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An Integral Jensen Inequality For Convex
Multifunctions

Janusz Matkowski and Kazimierz Nikodem

Abstract

We prove the following multivalued version of the Jensen integral inequality. Let X, be Banach spaces
and D C X an open and convex set. If F : D+ cl(Y) is a continuous convex function, then for each
normalized measure space (2, 5, ), and for all p-integrable functions ¢ : © = D such that conva(®) C D,

f@eagmcr(f o)
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Introduction

Let I C R be an open interval and f : I = R a (continuous convex function. Then,
according to the well-known integral Jensen inequality (cf. for instance Roberts-Varberg
[10], p. 193, Remark J; also Kuczma [4], p. 181, Theorem 2), for each normalized measure
space (, %, ), and for all u-integrable functions 6 : 0 — I

5(fon) < [ (fo)du

This inequality plays an important role in many parts of mathematics: for instance in
probability theory (cf. Feller [3], p. 147), as well as in applications of some fixed point
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theorems (cf. Matkowski [5] and [7]). Let us also mention that this inequality permits to
give a joint generalization of the integral versions of Holder's and Minkowski’s inequalities
(cf. Matkowski [6], and Matkowski-Ritz [8]).

The main purpose of the present paper is to prove a multivalued counterpart of the
above integral Jensen inequality. Let X and Y be real normed spaces, and D C X a convex
open set. Denote by n(Y) the family of all nonempty subsets of ¥. A set-valued function
F: D n(Y) is said to be convez if for all z,y € D, and t € (0,1),

tF(z)+ (1= t)F(y) C F(tz + (1 - t)y).

(Note that F is convex if, and only if, the graph of F is a convex set in X x Y). We say
that a set-valued function F : D ~— n(Y) is continuous at a point zo € D if for every
neighbourhood V' of zero in Y there exists a neighbourhood U of zero in X such that

F(z)C Flzo)+V and  Flzo) C F(z) +V,

for all z € (20 + U) N D. Denote by cl(Y) the family of all nonempty closed subsets of
Y. In section 1 we prove that if X,Y arc Banach spaces and F : D s cl(Y) is convez
and continuous, then for cach normalized measure space and for all u-integrable functions
6:Q— D such that conva() C D we have

/n(Fw).z#cF(/néd,‘).

The integral of a multifunction G is understood here in the sensc of R. J. Aumann, i. e. it
is the set of integrals of all integrable selections of G (cf. for instance Aubin-Frankowska [1],
p. 326-327).

1. An auxiliary result

For the proof of the main theorem we need the following

Lemma. Let X be a lincar topological space and suppose that D C X is open and convez.
IfF: D = cl(R) is a convex function, then F' has one of the following forms:

]

a) F(z) = [f(2).9(2)], z€D;
b) F(z) = [f(z),+e0), z€D;
) Fz)= 29(z)], z€D;

F(z) =

(=,
(=o00,+00), z€D,
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where f : D R is a convez function, and g : D — R is a concave function. Morcover, if
F is continuous then f and g are continuous.

Proof. First note that if F(zo) is bounded above (below) for some zo € D, then F{(x)
is bounded above (below) for all z € D. In fact, for every z € D there exist y € D and
€(0,1) such that ¢z + (1 — t)y = zo. From the convexity of F' we get the inclusion

tF(2) + (1= t)F(y) C F(zo),

which clearly implies the claim.
If the values of F are bounded below, then f: D — R given by

f(@)

is well defined, and, by the convexity of F, the function f is convex. Similarly, if the values
of I are bounded above, then g : D — R given by

inf F(z), z€D,

g(z) ==sup F(z), z€D,

is well defined, and, by the convexity of F, the function g is concave.

By the convexity of F), its values are convex sets in R. By assumption the values of F
are also closed in R. It follows that for every z € D, F(z) is a closed and convex interval in
R. Since it is easy to check that the continuity of F implies the continuity of the functions
f and g, the proof is completed.

2. Jensen’s integral inequality

The main result of this paper reads as follows:
Theorem. Let X,Y be Banach spaces and let D C X be open and convez. If F: D

cl(Y) is a continuous conver set-valued function, then for each norm
(2,5, 1), and for all p-integrable functions ¢ : 0 v D such that convd

) »/Y;(Foo)ducF(/no‘dy).

Proof. We divide the proof into two steps.
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Step 1. The Theorem holds truc if Y = R

In view of the Lemma, the function F is either of the form a), b), c) or d). Suppose that
F has the form a), i.e. that F(z) = [f(2),g(z)), z € D, where f : D = R is continuous and
convex and g : D — R is continuous and concave. Put

2= /nduly.

By the mean-value theorem (cf. Diestel-Uhl [2], p. 48, Corollary 8) and the assumption

convg(Q) C D we get

z € convd(Q) C D.

Since f is conti at z, the subdifferential df(z) is pty (cf. Phelps (9], prop.
1.11), i.e. there is a continuous linear functional z* : X +» R such that

@ fl@) >z (z—2)+f(z), ze€D.
Let h: Q+— R be an arbitrary u-integrable selection of the composite function F o 6. Then
h(w) € F (6(w)) = [f(é(«)), 9(6(«))], and, consequently,
hw) > f(8(w), we
Applying (2) we hence get
h(w) 2 2" (¢(w) = 2) + f(z), weR
Integrating both sides we obtain
> - -
Jyrdn 2 [ (6(w) - ) du+ [ )
Since
/nz' ()= 2) d=" (/n Sw)dp — A zdu) =2 (z-2)=0,
we hence get
[ ) 2 [ f(a)au = 1.
In the same way, taking an affine function that supports the concave function g at point z,
we can show that
| Be)d < g(2).
o
Therefore
i H)dn € 1(e)s2)) = F&) = F ([ odu).

Since the relevant arguments in cases b) and c) are even simpler, and in case d) there is

nothing to prove, this completes the proof of step 1.
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Step 2. Theorem holds true for an arbitrary Banach space Y .
Let us take an arbitrary continuous lincar functional y* : ¥ ~ R and consider the
multivalued function = o F defined by the formula

yoF(2) =y (F@), z€D.
This function is convex and continuous, and its values are closed subsets of R. From Step 1
of the proof we obtain

3) /Y;y‘TFoédyCy‘TF(/nbdy).

Let h: @ — Y be an arbitrary u-integrable selection of Fo ¢. Then y*o & is a u-integrable
selection of the function y* o ' o ¢. Consequently, in view of (3),

/ny'ahdyem(/;‘a‘dp).

Hence, making use of the relation

Jovondu =y (f han),
s () L)

Since this property holds true for all continuous linear functionals y* and the set F (f, ¢du)
is convex and closed, we obtain, by the separation theorem (cf. Rolewicz [11], p.98, Corollary

25.11):
/r!hdpeb'(Aodﬂ).

Because A is an arbitrary integrable selection of the function F o 4, it follows that

[ FosducF(f édu),

we get

which was to be shown.

Remark. Let I C R be an open interval and f : I — R a convex function. Taking in
the above result D := I and F : D — cl(R) defined by

F(z) = [f(z),+c0), z€D,
we obtain the inclusion (1) for each normalized measure space (,,p), and for all u-
integrable functions ¢ : [ — R. Since (1) implies that

£ ([ odw) < [ 0 01,

i

it follows that our Theorem the classical single-valued Jensen i
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