Remark on Generalization of Minkowski's Inequality

J. JELÍNEK and J. MATKOWSKI

Praha Rielsko-Riala*)

Received 15 March 1995

Let (Ω, Σ, μ) be a measure space such that $\mu(\Omega) \le 1$. We give some general conditions for a bijection $\varphi: [0, \infty) \mapsto [0, \infty)$, such that

$$\varphi^{-1}\left(\int_{\Omega}\varphi\odot|x+y|\,\mathrm{d}\mu\right)\leq \varphi^{-1}\left(\int_{\Omega}\varphi\odot|x|\,\mathrm{d}\mu\right)+\,\varphi^{-1}\left(\int_{\Omega}\varphi\odot|y|\,\mathrm{d}\mu\right)$$

for all μ -integrable simple functions $x, y: \Omega \rightarrow \mathbb{R}$. This generalizes result from [1].

1. Introduction

For a measure space (Ω, Σ, μ) such that $\mu(\Omega) < \infty$, denote by $S(\Omega, \Sigma, \mu)$ the linear space of all u-integrable step functions $x: \Omega \mapsto \mathbf{R}_+(:=[0, \infty))$. Let $\varphi: \mathbb{R}_+ \mapsto \mathbb{R}_+$ be an arbitrary bijection. Then the functional $P_\varphi: S(\Omega, \Sigma, \mu) \mapsto \mathbb{R}_+$ given by

$$P_{\varphi}(x) := \varphi^{-1}\left(\int_{\Omega} \varphi \odot |x| d\mu\right), \quad x \in S(\Omega, \Sigma, \mu),$$

is well defined. For $\varphi(t) = \varphi(1)t^p$ $(t \ge 0)$ with p > 1, the functional P, coincides with the Lp-norm. In this note we prove the following generalization of Minkowski's inequality:

Theorem. Let (Ω, Σ, μ) be a measure space such that $\mu(\Omega) \leq 1$. Suppose $\varphi: \mathbf{R}_+ \mapsto \mathbf{R}_+$ satisfies the following conditions:

This paper has been written during the 23th Winter School on Abstract Analysis, Lhota nad Rohanovem, Czech Republic, 22 - 29 January 1295. The first author is supported by Research Grant GAUK 363 and GAČR 201/94/0474.

^{*)} Department of Math. Anal., Charles University, Sokolovská 83, 186 00 Prague 8, Czech Republic Department of Mathematics, Technical University, Willowa 2, 43-309 Bielsko-Biala, Poland

1º, \(\phi\) is bijective, increasing, and differentiable;

2º, \u03c3' is strictly increasing, and locally absolutely continuous;

3°. there exists a superadditive function g: R+ → R+ such that

$$g = \frac{\varphi'}{\varphi''}$$
 a.e. in \mathbf{R}_+ .

Then for all $x, y \in S(\Omega, \Sigma, \mu)$,

$$P_o(x + y) \le P_o(x) + P_o(y)$$
.

This generalizes a result from paper [1] of the second named author where φ is assumed to be of the class \mathscr{C}^2 and such that $\varphi' > 0$ and $\frac{\varphi}{\varphi'}$ is superadditive in $(0, \infty)$. At the end of this paner we explain the assumption that $u(\Omega) \le 1$.

2. Auxiliary lemma and the proof of Theorem

The proof of the theorem is based on the following.

Lemma. If $\varphi : \mathbb{R}_+ \mapsto \mathbb{R}_+$ satisfies the conditions $1^0, 2^0, 3^0$ of the theorem, then there exists a sequence of functions $\varphi_n : \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that:

a) for every n∈ N, φ, is bijective and of the class €x;

b) for every $n \in \mathbb{N}$, $\varphi'_n > 0$, $\varphi''_n > 0$ in $(0, \infty)$, and the function $\frac{\varphi_n}{\varphi_n^2}$ is superadditive in $(0, \infty)$:

c) for every a > 0.

$$\lim_{n\to\infty} \varphi_n = \varphi \,, \qquad \lim_{n\to\infty} \varphi'_n = \varphi' \,, \quad \text{uniformly on [0, a]};$$

d)

$$\lim_{n \to \infty} \frac{\varphi_n'}{\varphi_n''} = g \quad \text{a.e.} \quad \text{in} \quad \mathbf{R}_+ \text{ (and in } \mathscr{L}^1_{loc})$$

where g is defined in the theorem; this convergence is uniform on every compact interval of the continuity of g contained in $(0, \infty)$.

Proof. By 1^0 and 2^0 the function $\log \odot \phi'$ is locally absolutely continuous. Consequently it is equal to a primitive of its derivative

$$(\log \bigcirc \varphi')' = \frac{\varphi''}{\varphi'} = \frac{1}{g}.$$

Take a sequence $\varrho_n: \mathbf{R} \mapsto \mathbf{R}_+$ of \mathscr{C}^x -smooth even functions such that

(2)
$$\sup \varrho_n \subset \left[-\frac{1}{n}, \frac{1}{n}\right], \int_{-\infty}^{+\infty} \varrho_n = 1,$$

and define $q_a: \mathbf{R}_{\perp} \mapsto \mathbf{R}_{\perp}$ by the formula

$$g_n(t) = \int_{-\infty}^{\infty} g(ts) \varrho_n(1-s) ds, \quad t \ge 0, \quad n \in \mathbb{N}.$$

Note that g_n is increasing, bijective, superadditive, of the class \mathscr{C}^{\times} , and

$$\lim g_n = g$$
 a.e. in \mathbf{R}_+ .

Since g is increasing, we have

(3)
$$g_n(t) \ge \int_{-1}^{\infty} g(ts) \varrho_n(1-s) ds \ge \int_{-1}^{\infty} g(t) \varrho_n(1-s) ds = \frac{g(t)}{2}$$

for all t > 0.

Now we are going to define φ_{α} , $n \in \mathbb{N}$. First we define its derivative φ'_{α} in such a way that $\log \varphi \varphi'_{\alpha}$ is the primitive of $\frac{1}{4\pi}$ for which $\varphi'_{\alpha}(1) = \varphi'(1)$. The value $\varphi'_{\alpha}(0)$ is well-defined if $\int_{0}^{1} \frac{1}{4\pi} < \infty$; otherwise we put $\varphi'_{\alpha}(0) = 0$. By (1), (3) and the Lebesgue majorization theorem, we have

(4)
$$\lim \varphi'_n = \varphi'$$

pointwise on $(0, \infty)$. As all functions here are continuous and increasing, it follows that the convergence (4) is uniform on every compact interval contained in $(0, \infty)$. For proving that (4) holds uniformly on [0, 1] too, we will distinguish two cases depending on $\sigma'(0) > 0$ or $\sigma'(0) = 0$.

If $\phi'(0) > 0$, then by (1) the function $\frac{1}{\theta}$ is integrable on [0, 1], and using the Lebesgue majorization theorem, as above, we obtain that (4) holds pointwise, and, therefore, uniformly on [0, 1].

Now suppose that $\varphi'(0) = 0$. We know that φ' is continuous, increasing, (4) holds uniformly on $[\epsilon, 1]$ for every $\epsilon \in (0, 1)$, and that φ'_{ϵ} is increasing and positive on (0, 1]. Thus the convergence must be uniform on [0, 1], too.

The definition of the function φ_n , for which $\varphi_n(0) = 0$, is obvious. Evidently, $\lim_{n \to \infty} \varphi_n = \varphi$ uniformly on [0, a] for every a > 0, and the lemma is proved. Now we give the

Proof of theorem. Let φ_n , $n \in \mathbb{N}$, be the sequence of functions constructed in the lemma, and let $x, y \in S(\Omega, \Sigma, \mu)$ be arbitrary. Then by Theorem 3 in [1] we have

$$\varphi_n^{-1} \Biggl(\int_\Omega \varphi_n \ominus |x\,+\,y|\,d\mu \Biggr) \leq \varphi_n^{-1} \Biggl(\int_\Omega \varphi_n \ominus |x|\,d\mu \Biggr) + \, \varphi_n^{-1} \Biggl(\int_\Omega \varphi_n \ominus |y|\,d\mu \Biggr) \,.$$

Letting $n \to \infty$ here and making use of the lemma, we get

$$\varphi^{-1}\biggl(\int_{\Omega}\varphi\odot|x+y|\,d\mu\biggr)\leqq\varphi^{-1}\biggl(\int_{\Omega}\varphi\odot|x|\,d\mu\biggr)+\,\varphi^{-1}\biggl(\int_{\Omega}\varphi\odot|y|\,d\mu\biggr)\,,$$

which, by the definition of P_{φ} , completes the proof.

3. Additional remarks and proposition about geometrically convex functions

Remark 1. Suppose that (Ω, Σ, μ) is a measure space such that there exist $A, B \in \Sigma$ satisfying the condition

$$0 < \mu(A) < 1 < \mu(B) < \infty$$
.

In [1] it is shown that if $\varphi: \mathbb{R}_+ \mapsto \mathbb{R}_+$ is bijective, φ^{-1} continuous at 0, and

$$P_{\!\boldsymbol{\phi}}\!\!\left(\boldsymbol{x}\,+\,\boldsymbol{y}\right) \leq P_{\!\boldsymbol{\phi}}\!\!\left(\boldsymbol{x}\right) \,+\, P_{\!\boldsymbol{\phi}}\!\!\left(\boldsymbol{y}\right) \qquad \text{holds for all } \boldsymbol{x},\,\boldsymbol{y} \in S\left(\Omega,\,\boldsymbol{\Sigma},\,\boldsymbol{\mu}\right),$$

then $\varphi(t) = \varphi(1)t^p$ ($t \ge 0$), for some $p \ge 1$. This shows in particular that the assumption $\mu(\Omega) \le 1$ is essential.

In this connection let us also mention the following

Remark 2. Suppose that (Ω, Σ, μ) has the following property: for every $A \in \Sigma$

$$\mu(A) = 0$$
 or $\mu(A) \ge 1$.

Under this assumption it is proved in [2] that if $\varphi: \mathbf{R}_+ \mapsto \mathbf{R}_+$ is a convex homeomorphism of \mathbf{R}_+ such that φ is geometrically convex in $(0, \infty)$, i.e. that

$$\varphi(\sqrt{st}) \le \sqrt{\varphi(s)} \varphi(t)$$
 for all $s, t > 0$,

then

$$P_{\varphi}(x + y) \le P_{\varphi}(x) + P_{\varphi}(y)$$
 for all $x, y \in S(\Omega, \Sigma, \mu)$,

In the proof of this result the one-sided derivatives and Zygmund's lemma are used. It turns out that the argument can be simplified if we work with smooth functions φ . The following result permits us to do it.

Proposition. Suppose that φ is a convex and geometrically convex homeomorphism of \mathbb{R}_+ onto itself. Then there exists a sequence φ_n , $n \in \mathbb{N}_+$ of \mathscr{C}^n -smooth convex and geometrically convex diffeomorphisms of \mathbb{R}_+ onto itself such that

$$\lim \, \varphi_n = \varphi$$

uniformly on [0, a] for every a > 0.

Proof. Taking the function ϱ_n given by (2) in the previous proof, we define φ_n as follows

$$\varphi_u(t) := \exp \int \rho_u(u) \log \varphi(t e^{-u}) du, \quad t > 0,$$

and $\varphi_n(0)=0$ to have φ_n continuous at 0. Since $\{\varphi_n\}$ converges to φ pointwise on \mathbf{R}_+ , the monotonicity of φ_n and φ implies that the convergence is uniform on [0,a] for every a>0.

Now we have for all s, t > 0

$$\varphi_n(\sqrt{st}) = \exp \int \varrho_n(u) \log \varphi (\sqrt{st} e^{-u}) du \le \exp \int \varrho_n(u) \log \sqrt{\varphi(se^{-u})} \varphi(te^{-u}) du =$$

$$\exp \left[\varrho_n(u) \left[\frac{1}{2} (\log \varphi(se^{-u}) + \log \varphi(te^{-u})) \right] du = \sqrt{\varphi_n(s) \varphi_n(t)} \right]$$

which shows that ϕ_n is geometrically convex.

Now we shall show that φ_n is convex. As φ is convex with $\varphi(0) = 0$, the function $\frac{\varphi(t)}{s}$ is increasing, too. For 0 < s < t we have

$$\begin{split} \varphi_n(s) &= \exp \int \varrho_n(u) \log \, \varphi(s \, e^{-u}) \, du \leq \exp \int \varrho_n(u) \log \, \frac{s}{t} \, \varphi(te^{-u}) = \\ &= \exp \int \varrho_n(u) \left\lceil \log \, \frac{s}{t} + \log \, \varphi(te^{-u}) \, \right\rceil \, du = \, \frac{s}{t} \, \varphi_n(t) \, , \end{split}$$

which was to be shown.

For showing that φ_n is convex, we use the following known property of geometrically convex functions φ_i : if the function $\frac{\partial \omega_i}{\partial t}$ is increasing, then φ_n is convex. Let us show it briefly. Suppose that φ_n is not convex; then there are points 0 < s < u < t and a linear function t such that

(5)
$$\varphi_n(s) - l(s) = \varphi_n(t) - l(t) = 0$$
 and $\varphi_n(u) - l(u) > 0$.

The points s, t can be changed without changing l so that (5) holds for all $u \in (s, t)$. For $u = \sqrt{st}$ we get from (5) by a simple calculation

$$\varphi_n(\sqrt{st}) > \varphi_n(s) \frac{\sqrt{t}}{\sqrt{s} + \sqrt{t}} + \varphi_n(t) \frac{\sqrt{s}}{\sqrt{s} + \sqrt{t}}.$$

Thanks to the geometrical convexity of φ_n , it follows

$$\begin{split} &(\sqrt{s} + \sqrt{t}) \, \sqrt{\varphi_s(s) \varphi_s(t)} > \varphi_s(s) \sqrt{t} + \varphi_s(t) \sqrt{t} \,, \\ &(\sqrt{s} + \sqrt{t}) \, \sqrt{\frac{\varphi_s(s) \varphi_s(t)}{st}} > \frac{\varphi_s(s)}{s} \, \sqrt{s} + \frac{\varphi_s(t)}{t} \, \sqrt{t} \,, \\ &\sqrt{\frac{\varphi_s(s)}{s}} \, \sqrt{s} \Big(\sqrt{\frac{\varphi_s(t)}{t}} - \sqrt{\frac{\varphi_s(s)}{s}}\Big) > \sqrt{\varphi_s(t)t} \, \sqrt{t} \, \Big(\sqrt{\frac{\varphi_s(t)}{t}} - \sqrt{\frac{\varphi_s(s)}{s}}\Big) \,. \end{split}$$

We see that the inequality $\sqrt{\frac{g_0dl}{r}} + \sqrt{\frac{g_0dl}{s}} \ge 0$ is not possible, so the function $\frac{g_0dl}{r}$ could not be increasing if φ_n were not convex. the proposition is proved.

References

- MATKOWSKI, J.: The converse of Minkowski's inequality and its generalization, Proc. Amer. Math. Soc. 109.3 (1990), 663-675.
- [2] MATKOWSKI, J., On a generalization of Mulholland's inequality, Abh. Math. Sem. Hamburg 63 (1993), 97–103.