On stability of the homogeneity condition

Zvgfrvd Kominek and Janusz Matkowski

Dedicated with affection to Professor János Aczél on the occasion of his seventieth birthday

Abstract. Let f be a function defined on a cone S with the values in a sequentially complete locally convex linear topological Hausdorff space Y. If there exist a bounded subset V of Y and an open interval $(a, b) \subset (1, \infty)$ such that for all $x \in S$ and every $\lambda \in (a, b)$ the condition $\lambda^{-1}f(\lambda x) - f(x) \in V$ holds, then there exists a unique positively homogeneous mapping $F : S \to Y$ such that the difference F(x) - f(x) is uniformly bounded on S.

Introduction

In a recent paper [3] J. Tabor proved that every mapping $f : X \rightarrow Y$ from a real vector space X into a normed space Y satisfying the inequality

(1)
$$\|\alpha^{-1}f(\alpha x) - f(x)\| \le \varepsilon$$

for all $o \in \mathbb{R}$ and $s \in X$, where $\epsilon \geq 0$ is given, must be homogeneous. In the next paper $\{4\}$ written jointly with J. Tabor, J_r , they generalized this result which is interpreted as a superstability of the homogeneity condition. The same assertion holds true if we assume that condition (1) is fulfilled for every $x \in X$ and $\alpha \in (-\delta, \delta) \setminus \{0\}$, where $\delta > 0$ is a constant. In fact, setting $y = \alpha x$ in (1) we can easily show that the analogous inequality with $\tilde{\epsilon} = max\{\delta e, \epsilon\}$ on the right hand side is fulfilled for every $x \in X$ and $\alpha \in (-\infty, -\frac{1}{2}) \cup (-\delta, \delta) \setminus \{0\} \cup \{1\}, \infty\}$. Now for a fixed $\beta \in \{\frac{1}{2}, \infty\}$, every $\gamma, |\gamma| \leq \frac{1}{2}$, may be written in the form $\gamma = \alpha \beta$ with an $\alpha \in (-\delta, \delta) \setminus \{0\}$. Hence

$$\begin{split} \|\gamma^{-1}f(\gamma x)-f(x)\| &\leq & \|\alpha^{-1}\beta^{-1}f(\alpha\beta x)-\beta^{-1}f(\beta x)\| + \|\beta^{-1}f(\beta x)-f(x)\| \leq \\ &\leq & \beta^{-1}\varepsilon + \tilde{\varepsilon} \leq (\delta^2+\delta)\varepsilon, \end{split}$$

which by Tabor's result implies that f is homogeneous function.

Note also that if we assume condition (1) for every $(x \in X$ and $\alpha \in \mathbb{R}, |\alpha| > \delta$, where $\delta > 0$ is a constant, then Tabor's assertion does not hold. To see this, it is enough to consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by the formula

$$f(x) = \left\{ \begin{array}{ll} 0 & \quad \text{for } |x| \geq 1 \text{ or } x = 0 \\ 1 & \quad \text{for } x \in (0,1) \\ -1 & \quad \text{for } x \in (-1,1). \end{array} \right.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 39B72; Secondary 39B52.

Keywords and phrases: Approximately homogeneous functions, stability in the sense of Hyers.

Evidently f is not a homogeneous function. On the other hand it is not hard to check that for all α , $|\alpha| > 1$ and $x \in \mathbb{R}$ we have

$$|\alpha^{-1} f(\alpha x) - f(x)| < 2$$

The condition (1) implies the following two inequalities

$$\|\alpha^{-1}f(\alpha x)-f(x)\|\leq \varepsilon\quad \text{for every }\alpha>0 \text{ and }x\in X$$

and

(3)
$$||f(x) + f(-x)|| \le \varepsilon$$
 for every $x \in X$.

Conversely, conditions (2) and (3) imply the condition (1) (with 2ε instead of ε on the right hand side). In fact, for any $\alpha < 0$, by (2) and (3) we have

$$\|\alpha^{-1}f(\alpha x) - f(x)\| \le \|-\alpha^{-1}f((-\alpha)(-x)) - f(-x)\| + \|f(-x) + f(x)\| \le 2\varepsilon.$$

Thus Tabor's result says that every $f:X\to Y$ satisfying conditions (2) and (3) is homogeneous. An example of the function $f(x)=|x|,\ x\in\mathbb{R},\$ shows that the condition (3) is essential here.

In the present paper we deal with the stability of the homogeneity condition. We prove that for every function f satisfying the condition

$$\alpha^{-1} f(\alpha x) - f(x) \in V$$
, $\alpha \in A$, $x \in S$,

where S is a cone in X, $A \subset (1, \infty)$ is a set with a nonempty interior, and V is a bounded subset of Y, there exists a unique positively homogeneous function $F: S \to Y$ such that the difference F(x) - f(x) is uniformly bounded. The form of F is also given. The continuity of f permits us to replace the assumption int $A \neq \emptyset$ by the condition that A contains two noncommensurable numbers.

Moreover, a suitable result in which the difference f(x + y) - f(x) - f(y) is assumed to be uniformly bounded, is also given.

1. Auxiliary results

In the sequel the letters N, \mathbb{Z}, \mathbb{Q} , \mathbb{R} and \mathbb{R}_s stand for positive integers, integers, rationals, reals and nonnegative reals, respectively. Throughout this paper the symbol X stands for a real linear space and Y for a sequentially complete locally convex linear topological Hausdorff space. By seq \mathbb{Q} V we will denote the sequential closure of V, and by conv V the convex hull of V. A set $S \subset X$ is said to be a cone iff $tS \subset S$, for all t > 0. A cone S such that $S + S \subset S$ is said to be convex.

Lemma 1. Let f be a function defined on a cone S and with the values in Y. If there exist $A \subset (1,\infty), A \neq \emptyset$, and a bounded $V \subset Y$ such that

$$\alpha^{-1}f(\alpha x)-f(x)\in V, \qquad \alpha\in A, x\in S,$$

then for every $\alpha \in A$:

1°

$$\begin{cases} \text{ the function } F_{\alpha}:S\to Y \text{ given by } \\ F_{\alpha}(x):=\lim_{n\to\infty}\alpha^{-n}f(\alpha^nx), \quad x\in S, \\ \text{is well defined, and the convergence is uniform on } S; \end{cases}$$

 $2^{\circ} \begin{cases} F_{\alpha} \text{ is } \alpha\text{-homogeneous, i.e. } F_{\alpha}(\alpha x) = \alpha F_{\alpha}(x), \ x \in S, \text{ and } F_{\alpha}(x) - f(x) \in \alpha (\alpha - 1)^{-1} \text{seq cl conv } (V \cup \{0\}); \end{cases}$

i.e. there exists a unique $F: S \rightarrow Y$ such that $F_{\beta} = F$ for all $\beta \in A$.

Proof. Let us fix an arbitrary $\alpha \in A$. For all $n, m \in \mathbb{N}$ and $x \in S$ we have

$$\begin{split} &\alpha^{-n-m}f(\alpha^{n+m}x)-\alpha^{-m}f(\alpha^{m}x)=\alpha^{-n}[\alpha^{-n}f(\alpha^{n+m}x)-f(\alpha^{m}x)]=\\ &=\alpha^{-m}\sum_{k=1}^{n}\alpha^{-(k-1)}[\alpha^{-1}f(\alpha\alpha^{m+k-1}x)-f(\alpha^{m+k-1}x)]\\ &\in\alpha^{-m}\sum_{k=1}^{n}\alpha^{-(k-1)}V\subset\alpha^{-(n-1)}(\alpha-1)^{-1}\mathrm{conv}(V\cup\{0\}) \end{split}$$

which shows that $(\alpha^{-n}f(\alpha^nx))$ is a uniformly convergent Cauchy sequence. It follows that the function $F_{\alpha}: S \to Y$ given in 1° is well defined and we have

$$F_{\alpha}(\alpha x) = \lim_{n \to \infty} \alpha^{-n} f(\alpha^{n+1}x) = \alpha \lim_{n \to \infty} \alpha^{-(n+1)} f(\alpha^{n+1}x) = \alpha F_{\alpha}(x).$$

The identity

$$\alpha^{-n}f(\alpha^nx)-f(x)=\frac{\alpha}{\alpha-1}\left(\sum_{k=1}^n\frac{\alpha-1}{\alpha^k}[\alpha^{-1}f(\alpha\alpha^{k-1}x)-f(\alpha^{k-1}x)]+\alpha^{-n}0\right)$$

and the condition (4) imply

$$F_{\alpha}(x) - f(x) \in \frac{\alpha}{\alpha - 1} \mathrm{seq} \ \mathrm{cl}(\mathrm{conv} \ (V \cup \{0\})) \ , \qquad x \in S,$$

which proves 2°. Hence, for an arbitrary fixed $\alpha, \beta \in A$ and all $x \in S$

$$\beta^{-n}F_{\alpha}(\beta^{n}x) - \beta^{-n}f(\beta^{n}x) \in \beta^{-n}\alpha(\alpha - 1)^{-1}$$
seq cl conv $(V \cup \{0\})$.

Making use of 1°, we get

$$\lim_{n\to\infty} \beta^{-n}F_{\alpha}(\beta^{n}x) = F_{\beta}(x), \quad x \in S,$$

and, consequently,

$$F_{\beta}(x) - F_{\alpha}(x) = \lim_{n \to \infty} [\beta^{-n}F_{\alpha}(\beta^{n}x) - \alpha^{-n}F_{\beta}(\alpha^{n}x)] =$$

 $= \lim_{n \to \infty} \alpha^{-n}\beta^{-n}[\alpha^{n}F_{\alpha}(\beta^{n}x) - \beta^{n}F_{\beta}(\alpha^{n}x)].$

By virtue of 2° we obtain

$$F_{\beta}(x) - F_{\alpha}(x) = \lim_{n \to -\infty} \alpha^{-n} \beta^{-n} [F_{\alpha}(\alpha^n \beta^n x) - f(\alpha^n \beta^n x) + f(\alpha^n \beta^n x) - F_{\beta}(\alpha^n \beta^n x)] = 0$$

which proves 3°. The proof of Lemma 1 is complete.

Remark 1. An analogous Lemma holds true if the condition $A \subset (1, \infty)$ is replaced by $A \subset (0, 1)$, and the basic relation (4) by the following one

$$\alpha f(\alpha^{-1}x) - f(x) \in V.$$

Lemma 2. Let $S \subset X$ be a cone, and $f, F_1, F_2 : S \to Y$ mappings. If F_1, F_2 are positively homogeneous and there exist a function $g : S \to \mathbb{R}_+$ and a bounded subset V of Y such that

$$F_i(x) - f(x) \in g(x)V$$
, $x \in S$, $i = 1, 2$;

and

$$\inf \{\frac{g(tx)}{t}; t > 0\} = 0, x \in S,$$

then $F_1 = F_2$.

Proof. We have

$$F_1(x) - F_2(x) = t^{-1}(F_1(tx) - F_2(tx)) = t^{-1}(F_1(tx) - f(tx) + f(tx) - F_2(tx)) \in$$

$$\in t^{-1}(g(tx)V - g(tx)V) \subset \frac{g(tx)}{t}V - \frac{g(tx)}{t}V$$

for all $x \in S$ and t > 0. According to our assumptions we get $F_1(x) = F_2(x)$ for all $x \in S$, which was to be shown.

2. Stability of the homogeneity condition

We begin this section with the following

Theorem 1. Let $S\subset X$ be a cone and $f:S\to Y$ a mapping. If there exist $A\subset (1,\infty)$, $\operatorname{int} A\neq\emptyset$, and a bounded set $V\subset Y$ such that

(5)
$$\alpha^{-1}f(\alpha x) - f(x) \in V$$
, $\alpha \in A$, $x \in S$,

then there exists a unique positively homogeneous mapping $F: S \to Y$ such that

$$F(x)-f(x)\in c(c-1)^{-1} {\rm seq}\ {\rm cl}\ {\rm conv}({\rm V}\cup\{0\}), \qquad {\rm x}\in {\rm S},$$

where $c := \sup(A)$. In particular, if $\sup(A) = \infty$ then

$$F(x)-f(x)\in {\rm seq}\ {\rm cl}\ {\rm conv}({\rm V}\cup\{0\}),\qquad {\rm x}\in {\rm S}.$$

Moreover

$$F(x) = \lim_{n \to \infty} \alpha^{-n} f(\alpha^n x), \quad x \in S,$$

and the convergence is uniform on S.

Proof. Let us fix an $\alpha \in A$ and put $F := F_{\alpha}$. In view of Lemma $1^{\circ} - 2^{\circ}$ we have

$$F(\lambda x) = \lambda F(x), \quad \lambda \in A, \quad x \in S,$$

Replacing x by $\lambda^{-1}x$ we hence get

$$F(\lambda^{-1}x) = \lambda^{-1}F(x), \quad \lambda \in A, \quad x \in S.$$

and, by induction.

$$F(\lambda_1 \cdots \lambda_r \cdot \mu_r^{-1} \cdots \mu^{-1} x) \equiv \lambda_1 \cdots \lambda_r \cdot \mu_r^{-1} \cdots \mu^{-1} F(x)$$

for all $n, m \in \mathbb{N}$; $\lambda_1, \ldots, \lambda_n$; $\mu_1, \ldots, \mu_m \in A, x \in S$. Since int $A \neq \emptyset$, we have

$$\{\lambda_1 \cdots \lambda_n \cdot \mu_1^{-1} \cdots \mu_m^{-1}; \lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_m \in A, n, m \in \mathbb{N}\} = (0, \infty).$$

Thus

$$F(\lambda x) = \lambda F(x), \quad \lambda \in (0, \infty), \quad x \in S,$$

which means that F is positively homogeneous.

By the definition of F and by 2° we obtain

$$F(x)-f(x)\in\alpha(\alpha-1)^{-1}\mathrm{seq}\;\mathrm{cl}(V\cup\{0\}),\qquad\alpha\in A,\quad x\in S.$$

Since the function $A \ni \alpha \to \alpha(\alpha-1)^{-1}$ is decreasing and the left hand side does not depend on α , this condition holds true for $\alpha = c := \sup(A)$. If $c = +\infty$ then, of course, we get $F(x) = f(x) \in \operatorname{seq}(\mathbb{V} \cup \{0\})$, $x \in S$. This completes the proof.

Remark 2. It is sufficient to assume the condition (5) for all $x \in S$ and $\alpha \in A$ such that the set $\underbrace{A \cdots A}_{p}$:= $\{\alpha_{1} \cdots \alpha_{p}; \alpha_{i} \in A, i = 1, \dots, p\}$ has a nonempty interior, for some $p \in \mathbb{N}$.

Remark 3. The condition from Remark 2 is fulfilled if the inner Lebesque measure of A is positive.

Remark 4. The assumption int $A \neq \emptyset$ can be replaced by the following weaker one: there exists a nonempty open interval $I \subset (1, \infty)$ such that for every $\lambda \in I$ there is an $\alpha \in A$ such that $\lambda \alpha \in A$.

Example. Let $f : [0, \infty) \to \mathbb{R}$ be defined by the following formula

$$f(x) = \left\{ \begin{array}{ll} x, & x \in [0,1) \\ 3x - 2, & x \in [1,2) \\ x + 2, & x \in [2,\infty) \end{array} \right.$$

It is easy to check that F satisfies (5) with $A=\{2\}$ and V=[-1,1]. Moreover, the unique positively homogeneous function $F:[0,\infty)\to\mathbb{R}$ lying close to f is the identity F(x)=x. We see that

$$\sup\{|F(x) - f(x)|; x \in [0, \infty)\} = 2 = \frac{2}{2-1} \cdot 1.$$

This shows that the relevant estimation obtained in the assertion of our Theorem 1 is the best one.

Proposition. Let $\alpha, \beta > 1$ be such that $\log \alpha$ and $\log \beta$ are not commensurable. Suppose that $V \subset Y$ is a bounded subset of Y. If $f:(0,\infty) \to Y$ is continuous at least at one point and satisfies the condition

$$\alpha^{-1}f(\alpha t) - f(t), \quad \beta^{-1}f(\beta t) - f(t) \in V, \quad t > 0,$$

then there exists a unique positively homogeneous function $\varphi:(0,\infty)\to Y$ such that

(6)
$$\varphi(t) - f(t) \in c(c-1)^{-1} \text{seq cl conv}(V \cup \{0\}), t > 0$$

where $c := \max\{\alpha, \beta\}$. Moreover

(7)
$$\varphi(t) = \lim_{n \to \infty} \alpha^{-n} f(\alpha^n t) = \lim_{n \to \infty} \beta^{-n} f(\beta^n t), \quad t > 0,$$

and the convergence is uniform on $(0, \infty)$.

Proof. By the Kronecker theorem the set

$$D := \{\alpha^n \beta^m; n, m \in \mathbb{Z}\}$$

is dense in $(0, \infty)$.

In view of Lemma 1° - 3° (here $A = \{\alpha, \beta\}$) the function $\varphi : (0, \infty) \to Y$ defined by the formula (7) satisfies the functional equations

$$\varphi(\alpha t) = \alpha \varphi(t),$$
 $\varphi(\beta t) = \beta \varphi(t),$ $t > 0,$

and, consequently, (8)

$$\varphi(\lambda t) = \lambda \varphi(t), \quad \lambda \in D, \quad t > 0.$$

Because the convergence in (7) is also uniform (1° of Lemma 1) on $(0, \infty)$ our assumption of f implies the continuity of φ at least at one point, say $t_a > 0$. Take arbitrary t > 0 and a sequence $\lambda_n \in D$, $n \in \mathbb{N}$, such that $\lim_{n \to \infty} \lambda_n = t_v t^{-1}$. Letting $n \to \infty$ in the relation (comp. (8))

$$\varphi(\lambda_n t) = \lambda_n \varphi(t), \quad t > 0$$

we get

$$\varphi(t_o) = t_o t^{-1} \varphi(t)$$

i.e.

$$\varphi(t) = \frac{\varphi(t_{\circ})}{t_{\circ}}t, \qquad t > 0,$$

(cf. also [2]). The condition (6) is a consequence of Lemma 1, and the uniqueness follows from Lemma 2. This completes the proof.

Immediately from this Proposition we obtain

Theorem 2. Let X be a real linear topological space, $S \subset Y$ a cone, and $f: S \to Y$ a continuous mapping. Suppose that $V \subset Y$ is a bounded subset of Y, and $A \subset (1, \infty)$ contains at least two elements α and β such that $\log \alpha$ and $\log \beta$ are not commensurable. If for all $\alpha \in A$ and $x \in S$

$$\alpha^{-1} f(\alpha x) - f(x) \in V$$

then there exists a unique positively homogeneous function $F: S \to Y$ such that

$$F(x) - f(x) \in c(c-1)^{-1}$$
seq cl conv $(V \cup \{0\})$, $x \in S$,

where $c = \sup(A)$. In particular, if $\sup(A) = \infty$, then

$$F(x) - f(x) \in \text{seq cl conv}(V \cup \{0\}).$$

Moreover.

$$F(x) = \lim_{n \to \infty} \alpha^{-n} f(\alpha^n x), \quad x \in S,$$

and the convergence is uniform on S.

Remark 5. According to the Proposition, the assumption of continuity of f in Theorem 2 can be replaced by the following weaker one: for every $x \in S$ the function $(0, \infty) \ni t \longrightarrow f(tx)$ is continuous at least at one point.

3. Stability of linear functions

The main result of this section reads as follows:

Theorem 3. Let $S \subset X$ be a convex cone and $f: S \to Y$ a mapping. If there exist $A \subset (1, \infty)$ such that int $A \neq \emptyset$ and bounded subset V and V_1 of Y such that

$$f(x + y) - f(x) - f(y) \in V$$
, $x, y \in S$

and

$$\alpha^{-1}f(\alpha x)-f(x)\in V_1, \qquad \alpha\in A, \quad x\in S,$$

then there exists a unique linear function $a:S\to Y$ such that

$$a(x)-f(x)\in \operatorname{seq}\,\operatorname{cl}\,\operatorname{conv}(V\cup (-V)).$$

Proof. In view of the Gajda theorem (cf. [1]) there exists a unique additive function $a:S\to Y$ such that $a(x)-f(x)\in \operatorname{seq}\operatorname{cl}\operatorname{conv}(V\cup (-V))$. On the other hand, by

Lemma 1, there exists a positively homogeneous function $F:S\longrightarrow Y$ satisfying the condition

$$F(x) - f(x) \in c(c-1)^{-1}$$
 seq cl conv $(V_1 \cup \{0\})$.

Hence, for any rational r > 0 and $n \in \mathbb{N}$ we have $r^n(a(x) - F(x)) = a(r^n x) - F(r^n x) =$

$$= a(r^n x) - f(r^n x) + f(r^n x) - F(r^n x) \in$$

$$\in \text{sea cl conv}(V \cup (-V)) + c(c - 1)^{-1} \text{sea cl conv}(V \cup \{0\}).$$

and therefore F(x) = a(x) for all $x \in S$. By Lemma 1 the function a is homogeneous and, consequently, linear. This completes the proof.

References

- [1] Z. Gajda, On stability of the Cauchy equation on semigroups, Aequationes Math. 3 (1988) 76-79.
- [2] J. Matkowski, Cauchy functional equations on a restricted domain and commuting functions, In Ineration Theory and its Functional Equations, (Proc. Schloss Hoffen, 1984), Lecture Notes in Math. Vol. 1163, Springer, Berlin-Heidelber, New York-Yokyo, 1985, 101-101.
- [3] J. Tabor, On aproximate by linear mappings, (submitted).
- [4] J. Tabor, Jr., J. Tabor, Homogeneity is superstable, (to appear).

Eingegangen am 14. July 1994

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY.

BANKOWA 14. PL-40-007 KATOWICE, POLAND

DEPARTMENT OF MATHEMATICS.

TECHNICAL UNIVERSITY OF ŁÓDŹ-BRANCH IN BIELSKO-BIALA, WILLOWA 2, PL-43-309, BIELSKO-BIALA, POLAND.