{1}{n}) := \frac{2}{3} =: d(\frac{1}{n},1)$$ for $n \ge 2$, $$d(1,1) := 0$$ and $d(x,y) := |x-y|$, for $x, y \in X - \{1\}$. Then d is the semimetric. Let $\{x_n\}_{n=1}^{\infty}$ be a d-Cauchy sequence. Since $(X - \{1\}, d)$ is the complete metric space, it suffices to consider the case, in which there is a subsequence $\{x_k\}_{n=1}^{\infty}$ such that $x_k = 1$, for all $n \in \mathbb{N}$. Then $x_n = 1$ for sufficiently large n; for otherwise, there is a subsequence $\{x_m\}_{n=1}^{\infty}$ such that $x_m \neq 1$ for all $n \in \mathbb{N}$ so, by (7), $d(x_k, x_k) \geq \frac{2}{3}$, $(n \in \mathbb{N})$, violating the Cauchy condition. Thus (X, d) is d-Cauchy complete. Now, we verify condition (2). Let $X_0 := X - \{0,1\}$. Then (X_0,d) is the metric space and $f|_{X_0}$ is the Banach contraction with the constant $h = \frac{1}{2}$. Hence, by the triangle inequality, $f|_{X_0}$ satisfies (2) with the constant $\frac{2}{2}$. $(=\frac{1}{2})$. Further, for all $x \in X$, $d(f0,fx) \le \frac{2}{3} = \frac{2}{3}d(0,f0)$, and $d(f1,fx) = \frac{1}{4} - \frac{1}{4}x - \frac{2}{3} = \frac{2}{3}d(1,f1)$, for $x \ne 0$. So f satisfies (2) with $h = \frac{2}{3}$, but there is no fixed point for f. Unexpectedly, Proposition 1 does extend to continuous maps satisfying (2) even if (X, d) is unbounded and d is not symmetric. Such a space (X, d) endowed with the right convergence operator we also call an E-space Theorem 2. Let X be a nonempty set and $d: X \times X \mapsto \mathbb{R}_+$ be a function such that, given $x, y \in X$, $$d(x,y) = 0$$ iff $x = y$. Let f be a selfmap on X such that condition (2) holds and f is d-continuous, i.e., given $\{x_n\}_{n=0}^\infty$ and x in X, $d(x_n, x) \to 0$ implies $d(fx_n, fx) \to 0$. If the E-space (X, d) is complete and d satisfies Wilson's Axion III [17], i.e., given $\{x_n\}_{n=1}^\infty$ x and y in X, $$d(x_n, x) \to 0$$ and $d(x_n, y) \to 0$ imply that $x = y$, then f has a unique fixed point p, and $d(f^nx, p) \to 0$, for all $x \in X$. *Proof.* Define $\alpha(x) := d(x, fx)$, for $x \in X$. Then (2) easily implies that $\alpha^{-1}(0)$ is at most a singleton and $\alpha(fx) \le h\alpha(x)$, for $x \in X$. Hence if $$\bar{d}(x, y) := \max\{\alpha(x), \alpha(y)\}\ \text{ for } x \neq y, \text{ and } \bar{d}(x, x) := 0 \text{ for } x \in X,$$ then one can verify that \bar{d} is the metric; in particular, $\bar{d}(x,y) \leq \max\{\bar{d}(x,z), \bar{d}(z,y)\}$, for $x,y,z \in X$, so \bar{d} is the ultrametric (see, e.g., [7], p.504). Moreover, f is the Banach contraction with respect to \bar{d} with the same constant h as in (2). By the proof of the Contraction Principle, for any $x \in X$ the sequence $\{f^{\mu}z\}_{\infty}^{\mu}$ is \bar{d} -Cauchy. By (2), for $\eta, m \in \mathbb{N}$, if $f^{\mu}x \neq f^{\mu}x$ then $$d(f^{n+1}x, f^{m+1}x) \le h \max\{\alpha(f^nx), \alpha(f^mx)\} = h\bar{d}(f^nx, f^mx).$$ Hence, $d(f^{n+1}x, f^{m+1}x) \leq h d(f^nx, f^mx)$, which holds also in case in which $f^nx = f^mx$. Therefore, we may conclude that $\{f^nx\}_{n=1}^\infty$ is d-Cauchy. By the completeness, there is a $p \in X$ such that $d(f^nx, p) \to 0$. Then $d(f^{n+1}x, fp) \to 0$ because of the continuity of f. Hence, p = fp since d satisfies Axion III. Moreover, p does not depend on x, since the fixed point is unique. REMARK 3. If d is continuous with respect to the first variable, i.e., given $\{x_n\}_{n=1}^n$, x,y in X, $d(x_n,x)\to 0$ implies $d(x_n,y)\to d(x,y)$ (this forces Axion III for such a d), then the assumption in Theorem 2 that f be continuous can be dropped. To see that, observe that, by the proof of Theorem 2, given $x\in X$, there is a $p\in X$ such that $d(f^nx,p)\to 0$. By the continuity of d and the inequality $$d(f^{n+1}x,fp) \leq h \max\{d(f^nx,f^{n+1}x),d(p,fp)\}, \ \ \text{for} \ \ x \in X,$$ we get letting $n \to \infty$ that $d(p, fp) \le hd(p, fp)$, and hence p = fp. Remark 4. Theorem 2 can be extended to maps satisfying more general contractive condition: $$d(fx, fy) \le \phi(\max\{d(x, fx), d(y, fy)\}), \text{ for } x, y \in X,$$ where ϕ is a function as in Theorem 1. Then the above given proof needs a slight modification only; that $\{f^*x\}_{i=1}^{\infty}$ is \bar{d} -Cauchy follows this time from the proof of Theorem 1.2 [13] and the fact that f satisfies (4) in a metric space (X,\bar{d}) . ## REFERENCES - ARHANGEL'SKII, A. V., Mappings and spaces, Uspehi Mat. Nauk 21 (1966), no.4 (130), 133-184. - BIANCHINI, R. M., Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108. - [3] BURKE, D. K., Cauchy sequences in semimetric spaces, Proc. Amer. Math. Soc. 33 (1972), 161-164. - [4] CHITTENDEN, E. W., On the equivalence of ecart and voisinage, Trans. Amer. Math. Soc. 18 (1917), 161-166. [5] CICCHESE, M., Ouestioni di completezza e contrazioni in spazi metrici - CICCHESE, M., Questioni di completezza e contrazioni in spazi metrici generalizzati, Boll. Un. Mat. Ital. 13-A (5) (1976), 175-179. Dugundi, J. and Granas, A., Fized Point Theory, Polish Scientific Pub- - lishers, Warszawa (1982). - [7] ENGELKING, R., General Topology, Polish Scientific Publishers, Warszawa (1977). - [8] GALVIN, F. and SHORE, S. D., Completeness in semimetric spaces, Pacific J. Math. 113 (1984), 67-74. - [9] HICKS, T. L., Fixed point theorems for d-complete topological spaces I, Internat. J. Math. & Math. Sci. 15 (1992), 435-440. - [10] HICKS, T. L. and RHOADES, B. E., Fixed point theorems for d-complete topological spaces II, Math. Japon. 37 (1992), 847-853. - [11] HICKS, T. L. and RHOADES, B. E., Fixed points for pairs of mappings in d-complete topological spaces, Internat. J. Math. & Math. Sci. 16 (1993), 259-266. - [12] JOHNSON, R. A., NIEWIAROWSKI, J. and ŚWIĄTKOWSKI, T., Small system convergence and metrizability, Proc. Amer. Math. Soc. 103 (1988), 105-112. - [13] MATKOWSKI, J., Integrable solutions of functional equations, Diss. Math. 127, Polish Scientific Publishers, Warszawa (1975). - [14] MATKOWSKI, J., Fixed point theorem for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 62 (1977), 344–348. - [15] MCAULEY, L. F., A relation between perfect separability, completeness, and normality in semi-metric spaces, Pacific J. Math. 6 (1956), 315–326. [16] ŚWIĄTKOWSKI, T., B-metric spaces, Sci. Bull. Lódź Tech. Univ. (Matematyka) 26 (1994), 69-80. [17] WILSON, W. A., On semi-metric spaces, Amer. J. Math. 53 (1931), 361–373. J. JACHYMSKI INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY UL. ŻWIRKI 36 90-924 LÓDŹ, POLAND JACHYMSK ØLODZI PLODZ PL J. MATKOWSKI DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY UL. WILLOWA 2 43-300 BIELSKO-BIALA, POLAND