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Nonlinear contractions in metrically convex space

By JANUSZ MATKOWSKI (Bielsko-Biala)

Abstract. In this paper we prove among other things the following fixed point
theorem. Let T be a selfmapping of a complete Menger convex metric space (X, d) and
¥ :[0,00) — [0,00) a function such that

d(T(z), T(y) < ¥(d(z,y)), (z,y € X).

Suppose that 1 is continuous at 0 and that there exists a positive sequence 5,
(n € N), such that ”limw tn = 0 and ¥(tn) < tn, (n € N). Then T has a unique fixed
point. Moreover T is ive for an i ing concave function v and such that

¥(t) < tforallt>0.
An application to a functional equation is also given.

Introduction

Let (X,d) be a metric space and T : X — X a selfmapping of X. If
there exists a function v : [0,00) — [0, c0) such that
1°. d(T(z),T(y)) < ¥(d(z,y)) for all z,y € X;
2°. o(t) <t for every t >0,
then we say that T is ¥-contractive.
A metric space (X, d) is said to be Menger convez or metrically convez
iff for every z,y € X, z # y, there is 2 € X such that z # z # y and

d(z,y) = d(z,2) + d(z,y).

Let T be a t-contractive selfmap of a Menger convex metric space.
D. W. BoYD and J. S. W. WONG [4] proved that T has a unique fixed
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point Moreover, there exists a subadditive and right conti s function

: [0,00) — [0,00) such that T is y-contractive. The last statement
of the Boyd and Wong result has been improved by C. S. Wong [12] who
showed that T is y-contractive with 4 sucht that the function t — (t)/t is
nonincreasing in (0,00). Afterwards J. MATKOWSKI and R. WEGRZYK [8]
proved that T is y-contractive with an increasing and concave function 7.

In this paper we prove the following generalization of the result of
D. W. BoyD and J. S. W. WonG.

Let T be a selfmapping of a complete Menger convex metric space
(X,d) and 4 : [0,00) — [0,00) a function such that

d(T(2), T(y) < $(d(z,v)), (2, € X)-

If 4 is continuous at 0 and there exists a positive sequence t,, (n € N),

such that
linéot,. =0, P(ta)<tn, (n€EN),

then T has a unique fixed point a € X and lim T"(z) = a for every

z € X. Moreover there exists an increasing and concave function v :
[0,00) — [0,00) such that T is y-contractive.

The arguments of the present paper strongly depend on some proper-
ties of subadditive functions discussed in section 1. We wish to emphasise
that, due to them, the proof of the above result is short and elementary.

'In section 4, as a consequence of our main result we obtain the follow-
ing theorem. Let T bea uniformly ofa
closed convex subset X of a Banach space. If for a positive sequence tp,
(n € N), with lim t, =0 we have

n—oo

sup {||T(z) = T(W)| : Iz — yll = tn; 7,y € X} <ta, (n€EN),

then T has a unique fixed point. Moreover T is y-contractive for an in-
creasing and concave function .

In the same section we improve some results obtained by NADIM A.
AssaDp and W. A. KIRK in 1] and [2]

At the end of this paper we apply the main result to the theory of inte-
grable solutions of a nonlinear iterative functional equation. The concavity
of v plays there an important role.

Let us also mention that using the methods applied in this paper
one can generalize the BROWDER-GOEHDE-KIRK fixed point theorem for
nonexpansive mappings (cf. [11]).

1. Some remarks on subadditive functions
A function A : [0,00) — [0,00) is a said to be subadditive if
As+1) SAs) +A(®), (s, >0).

The following result plays an important role in this paper.
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Proposition 1. Let X : (0,00) — [0,00) be subadditive and let

g:(0,00) — [0,00) be defined by
At
() = -(t—) t>0.

If i A(¢) = 0 then

a) there exists g(0) := !in—ag(i) and g(0) = sup g(t);

.y >0
b) there exists g(o0) := 'lig.lcg(t) and g(o0) = :x)xt;y(t);

c) for every positive r there exist the one-sided limits g(r—), g(r+)
and g(r+) < g(r) < g(r—). If moreover ¢(0) < oo and there is an s > 0
such that g(s) < g(0) then for every r € (s,00) we have

9(r=) < 9(0)-
PROOF. Part a) is a reformulation of Theorem 7.11.1 in [6]. Part b)
follows from Theorem 7.6.1 in [6] and c) is an immediate consequence of
Theorem 7.8.3 in [6]. To prove the last statement of the proposition note

that g(t) < ¢(0) for all ¢ > 0. Now the definition of g and subadditivity of
A imply that

At) S AS) + At —s) S A(s) +g(0)(t—s), te(sr).
Letting heret tend to r, we obtain A\(r—) < A(s)+¢(0)(r—s). Making use of
the inequality g(s) < g(0), (i.e. A(s) < g(0)s), we hence get A\(r—) < g(0)r,
which means that g(r—) < g(0). This completes the proof.

Corollary 1. Let A : [0,00) — [0,00) be a subadditive and continuous
at 0. Suppose that there exist ¢ > 0 and t, > 0, (n € N), such that

Jim ta=0, A(tn) <ctn, (n€N).

Then the function p : (0,00) — [0,00) defined by the formula
pY
p(t) == sup{% 20 >t}

is decreasing and
u(t)<e, (t>0).

In particular we have A(t) < ct, (t>0).

PROOF. It is enough to note that g(0) < c and apply Proposition 1
with s :=t,, (n € N).
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Corollary 2. If A : (0,00) — [0,00) is subadditive, moreover there
exists a ¢ > 0 such that A(t) < ct, t > 0, and limsup A(¢) = cr for some
t—r

positive r, then A(t) = ct for all t € (0,r).

Remark 1. The above Proposition 1 shows that every subadditive
function A : (0,00) — [0,00) such that A(t) < ct, (t > 0), for some ¢ > 0
satisfies the following condition: for any s > 0 we have

Taking ¢ = 1 we hence obtain a negative answer to the problem posed by
D. W. BoyD and J. S. W. WONG at the end of the paper [4]. A longer
argument is given in [12].

In the sequel we need the following
Lemma 1. Suppose that A : (0,00) — [0,00) and ¢ > 0. If
sup{¥1t>s} <

for every s > 0 then there exists an increasing and concave function v :
(0,00) — [0, 00) such that A(t) < y(t) < ct, (t > 0).

PROOF. Denote by £ the family of all the functions £ : (0,00) —
[0,00) of the form £(t) = at + b, (a,b > 0), such that A(t) < £(t) for every
£> 0 and put 4(t) i= inf £(t).

For every &, > 0; a 4+ f = 1, and u,v > 0 we have
(o + fv) = jnf lau + Bv) = inf (al(u) + AU(v)) 2
2 ajof ) + 8 jof £0) = ar(w) + (),
which shows that v is concave in (0,00). Since the function £(t) := ct,
(t > 0), belongs to L, we have
~(t) <et, (t>0).

Now we have to show that the set A := {t > 0: 4(t) = ct} is empty. By
assumption there are s > 0 and k, 0 < k < ¢, such that A(t) < ktfor t > s,
and therefore,

At) <k(t—s)+es=kt+(c—k)s, (t>0).

In view of the definition of ¥ we have ¥(t) < c(t —s) + cs = ct for t > s.
This proves that A C (0,s). Suppose for an indirect proof that 4 # § and
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= sup A. The concavity of 4 and the inequality v(t) < ct, (¢ > 0),
v that

F(t)=ct, (0<t<to); y(t) <et, (t>to).
According to the assumption there are ¢y, t2; t1 < to < ¢2, such that
At) < cti, (b <t<ty)

= max{ct;,¥(t2)}. By the concavity of 7 the function
m —cty
t—t

£t) == (t—t1)+cty, (t>0),

s the inequality A(t) < £(2) for all ¢ > 0 and, consequently,

m—cty
ta—t

~(to) < L(to) = (to —t1) +t1 < c(to — t1) + ¢ty = cto.

contradiction shows that A = §. Since every £ € £ is increasing it
follows that so is 7. This completes the proof.

2. A fixed point theorem for an arbitrary complete metric space
In this section we present the following

Proposition 2. Let (X, d) be an arbitrary complete metric space and
T - X — X a selfmapping of X. Suppose that A : [0,00) — [0,00) is
ous at 0, subadditive and there exists a sequence t, > 0, (n € N),

limta =0, Ata) <tn, (n€N).

d(T(2), T(y)) < Md(z,v)), (z,y € X),

T has a unique fixed point a € X and lim T"(z) = a for every
n—oo

eover T is a y-contractive with an increasing and concave .

00F. By Corollary 1 and Lemma 1 the mapping T is a y-contra-
increasing and concave y. Denote by 4™ the nth iterate of
t) <t fort >0, we have

lim y"(t) =0, (t>0).
n—oo

dstence of a unique fixed point of T and the convergence of
uence of successive approximations follows from [9] p. 8, Theo-
also J. DUGUNDIJI, A. GRANAS [5] p. 12, Theorem 3.2, and
2).
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3. A family of nonlinear contractions in Menger convex space

We begm this section with the following well known result of MENGER
(cf. [3], p

Lemma 2. If (X,d) is a complete and Menger convex metric space
then any two points are the endpoints of at least one metric segment. More
precisely, for every z,y € X, z # y, there exists a function
F:[0,d(z,y)] — X such that

F0)=2, F(d(z,y)) =y
and for every s,t € [0, d(z,y)] we have
d(F(s), F(t)) = |s - t|.
In particular, for every z,y € X and a € (0,1) there is z € X such that
d(z,2) = ad(z,y), d(z,y) = (1-a)d(z,y).

By this Lemma P := d(X x X), the range of the metric d, is an
interval of the form [0,5), (0 < b < o0), or [0,8], (0 < b < c0).

Now, applying Lemma 1, Lemma 2 and Corollary 1, we can prove the
following "basic

Proposition 3. Let (X,d) be a complete Menger-convex metric space,
(Y,p) a metric space, T, : X — Y, (¢« € I), a family of mappings and
% : [0,00) — [0,00) continuous at 0. Suppose that there exist ¢ >0 and a
positive sequence tn, (n € N), such that

lim t, =0, %(ta) <ctn, (n€N).

It
A(T(2), T.(y) < P(d(z,y)), (zy € X; €],

then there exists an increasing concave function 7 : [0,00) — [0,00) such
that y(t) < ct, (t > 0), and

P(T(2), T(v)) £ 1(d(z,9)), (ay € X5 LET).
PROOF. Let us define a function A : [0,00) — [0, 00) by the formula,
At) := sup {p(T.(2), T.(v)) : 2,y € X, ¢ € I, d(z,y) =},
teP=dX xX),
and, if P = [0, 5] with b < oo, we put
A(t):=0, te[0,00)\P.
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pplying an idea of BOYD and WONG, (cf. [4], Lemma 2), we first prove
A is subadditive, i.e. that A(s +1) < A(s) + A(t), (s,t > 0). Take
ary s,t > 0. This inequality is obviously true if b < co and s+t €
P. Suppose that s+t € P. Thus s+t = d(z,y) for some z,y € X
o view of Lemma 2, there exists a point z € X such that d(z,2) = s
z,y) = t. Then we clearly have

2 1(2), T(y)) < p(T(2), Tu(2)) + p(T.(2), Tu(y)) < As) + A(2)

: € I. Now, taking the supremum over all z,y € X with d(z,y) =
6 I, we get A(s +1) < A(s) + A(2).
e definition of A we clearly have

DSt (£20)
. according to the assumption, we hence get
Altn) SY(ta) <ctn, (n€N).

proposition results from Corollary 1 and Lemma 1.

4. Fixed point theorems in Menger convex space

We begin this section with the following

Theorem 1. Let T be a selfmapping of a complete Menger convex
pace (X,d) and 1 : [0,00) — [0,00) a function such that

d(T(2), T(y)) < ¥(d(z,y)), (2,y € X).

ontinuous at 0 and there exists a positive sequence t,, (n € N),

lim , =0, P(tn) < tn, (n €N),

has a unique fixed point @ € X and lim T"(z) = a for every
n—oo

Moreover T is y-contractive for an increasing and concave 7.

F. Taking in Proposition 3 : (Y, p) := (X, d), T.:=T, («€I), and
e=1 nfer that there exists an increasing concave v : [0,00) — [0, 00),
41 < £, (t > 0), such that

d(T(2), T(y)) < 1(d(z,y)), (a:y € X).

m ~%(¢) = 0 for every t > 0, the existence of a unique fixed point

he convergence of every sequence of successive approximations

s (cf. [9] p. 8, Theorem 1.2, [5] p. 12, Theorem 3.2, and [10],
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Theorem 2. Let T be a uniformly continuous selfmapping of a com:
plete Menger convex metric space (X, d). If there exists a positive sequence
tn, (n €N), lim t, =0, such that

n—oo
sup {d(T(z),T(y)) : d(z,y) = tn; 2,y € X} <tn, (nEN),
then T has a unique fixed point a € X and lim T"(z) = a for everj
n—oco
z € X. Moreover T is y-contractive for an increasing and concave 7.

PROOF. According to the assumptions, given & > 0 thereis a §(¢) > (
such that for every z,y € X, d(z,y) < 6(¢) implies d(T(z),T(y)) < ¢
Take € := 1, an arbitrary t € P := d(X x X) and z,y € X such thal
d(z,y) =t. In view of Lemma 2 there exist n=n(t) €N and 205+-59%n EA
such that zo = 2, za = y; d(2zi—1,2) = n"d(z,y) < §(1). Hence

d(T(2), T(y)) < Y d(T(2i-1), T(z)) < n = n(t).
=1

This proves that for every ¢ € P the number
B(t) := sup{d(T(2), T(y)) : d(w,y) = ¢, z,y € X}
is finite. Put 1(¢) 1= 0 for ¢ € (0,00) \ P. Then ¢ : [0, 00) — [0, 00) and
d(T(z), T(y)) < ¥(d(z,y)), (z,y € X).
By the uniform continuity of T the function ¥ is continuous at 0. Moreover

according to the remaining assumption, we have ¥(t,) < t, for alln € N
Now the result follows from Theorem 1.

Let us note the following obvious

Corollary 3. Let T be a uniformly I ing of a non
empty closed convex subset X of a Banach space. If for a positive sequenc
tn, (n € N), with lim to = 0 we have

n—oo

sup {||T(z) = T(W)|| : lz — yll =ta; 2,y € X} <ta, (n€N),
then T has a unique fixed point. Moreover T is v-contractive for an in
creasing and concave function 7.
For a subset K of a metric space (X, d) denote by 0K the boundar,
of K. NADIM A. AsSAD [2] proved the following theorem.

Let (X, d) be a complete Menger convex metric space and K a nor
empty closed subset of X. Suppose that T : K — X satisfies the followin
condition: given € > 0, there exists § > 0 such that

esd(z,y) <e+é = d(T(2),T(y)) <& (vy € K),
and T(z) € K for z € K. Then T has a unique fixed point in K.
Applying this results we prove the following
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Theorem 3. Let (X,d) be a complete Menger convex metric space

= nonempty closed and Menger convex subset of X. Suppose that
— X satisfies the following conditions: T(z) € K for z € K and
ere exist a continuous at 0 function 1;[0,00) — [0,00) and a
uence tn, (n € N), such that

ling_ot,. =0, %(tp) <ta, (n€N),

(T(2), T(v) < $(d(z,y)), (z,y € K).

2 unique fixed point in K. Moreover there exists an increasing
function v : [0,00) — [0,00) such that 4(t) < t fort > 0 and

d(T(2), T(y)) < v(d(z,y)), (2,y € K).

Taking in Proposition 3 : X := K, Y := X and the one-
{T} we get the existence of the function ~. The existence of
d point results from the above Assad theorem.

k 2. Let us note that the above theorem remains true on re-
=) by each of the following conditions:

==) T is uniformly continuous and there exists a positive se-
quence t,, (n € N), lim t, = 0 such that
n—oo

sup {d(T(z),T(y)) : d(z,y) = tn; z,y € K} <tp, (n€N);
===) givene >0, there exists § > 0 such that

:<d(z,y)<e+6 = d(T(z),T(y)) <¢, (z,y€K).

= metric space (X,d) denote by (B(X),D) the metric space of
bounded closed subsets of X with the Hausdorff metric D
NaDIM A. AssaD and W. A. KIRK [1] proved the following
theorem for set-valued contractive mappings.

X.d) be a complete Menger convex metric space, K a nonempty
fX and T : K — B(X) a mapping such that T(z) C K for
". If there is a constant ¢ < 1 such that

D(T(2), T(v)) < cd(z,y), (z,y € K),
xists a € K such that a € T(a).

his results, Proposition 3 and Corollary 1 one can prove
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Theorem 4. Let (X,d) be a complete Menger convex metric spact
K a nonempty closed Menger convex subset of X and T : K — B(X)
mapping such that T(z) C K for every z € OK. If there is a continuot
at 0 function v : [0,00) — [0,00), a sequence t, >0, (n € N), and ¢ <

such that
D(T(2), T(v)) < $(d(=,v)), (ay € K),

and
lim t, =0, %(tn) <ctn, (n €N),
nSoo

then there exists a point a € K such that a € T(a). Moreover
D(T(2), T(y)) < ed(,y), (2, € K).

5. An application to a functional equation

In this section we apply Proposition 3 and Theorem 1 to the theor
of integrable solutions of the functional equation
1 4(z) = h(z, [f(2)])
where ¢ is an unknown function. We assume that the given functions
and h satisfy the following hypotheses:
(i) f:[0,1] — [0,1] is increasing and absolutely continuous;
() h:[0,1] xR — R and
(a) for every y € R the function h(-,y) : [0,1] — R
measurable,
(b) for almost all z € [0,1] the function h(z,-) : R — R
continuous;
(iti)  there exist 1 : [0,1] — (0,00) and 1 : [0,00) — [0,00) su
that

[h(z,y1) — A(z,y2)| < n(z)p(lyr = wal), (2 €[0,1]; y1,y2 €R)

% is continuous at 0, and there exists a positive sequence t

(n € N), such that
lim t, =0, ¥%(ta) <tn, (n € N).
Lemma 8. If b : [0,1] x R — R satisfies (iii) then there exists
incereasing concave function 7 : [0,00) — [0,00) such that

[h(z, 1) = Az, y2)| < n(2)v(ly1 = wel), (41,92 €R),
Aty <t, (t>0)
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With the following specification: X =Y := R; I := [0,1],
T. = T; : R — R defined by T:(y) = [n(z)]"'k(z,y), the
mmediate consequence of Proposition 3

1 L! stands for the Banach space of all the Lebesgue
ns ¢:[0,1] - R.

Taecrem 2. Suppose that conditions (i)-(iii) are fulfilled. If
h(-,0) e L!

and 7 < f ae in|0,1]
1) has exactly one solution ¢ € L'. Moreover, for every
;uence of successive approximations (¢n)azo given by

ns1(z) = h(z, 6a[f(2))),

(=0T 75
the L*-norm) to ¢.

ii) and Caratheodory’s theorem, the function

= h(z, $[f(2))),

T(o

(=elo,1),
- every ¢ € L!. Moreover for ¢ € L! we have

Az, o[f(@)])] < n(2)I8[f ()] + |A(z, 0)]

making use of the inequality n < f', we get

T(6)(z)ldz < /;f'(z)\nﬁ[f(z)]\dz+‘/l|h(a:,0)jda: =
:/ \¢(z)dz+/|h(z,0)|dz< o0,
£ I

¢t T:L' - L.

Take arbitrary ¢1, ¢2 € L'. Applying
nequality n < f' and the Jensen integral inequality for
cf. M. KuczMa [7], p. 181), we obtain

= /, Ih(z,611£(2)]) - h(a, dulf(@)Dldz <
- alf@Is @)= [ (1) - 62)ie <
£

cui2) = s < 7 ( [ 10a@) - dutolli)

m folows from Theorem 1

7(ll¢1 = 2ll)-
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