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Abstract: The main result is the following. If g : (0,00) — (0,00) is geo-
metrically convex on an interval (,o0), for some a > 0, and satisfies the
functional equation

gz +1)=zg(z), z€(0,00); g(1)=1,

then g is the T function. This result improves the classical Bohr-Mollerup the-
orem. We also proved that the geometrical convexity of g on (a,00) can be re-
placed by geometrical Jensen convexity on (a,00) - i.e. 9(v/Z) < 1/9(2)g9(¥)
for 2,y > a — and some weak regularity conditions.

Introduction

The Euler I’ function is ch ized as the only logarithmicalls
convez function g : (0,00) — (0, 00), satisfying the functional equation
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3] 9(z+1)=z-9(z), z€(0,00), with g(1)=1.

This is the well-known theorem of H. Bohr and J. Mollerup [3], pp. 149-
164, published in 1922. Nine years later E. Artin [1] gave a very elegant
and easy proof of it. An elementary and nice exposition of this proof
can be found in Chapter 8 of W. Rudin’s book [11]. W. Krull showed
in his paper (5], which he called a marginal note to Artins “Einfihrung
in die Theorie der T' Funktion”, that this result can be obtained by
characterizing the convex solutions of a class of linear finite difference
equations (see also M. Kuczma, [6], p. 128.)

A. E. Mayer [8] showed that in the Bohr-Mollerup theorem the
condition of the logarithmical convexity cannot be replaced by that of
convexity. In particular, cf. H.-H. Kairies [4], for every sufficiently small
¢ > 0, the function g : (0,00) — (0, 00) given by

g(z) =T(z)exp(csin2nz), z €{0.00),
satisfies (1) and is convex on (0, o).

The convexity of a function g is meant in the classical sense. Thus
g is convez on an interval (a, b) if and only if for each triplet of numbers
z,y,7 € (a,b) with z < y and z # z # y the following inequality holds:

9(2) —9(2) . 9¥) —9(z)
z—z ~ y—-z
Moreover g is logarithmically convez means that logog is convex. We
say that a function g : (0,00) — (0,00) is geometrically convez if
9(=* 4" <g(@)* g (1) forall A€ (0,1); @y € (0,00).
Obviously g is geometrically convex on (0,00) if and only if its expo-
nential conjugate, i.e. the function logog o exp is convex on R.

In Section 1 we will present the following theorem:

The only function g : (0,00) — (0,00) satisfying (1) and geomet-

rically convez on a neighbourhood of the infinity is the T' function.
‘We also prove that this result essentially improves the Bohr-Mollerup
theorem. In this context the above mentioned examples of convex so-
lutions g of equation (1) such that g # I' show that the geometrical
convexity is a more appropriate characterization of the I' function than
convexity or even the logarithmical convexity.

In Section 2, using some well-known weak conditions which ensure
the continuity of Jensen convex functions, we give some characteriza-
tions of the I function under the assumption of the geometrical Jensen
convexity of the function g.
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1. The main result

We start this section with the following obvious remarks.
Remark 1. If the function g : (0,00) — (0,00) is a solution of (1)
then ¢ : (0,00) — R, given by ¢ = log og is a solution of the functional
equation
(2) ¢(z+1)=logz+¢(z), z€(0,00), with ¢(1)=0.

From (2) we get, by induction, for all n € N

(3) ¢(n+1l+z)=p(z)+loglz(z+1)--(z+n)], z€(0,00).
Remark 2. A function g : (0,00) — (0,00) is geometrically convex
on (a,00), a > 0, if and only if the function ¢ : R — R defined by
¢ = log og o exp is convex on (log a, c0).

Now we can prove
Theorem 1. Suppose that g : (0,00) — (0,00) is a solution of (1) and
g 1s geometrically conves on an interval (a,c0) for some a > 0. Then

Proof. Let g : (0,00) — (0,00) be a solution of (1), geometrically
convex on the interval (a, ). Put ¢ = logog and ¢ = logogoexp as in
Remarks 1 and 2, respectively. By Remark 2 the function ¢ is convex
on (loga, o). Take arbitrary n € N with n > a and « € (0,1), and put

z, =logn, T3 = log(n + 1),

z3 =log(n+1+z), z4 = log(n +2).
So we have

loga <z <23 <23 < 24.
From the convexity of ¢ on the interval (log a, o) follows:
8(22) — ¢(z1) = (z3) — 4(z2) < 9(z4) — ¢(z2)

Ty — 1y T3 — 22 T4 — Ty
Since ¢(n) = log [(n — 1)!], this inequality yields

logn e o(n+1+z)—logn! < log(n+1)

T — T3 Ly T4—2Ty

Subtracting from this inequality 7282 and multiplying by (z3—25) > 0
yields

.
2 logn <
1

0<p(n+1+z) — logn!~z3_
T

T3 — T2 T3 -1y
<—I 1) - —logn.
= e og(n + 1) L



156 D. Gronau and J. Matkowski

- T3= 2y _Z—22
Op = = log(n+ 1) = logn.
Using (3) and the explmt expressxons for the zi’s, we gec
n! log(nt14s
% 4 Serie e e el o8 (7 41)=Tog 26
0 ¢(a) ~log z(z+1)---(z+n) e = ]‘e"
We will show that nli_n‘lw ©n = 0. The inequality z4 — 2 > z3 — 2,
implies
0<0, < log(n+l)—z -]ogn:

1
s log(n +1) = 8(n) -logn = log [# % WJ y

where §(n) = 24=£2_ Hence we have

2 = log(n + 2) —log(n + 1)
i) e ) e

Now 5(n) —2- by Cauchy’s mean value theorem and z4 — z; =
=51

=1

=log 22 n+1 <log L =g, — 21, that is 1 > §(n). Hence
n 3
1<n"(") m:nm»—al for n— oo,
therefore
. n 1 : 1
i flog [nﬂn) i ,.sv-)] =log [,.ll."‘éo i + B oy

=log(1+0)=0.
This means ,.hm O,

So ¢(z) and henceforth also g(z) is uniquely defined for each z of
the interval (0, 1) and, while (1) = 0 by definition, also at z = 1. By
the functional equation (1) the function g is uniquely defined on all of
(0,00). Since we know that the I' function is geometrically convex on
a neighborhood of oo (see Remark 4, below) the proof is complete. ¢

To show the relation between the Bohr-Mollerup theorem and our
Th. 1 we need some auxiliary results.

Lemma 1. Suppose that g : (a,00) — (0,00), a > 0, is increasing
and logarithmically convez on (a,00). Then g is geometrically convez
on (a, ).

Proof. Take arbitrary z,y € (a,00). Sincea < z*y*™ < Az +(1-A)y
for A € (0,1), making use of the monotonicity and convexity of log og,
we have



Generalizations of the Bohr-Mollerup Theorem 157

logg(z*y' ™) < log g (Az + (1= A)y) <

< Alogg(z) + (1 — N log g(y) = log (9(=)*9(y)* ™) .

Hence g(z*y!™*) < g(2)*¢(y)'™>, i.e. the function g is geometrically

convex on (a,0). ¢
Remark 3. The function g : (0,00) — (0, 00), given by

9(z) =exp(—Vz +1)
is decreasing and logarithmically convex on (0,00). Moreover, it is
easy to verify that the function logog o exp is strictly concave on R,
which means that g is strictly geometrically concave on (0, 00). Thus,
in Lemma 1, the supposition that g is increasing turns out to be indis-
pensable.
Lemma 2. If a function g : (0,00) — (0,00) satisfies (1) and is
logarithmically convez on a neighbourhood of oo, then there ezists an
a > 0 such that g is increasing on (a,o0).
Brour a5 assumption log by 15, conves-on (B700) for: somal b 310}
Thus the right derivative (logog), (z) = gy (z) (g(2))™" exists for all
€ (b,o0) and is an increasing function on (,00). Suppose now that
() < 0 for all = € (b,00). Then, of course, g would be decreas-
on (b,00). But this is & contradiction because g(n) = (n — 1)l.
Thus there exists an @ > b such that g/, (a) is nonnegative. In view of

the monotonicity of (logog)} = & we have g(z) 2 0 for all = > a.
Consequently, the function g is increasing on (a,0). ¢

Remark 4. The T function is logarithmically convex on (0,00), see
e.g Rudin [11], p. 192. Hence, by Lemma 2 and Lemma 1, T is also
geometrically convex at least on the interval (2,00) (cf. the proof of
Lemma 2).

The function g given in Remark 3 shows also that in Lemma 2
the assumption of g to be a solution of (1) is essential. However, the
“ollowing more general result is true too: If a function g : (b,00) —
— (0.00) s logarithmically convez and is not a deacreasing function,
n there ezists an a > b such that g is increasing on (a,00).

Now we can see, using the lemmas above, that the following re-
sult which is a generalization of the Bohr-Mollerup theorem (cf. H-H.
Kairies [4], p. 50) follows from Th. 1.
Theorem 2. If g : (0,00) — (0,00) is a solution of (1) and g is
logarithmically convez on an interval (a,00) for some a > 0, theng =T.
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Remark 5. Lemmas 1 and 2 prove that Th. 1 (as well as its con-
sequence, Th. 2) generalizes the Bohr-Mollerup theorem. To see that
Th. 1 is an essential improvement of this classical result notice that all
power functions g(z) = z?, z € (0,00), with p > 0, are geometrically
convex but not logarithmically convex. Note also that g(z) = z? is not
convex for p € (0,1).

2. Generalizations of Theorem 1 for Jensen convex
functions

We introduce the following analogue of a Jensen convex function.
Let I C (0,00) be an open interval. A function g : I — (0,00) is said
to be geomeirically Jensen convez on I if

9(v/7y) < Vg(z)g(y) forall z,yel

Remark 6. It is easy to see that g : I — (0,00) is geometrically
Jensen convex iff the function logog o exp is Jensen convex on the
interval log(I). Furthermore, it is well-known that every continuous
(geometrically) Jensen convex function is (geometrically) convex.

Using this remark and the well-known theorems of F. Bernstein-
G. Doetsch [2], W. Sierpifiski [12], A. Ostrowski [10] and M. R. Mehdi [9]
(cf. also M. Kuczma [7]), which give some very weak sufficient conditions
for a Jensen convex function to be continuous, we can formulate the
theorems of the previous section in a more general form.
Corollary 1. Suppose that g : (0,00) — (0,00) is bounded above on a
neighbourhood of a point and geometrically Jensen convez on an interval
(a,00) for some a > 0. If g satisfies (1), then g =T.
Proof. By assumption there are zo € (0,00), 7 > 0 and M > 0 such
that g(2) < M for all z € (zo — r,z0 + 7). Choose n € N such that
(n+20 —r,n+z0+r) C (a,00). Hence by equation (1) we have:

g(z+n)=z(z+1)- (z+n-1)g(z) <
<(zo+r+n)"M, z€(zo—r,z0+T).

Thus g is bounded above on U := ((zo + n) — 1, (20 + 1) + 1) C (a,0).
It follows that the function log ogoexp is bounded above on the interval
log(U) C (loga,0). The Bernstein-Doetsch theorem (cf. Kuczma (7],
p. 145, Th. 2) implies that logog o exp is continuous on (loga,co).
Remark 6 yields that logog o exp is convex on the interval (loga,co),
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consequently, g is geometrically convex on (a,c0). Now Cor. 1 results
from Th. 1. ¢
Remark 7. It follows from Ostrowski’s theorem [10] (cf. M. Kuczma
[7], p. 210, Th. 1), that the Cor. 1 remains true on replacing the as-
sumption “g is bounded above on ¢ neighbourhood of a point” by “g is
bounded above on ¢ set T C (0,00) such that the inner measure of T is
positive”.
Remark 8. It follows from Mehdi’s theorem [9] (cf. M. Kuczma [7], p.
210, Th. 2), that the Cor. 1 remains true on replacing the assumption
% is bounded above on a neighbourhood of a point” by “there ezists o
set T C (0,00) containing a second category set with the Baire property
such that g is bounded above on T”.

In a similar way as Cor. 1, using now the Sierpiniski theorem [12]
(cf. also M. Kuczma [7], p. 218, Th. 2), we can prove
Corollary 2. Suppose that g : (0,00) — (0, 00) is geometrically Jensen
convez on an interval (a,00) for some a > 0, and there is a nonempty
open interval I C (0,00) such that the restriction g|y is measurable. If
g satisfies (1), then g =T.
Remark 9. In M. Kuczma’s book [7] one can find some other weak
conditions which guarantee the continuity of Jensen convex functions.
They allow to formulate somewhat more general results than the above
Cors. 1 and 2.

The authors thank Professor J. Aczél for some helpful comments.
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