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On (a, a)-convex functions

By

JANUSZ MATKOWSKI*) and MAREK PYCIA®)

Introduction. Let I = R be an interval and a€(0,1) a fixed real number. A function
f:1 [~ o0, ) satisfying the inequality

Sles+—aysaf(©)+1-0)f0), syel,

is termed o-convex. Kuhn [10] proved that every a-convex function is Jensen convex (cf.
Daréczy and Palés [5] for a simple argument). Let o, a€(0, 1) be fixed reals. A function
f:I—[— o0, 00) is said to be («, a)-convex iff

fles+(—o)<af(©)+1—a)f@), stel.

This notion, which for a = « coincides with a-convexity, was introduced by Kuhn in [11].
Some properties of (x a)-convex functions are there established. In particular, Kuhn
remarks that f must be constant if « is rational. He also mentions that he does not know
any example of a nonconstant («, a)-convex function for « # a. In this context a problem
of a characterization of (, a)-convex functions in the case « # a appears in a natural way.
Our main result gives a complete solution of the Kuhn problem (independently asked by
S. Rolewicz, (cf. [8])).

In a recent paper Kominek [8, Theorem 2] proved the following result. If D is a convex
and open subset of a linear space X endowed with a semilinear topology, and a,ae (0, 1)
are different numbers such that at least one of them is rational, then each (x, a)-convex
function f:D — R is constant. In the present paper, we prove an essentially stronger fact.
It turns out that the assumption that o or a is rational can be replaced by a considerably
weaker condition that « and a are not algebraically conjugate.

At the end of this paper we present some corollaries for functions defined on convex
and core open convex subsets of a linear space.

1. Some properties of (, a)-affine functions and the Rodé Theorem. In this paper R and
@ stand respectively for real and rational numbers.

Definition 1. Let X be a real linear space, C < X be convex, and «,a€(0,1). A
function f:C — [— 0, 0) is said to be:

*) Supported by KBN (Poland) Grant 2 P301 05303.



Vol. 64, 1995 On (a, a)-convex functions 133

(2, a)-convex iff

flax+(l-oysafx)+1-aS0), xyeC,
(2, a)-affine iff

flax+(l-oy=af(x)+1-af0), xyeC.

Remark. Let I =R be an open interval, and suppose that f:I —[— o0, ) is an
(2 a)-convex function. It is easy to verify that if there is a toeI such that f (o) = — o0,
then f = — 0.

The («, a)-affine functions on R were extensively studied, among others, by Aczél [1],
Daroczy [3], [4], Losonczi [12] (for other references cf. Aczél [2]). Actually they considered
the following more general functional equation

Ag(s)+Bo()+C=¢plas+bt+c¢)
where 4, B, C, a, b, ceR are fixed. To present some results we need the following

Definition 2 (cf. for instance Kuczma [9, p. 106]). The clements ,a€ R are said to
be conjugate iff cither they are both or they are conjugate, ie,
they both are algebraic and have the same minimal polynomial with rational coefficients.

For #,acR denote by Q (%) and @ (a) the smallest subfields of R containing, respec-
tively, x and a. To prove the existence of the non-constant (x a)-convex (and (z a)-affine)
functions we will use the following

Theorem A~D—L. Let o, ac R be algebraic conjugate. Let H be a Hamel base of a linear
space X over the field Q (). For every function ¢o:H U {0} — R there is an (x, a)-affine
Sfunction @: X — R such that @l 0= ¢

Proof. Since «and a are conj there exists an i hism 7: @ () ~ Q(a) such
that 7 (2) = a (sce Kuczma [9, p. 106], Theorem 1). Take x & X. Then x = z a;hy, e Q (@),

h;eH,i=1,...,n,is the unique representation of x in the basis H ofX over Q(«) (up to
terms with cneﬂiclenls zero). It can easily be checked that ¢ given by

()= 0o 0+ 5 1) 0ok,

is (2, a)-affine and @y 0 = Po-

Theorem A-D-L for X = R" coincides with a result of Aczél-Daroczy-Losonczi the-
ory (cf. Kuczma [9, p. 106, Theorem 1 and p. 343, Theorem 3]).

Now, we prove the following lemma which also has an analogue among the Aczél-
Darbczy-Losonczi results (cf. Kuczma [9, p. 345, Theorem 5, and p. 108, Theorem 2]).

Lemma. Let I < R be an open interval and a,aeR be not algebraically conjugate. If
@:1—[— o0, ) is (o, a)-affine then ¢ is a constant function.
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Proof. According to Remark, it is enough to show the lemma for ¢:I — R. For
an arbitrary fixed toel put

I—ty:={teR:t+t,el},
and define a function ¢,: (I —t,) » R by the formula
Po():=@(t+1to) — (o), tel—ty.

It is easy to see that 0 is an interior point of I — t,. By the assumption ¢ is (x, a)-affine.
Hence we get for all s,tel —t,

Go(xs+(1 =20 = @(a(s +to) + (1= ) (¢ + t0)) — 9 (to)
=a@(s+to) +(1—a)o(t +to) — ¢ (to) = a o (s) + (1 — @) 9o (1),
ie. @q is (« a)-affine in I — t,. Since ¢4 (0) =0, it follows that
) 0o (@) =ago(t), @0 (1—20)0)=01-a)po(t), tel—to.
Therefore, for all s,te I — t, we have
Poas+(1—a)t) =ago(s) + (1 —a) o (1) = 9o () + 9o (1 — 2)1).

Hence, replacing «s by s and (1 —a)¢ by ¢, we infer that ¢, is conditionally additive in
a neighbourhood C of 0, i.e.

Po(s+ 1) =0o(s) +9o(), sts+teC.

Consequently ¢o|; can be extended to an additive function ¥:R — R (cf. Kuczma
[9, p. 328, Theorem 3)). The function ¥ is rationally homogeneous, i.c.

V@) =q¥(), reQteR,
and the first of the relations (1) implies that
Y(@t)=ay(), teR.
Hence, for every polynomial P with rational coefficients, we have
@) Y(P@)=P@y(), teR.
There are two possible cases: « is either algebraic or transcendental.
In the first case, let P be the minimal polynomial of «. Since P (a) # 0 and P (x) = 0, the
equality (2) gives
YO=P@ 'Y (P@)=P@ 'y(©0)=0, teR.
In the second case, when « is transcendental, in view of Definition 2, the number a must

be algebraic. Let P be the minimal polynomial of a. Then P(2) # 0, P(a) = 0, and by (2)
we also obtain

VO=P@YyP@ ')=0, teR.
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s we have shown that ¢, =0 in a neighbourhood of 0. By definition of ¢, the
sction @ is constant in a neighbourhood of tq. Since toe I was chosen arbitrarily, ¢ is
tocally constant, and, consequently, it is constant in the interval I. This completes the
proof.

We need the following version of Rodé’s Theorem (cf. [13]), proved by N. Kuhn in [11].
Theorem R-K. Let I € R be a non-empty open interval, and %, ac (0,1) be fixed real

numbers. Then for every (a, a)-convex function f: I [ — oo, ) and every to € I, there exists

an (x, a)-affine function ¢:1— [— o0, ) supporting [ at the point t,, i.e. such that
flo)=0(t) and @) <f()) forall tel.

According to our best knowledge, N. Kuhn (cf. [10], [11]) was first to apply the powerful

Rodé’s Theorem in context of (o, a)-convex functions.

2. When (2, a)-convex functions are constant. The main result of this paper reads as
follows:

Theorem. Let I = R be an open interval and «,ac (0,1). If o, a are conjugate then there
exists a nonconstant additive function ¢:R — R such that
olas+(l—)t)=ap(s)+01—a)o(), steR.
If a,a are not conjugate then every (, a)-convex function f:I—[— o0, 00), i.e. such that
flas+(l-a))=af()+0—a)f(), stel.
is a constant function.

Proof. The first part is an immediate consequence of Theorem A-D~-L. Suppose that
2 and a are not algebraically conjugate and take an t, € I. In view of Theorem R—K there
exists an («, @)-affine function ¢ supporting f at the point ¢,. By our Lemma the function
@ is constant, so we have

fOze0)=0()=1[(t), tel.
Since ¢ is arbitrary, it follows that f is constant in I.
s+t
Using Daroczy-Pales representation of the mean —— we give a simple proof of the
following 2
Fact (Kuhn [11])). Let C be a convex subset of a linaer space, and let a, a€ (0, 1) be fixed.
If a function f:1— R is (a, a)-convex, then it is Jensen-convex.

Proof. From the identity (cf. Daroczy-Pales [5])

STH —n[ul +ﬁt:|+ﬂ|:azs+ﬁ—]

(we write here f =1 —o,b =1 — a) and (%, @)-convexity of the function f we have for all
s,tel
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f(%) :/(ml:«%‘“+ﬁt:|+ﬁ|:ms+ﬂ%{|)
ga/(z"—';'+ﬂt)+bf(us+ﬂ37“)

< azf(szi> +abf)+baf(s)+ b’f(’%')

which means that
att —a)f(’T*');au -a

and the fact follows.
Let us mention that the proof given by N. Kuhn makes use of the Rodé Theorem.
Kominek [8, Theorems 3 and 4] proved that, under weak regularity assumptions, every
(e, a)-convex function, with a,a€(0,1) and o # a, must be constant. He applied the axiom
of choice via Rodé’s Theorem. We give an elementary proof of such a type of a result. Let
us note that our simple method can be used to obtain more general Kominek’s result.

s,tel,

SO+ 10
2E0

Theorem K. Let I be an open interval and «, a€(0,1) be fixed numbers, « # a. Suppose
that f:1— R is («, a)-convex. Then, if f is measurable (or f is bounded above on: either a
neighbourhood of a point, or on a set of positive measure, or on a set of the first category),
then f is constant on I.

Proof. By the above fact the function f is Jensen convex and Sierpinski’s Theorem
(resp. Bernstein-Doetsch’s, Ostrowski’s, or Mehdi’s Theorem) (cf. Kuczma [9, p. 210])
implies that the function f is convex and continuous.

Put f=1—aand b =1— a. Let us fix an arbitrary point ¢, I and define the function
g:(I = to) > R, g(8):= f (¢ + ) — £ (to). It can be checked that g is convex and (x, a)-con-
vex. Since ¢(0) = 0, from (x a)-convexity of g we obtain

gl <ag), gB)=<bg(t), tel—t,.
Hence we get

) ‘L“)<awy tel—it5,t>0.
at &

and

@ 9@, a9@ tel—to,t<0.

ot t

As a convex function, g has the one-sided derivatives at 0. So, letting ¢ tend to 0 in the
inequalities (3), we get

gO0+)Sau'g(0+). gO+)Sbp ™ g (0+).
Since a # , it follows that g’(0+) = 0. In the same way, making use of (4), we show that
4'(0—) =0. Thus we have proved that ¢ (0) = 0. By the definition of g, we hence get
f'(to) = g’ (0) = 0. Since t, has been chosen arbitrarily, this completes the proof.
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3. Some corollaries for multidimensional spaces. To draw some conclusions for func-
tions defined on subsets of general linear spaces we need a few definitions.

Let X be a linear space and D a subset of X. A point xe D is said to be algebraically
interior to D iff for every ye X there exists an & > 0 such that x + t ye D for all te(—&,¢).
Put

core D:= {xeD: x is algebraically interior to D} .

A set D is said to be algebraically open iff core D = D. The family of all algebraically open
subsets of X is a topology in X and is called core topology (cf. for instance, F. A. Valentine
[14], Z. Kominek, M. Kuczma [7], also E. Hille, R. S. Phillips [6, p. 14, Definition 2], where
the finitely open sets topology is introduced).

Corollary. Let X be a linear space and C an open in core topology convex subset of X.
Suppose that o, ae(0,1) are fixed.
If o, a are conjugate then there exists a nonconstant additive function ¢: X — R such that

olax+(l—w)y) =apx)+(1—a)e(), xyeX.
If o, a are not conjugate then every (2, a)-convex function f: C — [— o0, ©0), i.e. such that
flex+(l-oy<afx)+1U-af0), xyeC,
is a constant function.

Acmally the assumpuon of C to be convex can be replaced by a weaker one of
ivity of C. The (x,a) ity of f could be understood in the
following conditional sense

xyax+(1—oyeC=flex+(1 -y <af(x)+01-af().

Proof. If o,a are conjugate it is enough to apply Theorem A-D-L. If they are not
conjugate, then take x,yeC and a broken line X, ...x, connecting x, = x and x, =y
(with the segments x;X;,,, i=1,...,n—1, contained in C). Since C is open in core
topology for every segment x; x; ., there is an open segment y; y;,, contained in C and
containing x;x;,,. Let us fix ie{1,..., n}, and define g:(0,1) - [— o0, 0) by

9@):=f(tyi+ A =0yisy), te©1).
Since f is («,a)-convex, so is g. By our main Theorem the function g is constant.
Consequently, f(x;) = f(x;+,). This implies that f(x) = f(y) which was to be shown.

Final remark. All the results formulated for linear spaces can be extended to more
general case of affine spaces. The reason is that in the proofs we use only convex
combinations of vectors.
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