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M. Kuczma [2], p. 201, Theorem 1). In Section 2 we apply this result to
improve some converses of Minkowski’s inequality for 15-norm.

In [5] we have shown that in Theorem 1 the right continuity at 0 cannot
be replaced by a weaker assumption of boundedness in a neighbourhood
of 0. However, in Section 3 of the present paper we prove among other
things that if ¢ is a bijection of Ry such that ¢~ and, for some positive
integer n > 1, the function ¢ o (n¢™') are subadditive and ¢~" is bounded
in a neighbourhood of 0 then ¢ is a homeomorphism of R,. This result
together with Theorem 1 as well as the main result of Section 1 permit us
(Section 4) to prove some new converses of Minkowski’s inequality for the
LP-norm. One of these results (Theorem 8) reads as follows. Let (2, X, i)
be a measure space with at least three sets A, B,C € X such that

0<pu(d) <1, pB)=p(C)=1, BNC=90.

If ¢ : Ry — Ry is a bijection such that ¢(0) = 0 and for all nonnegative
p-integrable step functions z,y,

o7 J #otetvidn) 7( [ gollan) +o7( [ sobian)

then, without any regularity conditions, (t) = ¢(1)t* (t > 0) for some
P21

1. Subadditive functions of the form ¢~![¢(s) + ¢(t)] and a par-
tial converse of Mulholland’s inequality. For an arbitrary bijection
¢ : Ry — Ry the two-place function pg : R2 — Ry given by the formula

Ps(2) = 67 [p(21) + d(x2)], @ = (21,22),
is well defined. Functions of this form are known to be solutions of the
associativity functional equation (cf. J. Aczél [1], p. 253). Moreover, if ¢(t) =
6(1)t?, p > 1, then, in view of Minkowski’s inequality, p4 is subadditive.
This classical fact has been generalized by H. P. Mulholland [6] (cf. also
M. Kuczma [2], p. 198), who proved the following criterion of subadditivity
for py-

MULHOLLAND’S INEQUALITY. If ¢ : Ry — Ry is a convez homeomor-
phism of Ry such that logod o exp is conve in R then the functional ps
is subadditive in R3.

Using Theorem 1, we prove a partial converse

THEOREM 2. Let ¢ : Ry — Ry be an arbitrary bijection of Ry. If py
is subadditive in Ri then ¢ is a conver homeomorphism of R .

Proof. Writing out the subadditivity of p, we have
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(1) ¢7' (1 + 1) + B2 +12)]
<67 B(a1) + ()] + 67 [B(y1) + 6(y2)]

for all 21, z2,y1,y2 > 0. Setting here z; = o := s, y1 = Y2 1=, we get
@ o7 26(s + )] < 671 20(s)] + 07 20(1)], st 20,
which means that the function f := ¢~! o (2¢) is subadditive in Ry. Since
f maps Ry onto R, there exists a to > 0 such that f(to) = 0. From (2)
we have f(2to) < 2f(to) = 0 and, consequently, f(2to) = f(to). Since £ is
one-to-one it follows that to = 0. Hence we get £(0) = 6~}[26(0)] = 0, which
implies that ¢(0) = 0. Therefore, substituting z; := s, 2o =y; :=0, y2 :=1
in (1), we get
(3) o7 o(s) + ()] < s+t s,t>0.
In particular, ¢~1[2¢(t)] < 2t (t > 0). This proves that the function f =
6710 (2¢) is continuous at 0. In view of Theorem 1, f is a homeomorphism
of Ry.

Substituting o1 = yy := 8, 23 = y1 =t in (1) we get

fls+1) <207 6(s) + 6()], st2>0.

As f is strictly increasing, it follows that
() F(6) <267 o(s) + 6(1)], st >0.

Since f(t) = t if and only if ¢ = 0 we have either

(a) f(t) <tforall¢t>0,or

(b) () >t for all £ > 0.

‘We are going to show that case (a) cannot occur. To this end denote by
f™ the nth iterate of f. In case (a) the sequence (f"(t))5e; would be strictly
decreasing for every ¢ > 0. Therefore, since f(t) = 6~1[2"¢(t)], we would
have from (4),

672" (1)] < 2071[6(s) + 8()], s,t>0,neEN.
Replacing t by ¢~'[27"¢(t)] we hence obtain
t< 267 6(s) +27"6(t)], st>0,neN.

Fixt > 0. For n € N sufficiently large we clearly have 6(271t)—27"4(t) > 0.
Substituting in the above inequality
#7927 — 2779 (1)]
we get ¢ < t, which is a contradiction.

This proves that f satisfies inequality (b).

B



78 J. Matkowski and T. $wiatkowski

Now we are in a position to prove that ¢~! is continuous at 0. From (4)
and (b) we have

t<207Yd(s) + ()], s,t>0,
or, equivalently,
(5) 67N (t) <207 (s+1t), s,t>0.
If ¢~* were discontinuous at 0 then there would exist an £ > 0 and a sequence
of positive reals (t,)3%; such that

lim ¢, =0 and 2c< ¢ (t,), neN.
o
Hence, setting ¢ := t, in (5), we obtain
e<¢Hs+t,), s>0,neN.
This inequality and the relation lim,,— o t, = 0 imply that

670,000 = |J 7 (tn,00)] € [J s 00) = [0,

n=1

which contradicts the bijectivity of ¢ and proves that ¢! is continuous at 0.

Since ¢ is bijective it follows from (3) that ¢! is a subadditive bijection
of R.. In view of Theorem 1 the function ¢~ is a homeomorphism of R
and, consequently, increasing

Hence for all 5, > 0 with s < ¢, the numbers

21:=¢7's), 2= aﬁ"(tgs) .

cp(sEEN.
yri= ¢ ’(T) —¢7s)s 2=
are nonnegative. Inserting them in (1) we obtain

=k 3=
00l L a(221), s,

ie. ¢! is Jensen concave. Since ¢! is continuous and increasing it follows
that ¢ is convex. This completes the proof.

Remark1.1f f : Ry — R, satisfies f(s)+ f(£) < f(s+1), 5,¢ > 0, then
obviously it is increasing and f(0) = 0. Thus every superadditive bijection
of Ry is a homeomorphism. This permits us to prove a dual counterpart of
Theorem 2.

(6)

THEOREM 3. Let ¢ : Ry — Ry be an arbitrary bijection. If pg is super-
additive in R? then ¢ is a concave homeomorphism of R .

Proof. Suppose that p; is superadditive in R%. It is easy to see that
6(0) = 0 and ¢! is superadditive. By Remark 1, =" is a homeomorphism
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of Ry. Substituting in the reversed inequality (1) the numbers z1, z2, y1,
Y2 defined by (6) we conclude that ¢ is concave.

This is a partial converse of Mulholland’s inequality stating that if ¢ and
log 06 o exp are concave then p, is superadditive [6].

2. An application to a partial converse of Minkowski’s inequal-
ity for 15-norm. Mulholland’s inequality provides us with a broad class of
bijective functions ¢ for which the functional p, is subadditive in R3. It
is easy to verify that every power function ¢(t) := ¢(1)t?, p > 1, belongs
to this class and that the subadditivity of p, becomes the simplest version
of Minkowski’s inequality for the 15-norm. The main result of this section
says that, under only some regularity assumptions, the subadditivity of the
functional py implies that ¢ is a power function. We start with the following

THEOREM 4. Let ¢ : Ry — R be an arbitrary bijection and suppose that
the functional py is subadditive in R%.. Then ¢ is a convex homeomorphism
of Ry and the limit

exists where 0 < ¢o < co. Moreover:
(a) if co < oo then (t) = cot (t > 0);
(b) i co = oo and there exists a p > 1 such that the limit

c:= lim @
t—so P
exists, 0 < ¢ < 0o, and the function ¢1/7 is conves then 6(t) = ct? (t > 0).

Proof. By Theorem 2 the function ¢ is a convex homeomorphism of
R.. Thus ¢(0) = 0 and, consequently, the function (0,00) 3 ¢ — ¢(¢)/t is
increasing. This implies that the limit ¢g exists and 0 < ¢y < 0.

Inequality (1) holds by assumptions. Setting o1 = 23 1= 5, y1 = yp i= t
in (1) we get inequality (2), which means that f := ¢~'0(2¢) is subadditive.
Since f is increasing it follows that f™, the nth iterate of f, is subadditive,
ie.

(1) T2"(s + )] < 472 ()] + 67 (2"6()], 5220, neEN.

Suppose now that co is finite. Then lim,_,o ¢71(t)/t = c5*. Writing (7)
in the form

~1jgn 4=1jgn ~1[9n
o2 (s +¢)] s+ <? [2"¢(s)] s 671 [2"6(1)] t)
27¢(s +1) 2"9(s) 2¢(t)
for s,t > 0, n € N, and letting n tend to infinity we hence get
o(s+t) < g(s) +o(t), s,t>0,
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ie. ¢ is subadditive. On the other hand, ¢, being convex and satisfying
6(0) = 0, is superadditive. Thus ¢ is additive and, consequently, ¢(t) = cot
(t > 0) (cf. J. Aczél (1], p. 34, Theorem 1).
Suppose that co = co. Now lim_.o ¢~} (t)/t!/? = c=1/?. Therefore writ-

ing (7) in the form

o 2re(s + 1)), o72"0(s)] 7120

2rg(s + P PRIOIRCN ERION
for all 5,t > 0, n € N, and letting n tend to infinity we get

[6(s + 17 < [B(s) 7P + [6(O7,  st20,

i.e. 6!/ is subadditive. Since ¢'/? is increasing and by assumption convex,
it follows that it is superadditive. Thus ¢'/7 is additive and, consequently,
linear. This concludes the proof.

s+t)]1/y < s)]”"+ i)]l/P

Remark 2. One can easily verify that the assumption of convexity of

67 in Theorem 4(b) can be replaced by each of the following conditions:
(i) t — (t'/?) is convex in (0, 00);

(ii) t — t=16(t'/7) is increasing in (0, c);

(iii) ¢ — t~[p(t)]*/* is increasing in (0, 00);

(iv) t — ¢(t/7) is superadditive in (0, 00);

(v) ¢/? is superadditive.

This improves our earlier result (cf. [4], Corollary 2) where it is assumed
that ¢(0) = 0 and ¢~! is continuous at 0.

If we drop the convexity assumption in Theorem 4(b) we can only assert
that ¢(t) > ct? (t > 0). In fact, in view of the first part of the proof
of Theorem 4(b), where we do not use the convexity assumption, ¢!/7 is
subadditive. Therefore

[BmO? < nfo®)]/?, t>0, neN,
or, equivalently,
o(nt)
——tP < B(t), %21 8 eN.
ot S o(t) n
As n tends to infinity we hence obtain ct? < ¢(t) for all ¢ > 0 (cf. also [4],
Proposition 5). In this connection consider the following

EXAMPLE. For p > 1 the function ¢(¢) := t* + t*~1, t > 0, is obviously

convex. After some simple calculations we have
(logodoexp)’(u) = (u+1)"2, ueR,

which proves that log o¢oexp is also convex. Thus, by Mulholland’s inequal-
ity, ps is subadditive in R2. Since ¢ is not a power function, this example
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shows that in Theorem 4(b) the convexity of /7 (or of any of its substitutes
(i)~(v)) is essential.

Remark 3. It is easy to observe that the assumption of the existence
of p > 1 such that the limit

is positive and finite in Theorem 4(b) can be replaced by the existence of a
finite positive limit
lim M :
t—0 1P
Remark 4. Making use of Remark 3 one can easily get the counterparts
of the above results for py superadditive.

3. Functions conjugate to linear functions and subadditivity.
In the proofs of Theorems 2 and 4 we considered functions of the form
fi=¢"10(ad), with a = 2", n € N. Since o fo¢~(t) = at, the function f
is o-conjugate to the linear function ¢ — at. In this section we are concerned
with some properties of such functions.

THEOREM 5. If ¢ : Ry — Ry is a bijection such that
(i) 671 is subadditive;
(i) o7 o (ag) is continuous for some a >0, a # 1;
(ili) ¢~ is bounded in (0,c) for some ¢ > 0,
then ¢ is a homeomorphism of Ry.
Proof. Since t = 0 is the only fixed point of the homeomorphism f :=
6710 (ag), we have either
(a) f(t) < tforallt>0,or
(b) f(t)>tforallt>0.
Take an arbitrary zo > 0 and define
Trer = flzx)  (B=0,£1,£2,...).
One can easily verify that
$lar) =a*0(z0)  (k=0,%1,42,.
In the sequel, without any loss of generality, we may assume that a > 1.
(In fact, if 0 < a < 1, consider the function ¢! o (a~'¢) which, being the
inverse of f, is also a homeomorphism of R.)
Note that case (a) cannot occur. Indeed, in this case we have z44+1 < )
for all integer k. Consequently, the limit

ci=lim z_; >z9>0
k—oo

exists. If ¢ < oo then, by the continuity of f, we would have
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f(e

which is a contradiction.
Suppose that ¢ = oo and put y; = ¢(z_), k € N. Since

lim f(z_x) = lim z_p41 =c,
k—oo k—oc

lim yp = lim ¢(z_) = lim a *¢(zp) = 0,
k—oo koo k—oc
we hence get
lim ¢™}(yx) = lim z_p=c=o0
k—oo k—oc
This is a contradiction as ¢~ is bounded in a neighbourhood of 0.
This proves that f satisfies inequality (b). Consequently,
T <mppa, k=0,41,42,0,
and, by the continuity of f,
lim f(z_&) =0, lim f(z;)=oc0.
ey koo
1t follows that
0,00) = | [zp,zrs1)-
k==o00

Because [z, k41) = f([Tk—1,Tk)), we have ¢([zx, Txr1)) = ad([zx_1,71))-
Setting

By = $([en,@re))  (k=0,41,%2,..),

we obtain
E.=aEy1:={at:t€ Bx_1} =a*Ey (k=0,£1,%2,...).
Since ¢ is bijective, the sets Ej, are pairwise disjoint and
o
(0,00)= |J Ex.
k=—oo

Observe that 0 is not a limit point of the set Eo. For an indirect proof

suppose that this is not the case. Then there exists a sequence y; € Ey

(k € N) such that z; == a*y (k € N) satisfies limy_, 2 = 0. Since 2 € Ey

(k € N), we hence get ¢='(2x) € [zx,x+1) (k € N) and limy_.. 6~ (zx)

= 00. This contradicts the bounded of ¢~! in a neighbourhood of 0.
Hence, putting &, := inf By (k=0,+1,£2,...), we have

Sp=0a"6>0 (k=0,41,+2,...).

Taking an arbitrary integer n we get
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0((2,00) = 8( U lows 2i1)) = [ 6w zis1))
k=n

k=n

Cs

%
= U By C
k=n P
which means that for every ¢,
0<t<a™o=¢"'(t) <zn.
Since n = 0,%1,42,... is arbitrary and lim, . 2_, = 0, this implies that
61 is continuous at 0. Now Theorem 1 concludes the proof.

[8, 00) = [85, 00) = [a" 89, 00) ,

i
3

EXAMPLE. Let o : R — R be a discontinuous additive involution (cf. [2],
p. 293, Theorem 2) and let ¢ := |ajz, (the restriction of |a| to Ry ). Since
a=a"l, it is easy to verify that

1° ¢! and ¢ are subadditive bijections of R, ;

2° for every rational a > 0 the function ¢~ o (a¢) is linear;

3° the graphs of ¢ and ¢! are dense in R2.
Thus ¢~! o (ag) can be homeomorphic (even linear) for extremely irregular
¢. This also shows that assumption (iii) of Theorem 5 is essential.

The main result of this section reads as follows.

THEOREM 6. If a bijective function ¢ : Ry — Ry satisfies the following
conditions:

(i) ¢7* is subadditive;

(ii) there exists n € Nyn > 1, such that ¢~ o (ng) is subadditive;

(iii) ¢~ is bounded in a neighbourhood of 0,
then ¢ is a homeomorphism of R..

Proof. Clearly f := ¢~ o (ng) is a bijection of R.. From (i) we get

ft) =07 (no(t)) SnéTH(é(t)) =nt, t€[0,00),

which proves that f is continuous at 0. In view of Theorem 1 the function
f is a homeomorphism of R,. Now Theorem 5 concludes the proof.

Remark 5. The function ¢ : R, — R, given by ¢(t) := t™! (¢ > 0)
and ¢(0) = 0 is a subadditive bijection of R,. Moreover, for every a > 0
the function ¢! o (ag)(t) = at (¢ > 0) is additive. This shows that the
assumption (iii) of Theorem 6 is indispensable.

4. A contribution to the converse of Minkowski’s integral in-
equality. For a measure space (£2, X, u) denote by S = S(£2, X, u) the set of
all p-integrable step functions z : 2 — R and by S the set of all nonneg-
ative z € S. It can be easily verified that for every bijection ¢ : Ry — Ry
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such that ¢(0) = 0 the functional P, : § — R, given by the formula
Po(e)i= 67 ( [ solaldu), aes,
2

is well-defined. In [3] the following converse of Minkowski’s inequality has
been proved.

If (2,2, ) is a measure space with two sets A, B € ¥ such that
0<p(4) <1< u(B)<oo
and ¢ is a bijection such that ¢(0) = 0, ¢~ is continuous at 0 and
Py(z+y) SPy(2)+Py(y), zyeSy,
then ¢(t) = ¢(1)t? (¢ > 0) for some p > 1.

At least from the aesthetic point of view this result would be more satis-
factory if the purely technical continuity assumption could be dropped. This
seems to be a rather difficult question. To explain the role of this assumption
observe that ¢(0) = 0 and the triangle inequality for P4 imply that f := ¢~1
is subadditive in R.. Therefore, by Theorem 1, ¢ is a homeomorphism of
R. This is a starting point of the proof given in [3].

An attempt at replacing the continuity of ¢~* at 0 by the boundedness
of ¢~ in a neighbourhood of 0 causes serious difficulties (cf. [5]). However,
making use of Theorem 6, ie can prove the following

THEOREM 7. Let (22,X,u) be a measure space with two disjoint sets
A,B € X such that p(A) € (0,1) and p(B) € N\{1}. If ¢ : R, — R, is
an arbitrary bijection such that ¢(0) = 0, the function ¢~ is bounded in a
neighbourhood of 0 and
(8) Py(z+y) SPy(z) +Pyly), «,y€Sy,
then 6(t) = o(1)t? (t > 0) for some p > 1.

Proof. Put a := p(4), n := pu(B) and denote by X, the characteristic
function of a set C. Setting in (8),

TiI=TiIX, +22Xp Y= UiX, T X (T1,22,01,02 20),

we get the inequality

(9) ¢ ag(er +w1) +ng(z2 +12)]

< 47 ad(z1) + no(@)] + 47 ad(3n) + nd(32)]

for all nonnegative 1, 2, y1,y2. Hence, specifying these variables in an ob-
vious way and making use of the assumption ¢(0) = 0, we infer that ¢~!
and ¢=1 o (n¢) are subadditive. Since ¢~ is bounded in a neighbourhood
of 0, Theorem 6 implies that ¢ is a homeomorphism of R. We also have
0 < p(A) <1< p(B) < 0o. Now our theorem results from the converse of
Minkowski’s inequality quoted above.
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We end this paper with one more application of Theorem 2. Strength-
ening slightly the assumptions on the underlying measure space, we prove
a converse of Minkowski’s inequality without any regularity assumptions.

THEOREM 8. Let (2, X, 1) be a measure space with three sets A, B,C
€ X such that

0<u(d) <1, wB)=pC)=1, BnC=0.
If¢:Ry »Ryisa bi]ectwn such that ¢(0) =0 and
Py(z+y) SPy(a) +Py(y), zy€Sy,
then ¢(t) = ¢(1)t? (t > 0) for somep > 1.

Proof. One can easily verify that taking in the triangle inequality (8),
TiXg +T2Xor Y= YiXg t¥eXe  (T1,22,91,32 2 0),
we get inequality (1). It means that the functional p, : R — R, given by
the formula

T

ps(@) = 67 [B(21) + $(a2)], @ = (e1,72),
is subadditive. By Theorem 2 the function ¢ is a homeomorphism of R
and, consequently, ¢~ is continuous at 0. Since 0 < p(A) < 1 and p(BU
C) = 2, our theorem follows from the above quoted converse of Minkowski’s
inequality.

References

[1] 3. Aczél, Lectures on Functional Equations and Their Applications, Academic Press,
New York 1966.

[2] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequali-
ties, Polish Scientific Publishers and Silesian University, Warszawa-Krakéw-Katowice
1985.

[3] J. Matkowski, The converse of the Minkowski’s inequality theorem and its gener-
alization, Proc. Amer. Math. Soc. 109 (1990), 663-675.

[4] J. Matkowski and T. Swiatkowski, Quasi-monotonicity, subadditive bijections
of Ry, and characterization of LP-norm, J. Math. Anal. Appl. 154 (1991), 493-506.

[5] —, —, On subadditive functions, Proc. Amer. Math. Soc., to appear.

(6] H.P. Mulholland, On generalizations of Minkowski’s inequality in the form of a
triangle inequality, Proc. London Math. Soc. 51 (1950), 294-307.

DEPARTMENT OF MATHEMATICS INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY TECHNICAL UNIVERSITY
WILLOWA 2 AL. POLITECHNIKI 11
43-300 BIELSKO-BIALA, POLAND 90-924 LODZ, POLAND

Received 21 September 1992



FUNDAMENTA
MATHEMATICAE
143 (1993)
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Abstract. Let 6 be an arbitrary bijection of R+ We prove that if the two-place func-
tion ¢~ [¢(s)+¢(#)] is subadditive in B2 then ¢ must be a convex homeomorphism of R+
This is a partial converse of Mulholland’s inequality. Some new properties of subadditive
bijections of R are also given. We apply the above results to obtain several converses of
Minkowski's inequality.

Introduction. Throughout this paper R, B, and N will stand respec-
tively for the set of reals, nonnegative reals, and positive integers.
Every function f : R, — R satisfying the inequality
fs+t) < f(s)+f()  (5,t20)
is said to be subadditive. If the inequality is reversed the function is termed

superadditive.
In our recent paper [4] we have proved the following

THEOREM 1. If f: Ry — Ry is subadditive, right-continuous at 0 and
bijective then f is a homeomorphism of R..

In Section 1 we consider the two-place function p, : R2 — Ry given by
the formula py(s, t) := ¢71[6(s) + ¢(t)] where ¢ : Ry — R, is an arbitrary
bijection. Using Theorem 1 we prove that if pg is subadditive in R2 then ¢ is
a conver homeomorphism of R.. This is a partial converse of Mulholland’s
criterion of subadditivity of the functional p (cf. H. P. Mulholland [6], also
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