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On stability of the homogeneity condition

Zygfryd Kominek and Janusz Matkowski
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Abstract. Let f be a function defined on a cone S with the values in a sequentially
complete locally convex linear topological Hausdorff space ¥ If there exist a bounded subset
V of ¥ and an open interval (a,b) C (1,00) such that for all z € S and every A € (a,b)
the condition A~1f(Az) - f(z) € V" holds, then there exists a unique positively homogeneous
mapping F: S — ¥ such that the difference F(z) — f(z) is uniformly bounded on .

Introduction

In a recent paper [3] J. Tabor proved that every mapping f : X — Y from a real
vector space X into a normed space Y satisfying the inequality

(1) le™ fez) = f(2)l < &

for all a € R and z € X, where & > 0 is given, must be homogeneous. In the next paper
[4] written jointly with J. Tabor, Jr., they generalized this result which is interpreted
as a superstability of the homogeneity condition. The same assertion holds true if we
assume that condition (1) is fulfilled for every z € X and a € (—6,6) \ {0}, where § > 0
is a constant. In fact, setting y = az in (1) we can easily show that the analogous
inequality with & = maz{Se,e} on the right hand side is fulfilled for every = € X and
& € (—00,—})U(=6,8)\ {0} U (L, 00). Now for a fixed 8 € (&, 00), every 7, |7] < }, may
be wiitton i the Ty = 4 mth an a € (6,6) \ {0}. Hence

Il f(r2) = f(2)l| < I\a"ﬂ"faﬂZ) B f(B)l| + 1187 1(Bz) - f(=)]| <
< BletE< (84 0),

which by Tabor’s result implies that f is homogeneous function.

Note also that if we assume condition (1) for every (z € X and) a € R, |a| > 6, where
5> 0is a constant, then Tabor’s assertion does not hold. To see this, it is enough to
consider the function f : IR — IR defined by the formula

@)= 1 forze(0,1)

0 forlzgf2lorz=0
-1 forze(-1,1).
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Evidently f is not a homogeneous function. On the other hand it is not hard to check
that for all a, |a | > 1 and z € R we have

lo™ f(oz) - f(=)| < 2

The condition (1) implies the following two inequalities

@ lla= f(az) - f()|| S& for every a >0 and z € X
and
®) /@) + f(-2)| <& for every z € X.

Conversely, conditions (2) and (3) imply the condition (1) (with 2¢ instead of € on the
right hand side). In fact, for any a < 0, by (2) and (3) we have

lla”* fez) = @) < || - ' f((—a)(=2)) = f(-=)ll+
+HIf(=2) + f(2)]| < 2.
Thus Tabor’s result says that every f : X — Y satisfying conditions (2) and (3) is
homogeneous. An example of the function f(z) = |z, € IR, shows that the condition
(3) is essential here.
In the present paper we deal with the stability of the homogeneity condition. We
prove that for every function f satisfying the condition

af(az) - f(z) €V, a€A, z€S,
where S is a cone in X , A C (I,00) is a set with a nonempty interior, and V is a
bounded subset of Y, there exists a unique positively homogeneous function F : § — Y
such that the difference F(z)— f() is uniformly bounded. The form of F is also given.
The continuity of f permits us to replace the assumption int A # @ by the condition that
A contains two noncommensurable numbers.

Moreover, a suitable result in which the difference f(z +y) — f(z) — f(y) is assumed
to be uniformly bounded, is also given.

1. Auxiliary results

In the sequel the letl,ers N,Z,Q,R and IR,, stand for positive integers, integers, ra-
tionals, reals and reals, resp 1 hout this paper the symbol X
ctands for's seallinsstiagics sadiVitora sequenuz.lly complete locally convex linear topo-
logical Hausdorff space. By seq ¢l V' we will denote the sequential closure of V/, and by
conv V the convex hull of V. A set S C X is said to be a cone iff t§ C S, for all t>0.
A cone S such that S+ 5 C S is said to be convex.

Lemma 1. Let f be a function defined on a cone S and with the values in Y. If there
ezist A C (1,00), A # 0, and a bounded V C Y such that

(4) a'flaz) - f(z) €V, a€Az€ES,
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then for every o € A:
the function Fy: S — Y given by
Fu(z):= lim a™f(a"2), 2 €S,
is well defined, and the convergence is uniform on S;
g { F, is a-homogeneous, i.c. Fo(az) = aFy(z), z € S, and
Fa(z) — f(2) € a{a — 1) seq cl conv (V U {0}) ;
o { forallfe A
Fy(z) = Fa(z), z€5,
i.e. there evists a unique F: S — Y such that Fy = F for all B € A.

10

Proof. Let us fix an arbitrary a € A. For all n,m € IN and z € S we have

" f(aM2) — @ f(a2) = e f(@ ) — f(ame)] =

= £ Do flaam ) - f(am )]

€™ 3 a1V € a0 — 1) conv(V U {0})
=

which shows that (a™" f(a”z)) is a uniformly convergent Cauchy sequence. It follows that
the function Fa : § — Y given in 1° is well defined and we have

Fafoz) = lim a™f(a™12) = a lim o f(a™z) = aFu(z).

The identity

o™ f(a"z) - f(z)

o f(act'2) = f(a*'z)] + wo)

and the condition (4) imply

Fulz) - f(z) € a" Tsea cllconv (VU {0})), =€,
which proves 2°. Hence, for an arbitrary fixed o, § € A and all z € §

B Fa(B"z) — B~ f(B"z) € B~ — 1) Tseq cl conv(V U {0}).
Making use of 1°, we get
Jm B7R(8) = Fala),  wes,
and, consequently,

Fale) = Fule) = lim [37°Fo(f2) — 0™ Fylaz)] =

[

= lim a™6-"(a" Fo(8%z) — " Fy(orz)].



376 Kominek and Matkowski

By virtue of 2° we obtain

Fala) = Fale) = lim a~"§~"{Fu(a""(2) - f(@"B"2)+

+f(a"fz) = Fy(a"Bz)] =0
which proves 3°. The proof of Lemma 1 is complete.

Remark 1. An analogous Lemma holds true if the condition A C (1, 00) is replaced
by A C (0,1), and the basic relation (4) by the following one

af(a”'z) - f(z) € V.

Lemma 2. Let S C X be a cone, and f,Fi,Fy : § — Y mappings. If Fy, Fy are
positively homogeneous and there exist a function g : S — IRy and a bounded subset V'
of Y such that
Fi(z)-flz) €g(=)V, €S, i=12%
and
inf {42, t>0)=0, €S,
then Fy = F,
Proof. We have
F(z) = By(z) =t (R(tz) - Fte)) = t7'(F(te) - f(tz) + f(t) - Fy(tz)) €
€t (g(ta)V — g(ta)V) C Ly — ey

forall z € S and ¢ > 0. According to our assumptions we get Fi(z) = Fy(z) forall z € S,
which was to be shown.

2. Stability of the homogeneity condition

We begin this section with the following

Theorem 1. Let S C X be a cone and f : S — Y a mapping. If there exist
AC (1,00), intA #0, and a bounded set V C Y such that

(3) a”' f(az) - f(z) €V, a€A, z€S,

then there exists a unique positively homogeneous mapping F : S — Y such that
F(z) - f(z) € elc—1)""seq cl conv(VU {0}), x€S,

where ¢ := sup(A). In particular, if sup(A) = oo then

F(z) - f(z) € seq cl conv(VU {0}),  x€S.
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Moreover,
F(z)= lim a™f(a"s), z€5,

and the convergence is uniform on S.
Proof. Let us fix an a € A and put F := F. In view of Lemma 1° — 2° we have

F(Az)=AF(z), A€A, zeS,
Replacing z by A~'z we hence get
F(\'z)=A"'F(z), A€A, z€S,
and, by induction,
Fu--da-pt o ppte) = Ao gt gt Fa)
for all n,m € IN; Ay,... An; fia,-.-pim € A,z € S. Since int A # 0, we have
e Al mnh Myeey Any Bayee s fim € A, nym € N} = (0,00).

Thus
F(dz)=\F(z), A€(0,00), z€S,
which means that F is positively homogeneous.
By the definition of F and by 2° we obtain

F(z)- f(z) €ala=1)Tseqcl(VU{0}), e€4, s€S.
Since the function A 3 & — a(a — 1)~ is decreasing and the left hand side does not

depend on a, this condition holds true for & = ¢ := sup(A). If ¢ = +co then, of course,
we get F(z) — f(z) € seq cl(V U {0}), z € S. This completes the proof.

Remark 2. It is sufficient to assume the condition (5) for all z € S and a € A such
that the set A---A = {a---ap; o; € A, i=1,...,p} has a nonempty interior, for

some p € IN.

Remark 3. The condition from Remark 2 is fulfilled if the inner Lebesque measure
of A is positive.

Remark 4. The assumption intA # @ can be replaced by the following weaker one:
there ezists a nonempty open interval I C (1,00) such that for every A € I there is an
a € A such that Aa € A.

Example. Let [ : [0,00) — IR be defined by the following formula

x5 z€(0,1)

3z-2, z€[1,2)

242, z€[2m)

I(=
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It is easy to check that F satisfies (5) with A = {2} and V = [-1,1]. Moreover, the unique
positively homogeneous function F : [0, 00) — IR lying close to f is the identity F(z) = z.
‘We see that 2

sup{|F () - f(2)l; =€ [0,00)} a1 &

This shows that the relevant estimation obtained in the assertion of our Theorem 1 is the
best one.

Proposition. Let o, 3 > 1 be such that log o and log 8 are not commensurable.
Suppose that V C Y is a bounded subset of Y. If f : (0,00) — Y is continuous at least
at one point and satisfies the condition

o flat) = f(t), BB~ )€V, t>0,
then there exists a unique positively homogeneous function ¢ : (0,00) — Y such that
(6) @(t) = f(t) € e — 1) "seq cl conv(V U {0}),  ¢>0
where ¢ := max{a, 3}. Moreover
(7 ¢(t) = lim o™ f(a™)= lim g"f(8"), >0,

and the convergence is uniform on (0, 00).
Proof. By the Kronecker theorem the set

o"g"; n,m € I}
is dense in (0, 00).

In view of Lemma 1° - 3° ( here A = {a, 8} ) the function ¢ : (0,00) — Y defined by
the formula (7) satisfies the functional equations

¢lat) = agp(t), o(Bt) = Po(t), >0,
and, consequently,
(8) @(M) =dp(t), A€D, t>0.
Because the convergence in (7) is also uniform (1° of Lemma 1) on (0, c0) our assumption
of fimplies the continuity of ¢ at least at one point, say t, > 0. Take arbitrary ¢ > 0 and
a sequence A\, € D, n € IN, such that lim )\, = tot™. Letting n — oo in the relation
(comp. (8))

P(Ant) = Aap(t),  £>0

we get
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(cf. also [2]). The condition (6) is a consequence of Lemma 1, and the uniqueness follows
from Lemma 2. This completes the proof.
Immediately from this Proposition we obtain

Theorem 2. Let X be a real lincar topological space, S C Y a cone, and f :
S = Y a continuous mapping. Suppose that V C Y is a bounded subset of Y, and
A C (1,00) contains at least two elements o and 8 such that log a and log B are not
commensurable. If foralla € Aand z € S

o' flaz) - f(z) €V
then there exists a unique positively homogeneous function F : § — Y such that

F(z) - f(z) € c(c— 1) seq cl conv(V U{0}), =z €S,
where ¢ = sup (A). In particular, if sup (A) = oo, then
F(z) — f(2) € seq d conv(V U {0}).

Moreover,
F(z)= lim a™f(a"z), z€S5,

and the convergence is uniform on S.

Remark 5. According to the Proposition, the fon of continuity of f in The-
orem 2 can be replaced by the following weaker one: for every z € S the function
(0,00) 3 ¢ = f(tz) is continuous at least at one point.

3. Stability of linear functions

The main result of this section reads as follows:

Theorem 3. Let S C X be a convex cone and f : § — Y a mapping. If there exist
A C (1,00) such that int A # § and bounded subset V and V; of Y such that

fe+y)-f2)-fw) eV, zyes
and
o' flaz) - f(z) €Vi, a€A, zES,

then there exists a unique linear function a : § —'Y such that

a(z) — f(z) € seq cl conv(V U (=V)).

Proof. In view of the Gajda theorem (cf. [1]) there exists a unique additive function
a: S = Y such that a(z) — f(z) € seq cl conv(V U (=V)) . On the other hand, by
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Lemma 1, there exists a positively homogeneous function F : S — Y satisfying the
condition
F(z) = f(2) € (e — 1)seq el conv(V; U {0}).

Hence, for any rational r > 0 and n € N we have

(2) - F(z)) = a(rz) - F(rz) =
= a(r"z) - f("z) + [(r"z) — F(r"z) €
€ seq cl conv(V U (=V)) + ¢(c — 1)*seq cl conv(V; U {0}).

and therefore F(z) = a(z) for all = € S. By Lemma 1 the function a is homogeneous
and, consequently, linear. This completes the proof.
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