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ABSTRACT. We prove that every locally bounded above at a point subadditive
function f: (0, oc) — R such that f(rt) < rf(t), t > 0, for some r €
(0, 1) has to be linear. Using this we show among others that the homogeneity
condition of a seminorm p in a real linear space X can be essentially relaxed
1o the following condition: there exists an r € (0, 1) such that p(rx) < rp(x)
forall x € X . A new characterization of the I”-norm and one-line proofs of
Minkowski’s and Holder’s inequalities are also given.

INTRODUCTION

Let R, R,, and N denote, respectively, the set of reals, nonnegative reals,
and positive integers.

In the first section of this paper we deal with some properties of subadditive
and superadditive functions defined in (a, o), a = 0. We say for short that
a function f: (0, o0) — R is locally bounded above at a point if there exist
to>0, 6 >0,and M € R such that f(1) <M forall 1€ (to—0d,1+9).

The main result says that every locally bounded above at a point subadditive
function f: (0, 00) — R such that f(rt) < rf(t) for some r € (0, 1) and all
t> 0 has to be linear, i.e., f(t)= f(1)t, t>0. Using this fact, in §2 we show
that the homogeneity condition in the definition of a seminorm (or a norm) can
be replaced by a considerably weaker one. In particular, we prove that if X s
a real linear space and p: X — R satisfies the following three conditions:

(1) p(x+y) <px)+py) forall x,yeX,
(2) p(rx) < rp(x) for some r € (0, 1) and all x € X ; and the function
t — p(tx), t >0, is locally bounded above at a point;
(3) p(—x)=p(x) forall x e X,
then p(tx) = |t|p(x) forall teR and x€ X, ie, P is a seminorm.
Actually conditions (1) and (2) can be replaced by the following more general
one: for every x € X the function fy: (0, 00) — R, defined by the formula
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f (1) := p(tx) , is subadditive in (0, o), locally bounded above at a point, and
there exists an 7 € (0, 1) such that fi(ryt) < r.fi(2) forall 1> 0.

For a measure space (£, £, u) denoteby S =8(Q, X, u) the linear space of
all the u-integrable step functions x: Q — R and by S, the set of nonnegative
x €S. For a bijection ¢: R, — R, such that ¢(0) =0 denote by P,: S — Ry
the functional defined by the formula

Pg,(x)::qo”(fnqoolx}du), x€S.

In §3, applying the above result, we give the following characterization of the
L#-norm, p > 1. If (Q, I, u) is a measure space with at least two disjoint seis
of finite and positive measure and

(1) Py(x +y) £ Py(x) +Py(y) forall x,yeSy;
(2) Py(tx) < tPy(x), for all t € (0, 1), xeS;;

then ¢(t) = o(1)tP, t >0, for some p > 1.

The case when inequalities (1) and (2) are reversed is considered and some
complementary results are also presented.

The results of §2 show that the two basic axioms of seminorms are to some
extent dependent. Assuming that a functional p is subadditive we prove that
the second axiom, the homogeneity of p, is then a consequence of a consid-
erably weaker one. In this connection the following natural problem arises.
Suppose that p is (positively) homogeneous. What then can one say about its
subadditivity? Answering this question, in §4, we find a strikingly simple joint
generalization of Minkowski’s and Holder’s inequalities, which provides us with
“one-line™-easy to remember proofs of them.

In the last section we apply our basic result to generalize a Berz theorem on
sublinear functions.

1. SOME PROPERTIES OF SUBADDITIVE AND SUPERADDITIVE FUNCTIONS

A function f: (a, ) — R, a >0, is said to be subadditive if

(1) f+n<f)+ /), s, t>a.

If the reversed inequality holds then [ is said to be superadditive. Since [ is
superadditive iff — f is subadditive, we deal mainly with subadditive functions.

Lemma 1. Suppose that f:(a, <) =R, a=0,1s subadditive. If f is locally
bounded above at a point then there exists b > a such that f is locally bounded
in (b, ).
Proof. Suppose that f is bounded above in a neighbourhood of a point 7o > a,
ie,that f({) <M, te(yn—¢,tog+e)C(a, o), forsome M € R and ¢ > 0.
From (1) we have f(s+1) < f(s)+ M for te(s+lo—¢, S+to+e), e, fis
bounded above by f(s)+ M in the interval I;:=(s+17—¢&,5+ 1o+ g). Since
the family of intervals (I;);», forms an open covering of the interval (b, x)
with b:=a + to — ¢, it follows that [ is locally bounded above in (b, o0).
Now let 7o denote an arbitrary point of the interval (b, oc) and let & >0
be such that #; — & > b. According to the preceding part of the proof, there 1S
an M such that f(1)< M for t€ (to—¢, to+e). Since 1€ (fo— ¢, to+e) if
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and only if 2tp—t€(fo—&, 00+ ¢), we have from (1)

1) = f(2t0) = f(2to— 1) = f(2t0) = M, te(to—&,lo+e),
which completes the proof.

Remark 1. It is well known that every subadditive and measurable function
f:(0, c0) — R is locally bounded (cf. [3, Theorem 7.4.1, p. 241; 11, Theorem
3.1.1; 4, Theorem 5, p. 406]).

The next lemma is a slight generalization of Theorem 7.6.1 in [3].

Lemma?2. If f:(a,o)— R, a= 0. is subadditive and locally bounded above

at a point then
tim L0 _ e SO

t—oo 1 t>a [
Proof. By Lemma 1, [ is boun-ed on every compact subset of (b, o). There-
fore Lemma 2 follows from Theorem 7.6.1 in [3, p. 244] and the remark fol-
lowing its proof.

Now we can prove the main result of this section.

Theorem 1. If f: (a, ) —R, a>0,is subadditive and locally bounded above
at a point, and there exists an r > 1 such that

(2) flrt)y = rf(1), t>a,
then f(t) = f(1)t forall t >a.
Proof. Put a := infiq f(1)/1. From (2) by induction we gel flrme) = " f(1)
forall neN and ¢ >a or, equivalently,

HOPRAGL)

t -t

From Lemma 2, letting n — co, we get fj/t<a,t>a. On the other hand,
from the definition of a, we have

/()

—{—2(1, t>a,

, neN, t>a.

which completes the proof.
For a = 0 we obtain

Corollary 1. If f: (0, 0) — R is subadditive and locally bounded above at a
point, and there exists an 1 € (0, 1) such that f(rt) < rf(t), t > 0, then
f(t)=f()t, t>0.

Remark 2. The assumption of local boundedness above at a point in Lemmas
1 and 2 and Theorem I is essential and cannot be replaced even by global
boundedness below. To see this take a discontinuous additive function g: R —
R and put f:=|g| |(0=m) _Clearly f is subadditive and bounded below by 0in
(0, oo). It is well known that g and, consequently, f are not locally bounded
at any point. On the other hand one can easily observe that the conclusions of
Lemmas 1 and 2 and Theorem 1 for this function [ are false.

Remark 3. Replacing f by —f we can reformulate all the above results for
superadditive functions. Note that such a procedure is not applicable for a
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function of the type f: (a, o) — R, , a > 0. For example we have the follow-
ing result (cf. [6]): if f: (0, 0c) — R, is superadditive then f is increasing,
lim,_ f(t) =0, and

lim S0 =inf U] .

t—0 I >0

A “dual” counterpart of this result for a subadditive function f:(0, o) — Rs
is obviously false. Let us mention here that Bruckner [2] proved that every
superadditive function f: [0, a] — R has the unique minimal superadditive
extension F: R, — R and gave a formula for F. In this case a “dual” coun-
terpart holds true.

As an immediate consequence of Theorem 1 we get

Corollary 2. (a) If f: (a, x) — Ry, a >0, is superadditive and there exists an
r>1 suchthat f(rt) <rf(t), t >a,then f(t)= f(1)t, 1>a.

(b) If f:(0, 00) — R, is superadditive and there exists an r € (0, 1) such
that f(rt) > rf(t), t>0, then f(t)=f(1)t, t>0.
Remark 4. If f: (0, oo) — R satisfies the condition

(i) the function t — f(t)/t is nonincreasing in (0, oc),
then f is subadditive (cf. [3, Theorem 7.2.4, p. 239]). This is a simple criterion
of subadditivity. In this connection the following facts may be useful.

(@) If f:(0, ) — (0, 00) is continuously differentiable then condition (1) is
equivalent to

(i) ff(e< f(o), t>0.

(b) If f:(0, 00) — (0, o) is increasing then (i) is equivalent to

(ii1) logof o exp is a nonexpansive mapping of R.

Proof. Take 0 < () < ;. To prove (a) observe that inequality

fu) _ f(n)

(3) tz r

is equivalent to the inequality

v “1
h ﬂndtglltdL

To prove (b) take u;, u> € R such that £, = ™ and t, = e* and note that
(3) is equivalent to the inequality

log f(e*) — log f(e"') < uy — uy.

Let us finally note the following comparison test of superadditivity. Suppose
that f:(0,00) = R, and g: (0, 0c) — (0,00). If g Is subadditive and [/g
is nonincreasing, then f is subadditive.

Proof. For s,t >0 we have

S5+ 1) f(s+1)
fls+1)= g(H[)g(s 1) < g(H,)(g(SHg(r))
<L o)+ LWy = 115 + f10)

g(s)
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2. AN APPLICATION TO A RELAXATION
OF THE SEMINORM HOMOGENEITY CONDITION

Let (X, R, +, ) be a linear space. A set C C X is said to be a cone in X
if C+CcC and tC C C forevery > 0. We have

Proposition 1. Let (X, R, +, ) be a linear space, C C X a cone, and p: C —
R. Suppose that for every x € C the function f.: (0, ) — R, defined by the
formula
fr(t) = p(tx), t>0,
satisfies the following conditions:
(1) fy is subadditive in (0, oc);
(2) fx is locally bounded above at a point and there exists an ry € (0, 1)
such that fi(ret) < ryfi(t) for every t > 0.
Then the functional p is positively homogeneous, i.e., p(tx) = tp(x) for every
xeX and t>0.

Proof. For every fixed x € X the function [ := f; satisfies all the conditions
of Corollary 1. Consequently we have f.(7) = fx(1)t, t >0, ie., p(tx) = tp(x)
forall t>0.

The next result says in particular that two basic axioms of the seminorm, the
triangle inequality and the homogeneity condition, are to some extent depen-
dent. Namely, we have the following

Theorem 2. Let (X, R, +,-) be a linear space and suppose that a functional
p: X — R satisfies the following conditions:

(1) p(x+y) <p(x)+p(y) forall x,ye X;

(2) forevery x € X the function t — p(tx), t >0, is locally bounded above
at a point and there exists an r = r € (0, 1) such that p(rix) < rp(fx)
forall t >0;

(3) p(—x)=p(x) forevery x € X.

Then p is a seminorm in X .

Proof. Fix an arbitrary x € X and define f;: (0, oc) — R by the formula
fe(2) == p(tx), 1>0.

From (1) we have

fe(s+0) =p((s+0)x) = p(sx +1x) < p(sx)+p(tx) = fi(s)+ fi(1), s,0>0,

i.e., f, issubadditive. Since (2) coincides with Proposition 1(2), it follows that
p(tx) = tp(x), r>0.

Hence, making use of (3) , we have for ¢t <0

p(tx) = p((—1)(—x)) = —tp(—x) = [7[p(x) .

Setting x = 0 in the inequality of assumption (2), we get p(0) < rp(0). Since
r < 1, it follows that p(0) < 0. On the other hand, from (1) we have p(0) =
p(0 + 0) < p(0) + p(0) = 2p(0), i.e., p(0) > 0. Consequently p(0) = 0. Thus
we have proved that p(rx) = |t|p(x) forall x € X and ¢t € R. Now (1), (3).
and p(0) =0 imply that p(x) > 0, x € X, which completes the proof.

From Theorem 2 we obtain the following obvious
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Corollary 3. If (X, R, +, -) is a linear space and a functional p: X — R sal-
isfies the following conditions:

(1) p(x+y) <p(x)+p(y) forall x,yeX;

(2) p(tx) <tp(x) forall te(0,1) and x € X;

(3) p(—x) =p(x) forall xe X,
then p is a seminorm in X .
Remark 5. Both assumptions (2) and (3) of Corollary 3 can be replaced by

p(tx) < |t|p(x) forallx e X andte([-1,1], t#0.
In fact, for t = —1 we hence get p(—x) < p(x), which evidently implies that
p(—x) =p(x).
We generalize this remark as follows.

Theorem 3. Let (X, R, +, +) satisfy the following conditions:

(1) p(x+y) <p(x)+p(y) forall x,yeX;

(2) there exists an r > 0 such that p(tx) < |t|p(x) for all x € X and

lt|<r,r#0.

Then p is a seminorm in X .

Proof. 1t is easily seen that conditions (1) and (2) of Theorem 2 are fulfilled.
To prove that condition (3) of Theorem 2 holds true take n € N such that
1/n < r. From our condition (2) we have

X 1 X 1
p(—;) < P(x), p(;) < px),  xEeX.
Replacing x by nx we get
np(—x) < p(nx), np(x) <pnx), xeX.
Hence, making use of (1), we obtain
n(p(=x) + p(x)) < 2p(nx) < 2np(x), xeX,

which implies that p(-x) < p(x) and, consequently, p(—x) = p(x) for all
x € X . Thus the theorem follows from Theorem 2.

In the sequel we consider nonnegative and superadditive functions. Applying
Corollary 2(b) we obtain

Proposition 2. Let (X, R, +, ) be a linear space, C C X a cone in X, and
suppose that p: C — Ry If for every x € C the function [x: (0, ) — Ry,
defined by the formula
K =pix), >0,

satisfies the following conditions:

(1) fx is superadditive,

(2) there exists an r = ry € (0, 1) such that fi(rt) = r/x(1) forall t >0,
then p(tx) =tp(x) forall xe€ C and t > 0.

Since —p is subadditive and globally bounded above by 0 in C', Proposition
2 is also a consequence of Proposition 1.

Remark 6. One can easily check that if X is a real linear space and p: X — R
is superadditive and nonnegative then p(x) =0 forall x € X. To avoid such
a triviality we assume in Proposition 2 as well as in the next result that p is
defined in a cone.

As an obvious consequence of Proposition 2 we get
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Theorem 4. Let (X, R, +, ) be a linear space and C C X a cone. Ifp: C —
R, satisfies the following conditions:

(1) p(x+») Zp(x)+p(y) forall x,yeC;
(2) there exists an r € (0, 1) such that p(rx) > rp(x) forall x € C,

then p(tx) = tp(x) forall x € C and t > 0.

Remark 7. Let X be a linear space and C C X a cone. Following Rosenbaum
[11] we say that a function p: C — R is quasi-homogeneous if p(rx) < 1p(x)
forall # > 1 and x € C. Theorem 4 implies that every superadditive and
quasi-homogeneous function p: C — R must be positively homogeneous.

3. AN APPLICATION TO A CHARACTERIZATION OF THE LP-NORM

For an arbitrary measure space (Q, X, u) denote by S = S(Q, Z, i) the
linear space of all the u-integrable step functions x: Q — R and by S, =
S.(Q, =, u) the set of all the nonnegative x € S. Evidently S, is a cone in
S. For a bijection ¢: R, — R, such that ¢(0) = 0 the functional Fy: S—R,,
given by the formula

Py(x):=g~! ([gcoo ledu) ; X €S,

is well defined. Note that if ¢ is of the form ¢(f) =ct?, t > 0, for some ¢ > 0
and p > 1, then P, reduces to the IL”-norm.
In [5] the present author proved the following

Theorem A. Let (Q, X, u) be a measure space with at least two disjoint sets
of finite and positive measure, and suppose that ¢: R, — Ry is an arbitrary
bijection such that ¢(0) = 0. If the functional P, is a norm in S then ¢(1) =
p()t?, t >0, for some p > 1.

Applying one of the results of the previous section we can prove the following
stronger

Theorem 5. Let (Q, X, 1) be a measure space and ¢: R, — R, an arbitrary
bijection such that ¢(0)=0. If

(1) Pp(x +y) < Py(x) + Pyp(¥) forall x,y€8,;

(2) there exists an r > 0 such that Py(ix) < (Py(x) forall x € Sy, t €

0,r),

then P, is a norm in S. Moreover, if there are two disjoint sets of finite and
positive measure in ¥ then ¢(t) = @(1)*, 1 >0, for some p = 1.
Proof. Put X := S and p := P, . Since for every x € S we have |x| € Sy
and P,(x) = P,(|x|), it follows that the functional p = P, satisfies all the
assumptions of Theorem 3. Consequently P, isa norm in S. Now the second
statement results from the above quoted Theorem A.

From Theorem 2 we immediately obtain

Theorem 6. Let (Q, X, 1) be a measure space and ¢: R, — R, a homeomor-
phism of Ry . If

(1) By(x +y) SPo(x)+Py(y) forall x,y € S,

(2) there exists an r € (0, 1) such that Py(rx) < rPy(x) forall x €Sy,
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then P, is a norm in S. Moreover, if there are two disjoint sets of finite and
positive measure in L then ¢(t) = @(1)t*, t >0, for some p > 1.

The second part of this theorem can be generalized as follows.

Theorem 7. Let (Q, X, u) be a measure space with two disjoint sets of finite
and positive measure and suppose that ¢: R, — R, is bijective, ©(0) =0, and
¢~ is continuous at 0. If

(1) Py(x +y) SPp(x)+Pyp(y), forall x,yeS,:

(2) there exists an r € (0, 1) such that P,(rx) < rPy(x) forall x €S, ,
then @(t) = @(1)t?, t >0, for some p > 1.
Proof. According to the assumptions there are 4,, 4, € ¥ such that AiNA; =
& and a; := u(4;) € (0,00), i = 1,2. Denote by x4 the characteristic
function of a set 4. Putting in (1) the functions

X:=8X4,, V:i=1Xa,, 5,120,

and making use of the definition of the functional P, , we obtain

0~ (@1p(s) + a0(1) < 9™ (arp(s)) + 9~ (a20(1)).
Replacing s by ¢~'(s)/a; and t by ¢~ '(t)/a, ., we get
o7 s+ <o)+ N(1), 5,1>0.

Thus ¢! is subadditive and, according to the assumptions, bijective and con-
tinuous at 0. In view of the theorem of Swiatkowski and the author [7], =" is
a homeomorphism of R, . Now Theorem 6 concludes the proof.

Applying Theorem 4 and adopting the argument used in the proof of the

above quoted Theorem A, we can prove the following
Theorem 8. Let (Q, X, u) be a measure space and ¢: R. — R, an arbitrary
bijection such that ¢(0)=0. If

(1) Po(x +y) > Py(x) +Py(y), forall x,yeS,;

(2) there exists an r > 1 such that Py(rx) < rPy(x) forall x €S, ,
then P, is positively homogeneous. Moreover, if there are two disjoint sets of
finite positive measure in X then ¢(t) = ¢(1)i", t > 0, for some p € (0, 1].
Remark 8. Note that assumption (1) in Theorems 5, 6, and 7 may be replaced
by the following considerable weaker one:

Po(x +y) < Py(x)+P,(y) for linearly dependent x, y € S, .

The proofs of the so-modified theorems require the use of Proposition 1.
Analogously, using Proposition 2, one can strengthen Theorem 8.

Remark 9. In a recent paper [8] the author proved the following converse of
Minkowski’s inequality. Let (Q, X, u) be a measure space with two sets A, B €
X such that
(4) 0<u(d) <1< u(lB) <,
and suppose that ¢: R, — R, is bijective and ¢(0) = 0.
(a) If ¢! iscontinuous at 0 and Pyp(x+y) < Py(x)+P,(y) forall x,y e S,
then o(t)=@(1)t*, t >0, for some p > 1.
(b) If Pp(x +y) 2 Py(x)+Py(y) forall x,yeS, then p(1)=p(1)1", 1 >
0, for some p € (0, 1].
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Thus if condition (4) is satisfied, in most of the results of this section assumption
(2) happens to be superfluous.

In this connection there arises a natural problem of the existence of a non-
power bijection ¢ for which the functional P, is subadditive in S. . Disre-
garding some trivialities, in view of the converse of Minkowski’s inequality, this
may happen only if the underlying measure space (Q, X, u) satisfies one of the
following conditions:

(i) u(A) <1 or u(A)=oc forevery A€X;

(ii) u(A)>1 or u(A)=0 forevery A€ X.
In each of these cases one can indicate a broad class of nonpower functions
@ for which P, is subadditive or superadditive. We have the following two
generalizations of Minkowski’s inequality.

Theorem B (First generalized Minkowski’s inequality). Suppose that (Q,Z, u)
satisfies condition (i) and ¢: R, — R, is a homeomorphism of R, two times
continuously differentiable.
(a) If 9" > 0 in (0,00) and ¢'[¢" is superadditive in (0, ), then
Py(x +y) SPy(x) +Py(y) forall x,yeS.
(b) If 9" < 0 in (0,00) and ¢'[/9" is subadditive in (0, c0), then
Py(x +¥) 2 Py(x) + Py(y) forall x,yeS,.

Example 1. It can easily be verified that (1) := t?/(t + 1), ¢ > 0, satisfies
condition (a) of the above theorem and, clearly, it is not a power function.

Theorem C (Second generalized Minkowski’s inequality). Suppose that
(Q, X, u) satisfies condition (ii) and ¢: R, — Ry is a homeomorphism of
R, .

(a) If ¢ and logo@ o exp are convex, then Py is subadditive in S.

(b) If ¢ and logo ¢ o exp are concave, then P, is superadditive in S, .

Example 2. The function ¢(f) = ¢’ — 1, t > 0, satisfies condition (a) of
Theorem C. Moreover, taking (Q, Z, u) such that Q:= {1, 2}, Z:= 2 and
w({1}) = u({2}) ;= 1, we have x € S, iff x = X1y + X2xq2), X1, 02 2 0,
and, by the definition of Py,

Py(x) = @~ (p(x1) + @(x2)) = log(e™ + €™ — 1).
It is easy to verify that we have P,(tx) > tPy(x) forall x €S, and 7€ (0, 1).
Theorem B has been proved in [8]. Theorem C is a generalization of Mul-

holland’s inequality (cf. [10], also [3, Theorem I, p. 201]). Its detailed proof,
based on the idea of Mulholland, is given in [9].

Remark 10. Taking above a measure space (Q, X, u) with Q:= {1, ..., Kk},
¥ := 29 and suitable a; := u(Ai), i =1, ..., k, we obtain the relevant results
for the space RF. For instance, from Theorem C(a) we get: if ¢ is a convex
homeomorphism of R, such that logo ¢ oexp is convex then for all keN,
a>1,x;eR,,i=1,..., k,wehave

k k k
! (Zafcﬂ(x,-w,)) <¢”! (Zafca(x,)) +o”! (Zasrp(yf)) :
i=1 i=1 i=1
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4. SUBADDITIVITY OF POSITIVELY HOMOGENEOUS FUNCTIONS
AND SHORT PROOFS OF MINKOWSKI’S AND HOLDER’S INEQUALITIES

We start this section with the following characterization of homogeneous two
place functions that are subadditive.

Theorem 9. Suppose that a two place function p: (0, x<)> — R is positively
homogeneous, i.e., that

p(txl ) er) = tp(X] H xz) ) t; X1, X2 > 0,
and let h: (0, o0) — R be given by h(t) :=p(t, 1) (or h(1):=p(1,1)), 1 >0.
Then p is subadditive if and only if h is convex.
Proof. By the homogeneity of p we have
X1 X1
. =p(=,1 = - . . 0.
p(x1, x2) D(xz )Xz h(x)xz Xy, X2 >

2

Writing the subadditivity of p we get the inequality

X1 + X
(5) h(x;+;;)(x2+y2)sh(;i)xz-i-h(i:_;)y‘?» xi9x29yl:.V2>09

which is obviously equivalent to the convexity of A . This completes the proof.
As an application to Theorem 9 we obtain

Short proof of Minkowski’s inequality. Minkowski’s inequality says that the
function

p(x1, x2) = (xf + x5)!77 Xy, x>0,

is subadditive for p > 1. Thus, in view of Theorem 9, to prove Minkowski’s
inequality, it is enough to verify that the function

h(t):=p(t, 1) = (" + 1)!/P, 1>0,
is convex for p > 1.

Short proof of Hélder's inequality. Let p > 1. Holder’s inequality can be obvi-
ously written in the form

x{Pxy Pyl Py < (e ) P+ 1) P Xy X, v 00 > 0,

which means that the function

s I/p, 1-1/p
p(x19x2) -"__x]/ X, / E] x1’x2>01

is superadditive. Thus, according to Theorem 9, to prove Holder’s inequality it
is sufficient to observe that the function

h(t) :=p(t, 1) =17, >0,
is concave.

Remark 11. The above considerations show that (5) is a joint generalization of
Minkowski’s and Holder’s inequalities. One can also get k-dimensional and an
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integral version of inequality (5). This inequality has been obtained in [6] in a
quite different way.

5. AN APPLICATION TO SUBLINEAR FUNCTIONS

A function g: R — R is said to be sublinear if it is subadditive and g(nt) =
ng(t) forall n e N and ¢ € R. Berz [1] (cf. also Kuczma [4, p. 415]) proved
that every sublinear measurable function g: R — R has the form

at >0
6 = ’ -
() g(l} {bt, t<0,

where a > b. This result can be generalized as follows.

Theorem 10. If g: R — R is subadditive, measurable, and there exists an r > |
such that g(rt) >rg(t) forall t € R, then g has form (6).

Proof. Since every subadditive and measurable function g: R — R is locally
bounded (cf. Kuczma [4, p. 406]), it follows from Corollary 1 that f(¢) = g(1)t
for t > 0 and g(t) = g(—1)t for t < 0. Setting a := g(1), b := g(-1), we
get (6).

Remark 12. The above result remains valid on replacing measurability of g by
the following condition: g is locally bounded above at a point in (0, o) and
in (—oc, 0).
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