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Abstract. A refinement of Steinhaus’ theorem on the algebraic sum of subsets of R due to
Raikov (1939) was not known (o the mathematical community and still is not popular. In
1994, Tadeusz Swigtkowski, being not aware of the existence of Raikov's theorem. proved
another result of this type. Unfortunately, a few days later he passed away. In this paper
we present the theorems of Swigtkowski and Raikov and we apply them in the theory of
s itive type i ties. An imp of a converse of Minkowski's inequality
theorem is presented.
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1 Introduction

Let m denote the inner Lebesgue measure in R. The celebrated theorem of Hugo
Steinhaus asserts that if A. B C itrary sets such that m(4) > 0 and
m(B) > 0.thenthe set 4 + B := b:a € A.b € B} has a nonempty interior
[13]. This result. as well as its generalizations. are useful in the theory of additive
functions and convex functions (cf. [3]). The theorem of Steinhaus is a crucial tool
in the proofs (i) that every additive function bounded from above (or from below)
on a set of positive measure is linear, via the Bernstein-Doetsch theorem [1] (cf.
also [3, p. 145)), (ii) that every Jensen convex function bounded from above on
a set of positive measure is convex (theorem of Ostrowski [8]), and (iii) that any
Jensen convex measurable function is convex (theorem of Sierpiniski [12]).

In the regularity theory-of subadditive functions the following question is inter-
esting. Let A C R be such that Ao(A4), the measure of density of the set A at point
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0. is positive. Does there exist a positive integer 7 such that

n
Oeinty_ 4
i=

or, for some § > 0,
n
0.8cy A
j=t

Note that the theorem of Steinhaus does not indicate a point which belongs to
the interior of the algebraic sum of the involved sets.

This question was discussed with Professor Tadeusz Swigtkowski in February
1994 as we were interested in subadditive functions [5-7]. During the 32nd In-
ternational Symposium on Functional Equations (ISFE), June 1994, it was posed
as an open problem. T was completely surprised when a while later, in a private

ion, the German ician Wolfgang Sander suggested that I should
contact Professor Swigtkowski as somebody who might be helpful in solving this
problem! So just after this meeting, in a phone call, I told this story to Tadeusz.
A few months later he had to undergo a by-pass operation. Just before going to
hospital he gave me a sketch of a solution of the problem. Unfortunately, a few
days later, on October 30, 1994, Tadeusz passed away.

After some time 1 i a joint paper on s itive functions where the
results of Tadeusz were included. About one year later the paper was rejected. It
turned out that the problem had already been solved in 1939 by Raikov [11].

In these cil itis i ing that icians working in convex
or subadditive functions for more than half of the century were not aware of the
existence of the result of Raikov. Its appearance in the year when the second
world war began partially justifies this fact. Let us also remark that Raikov in
[11] does not mention the theorem of Steinhaus published in 1919 in Fundamenta
Mathematica.

Tn Section 2 of this paper we present the solution of the problem, based on the
idea of Tadeusz $wigtkowski (different than that of Raikov) and some accompa-
nying results. Raikov’s theorem and its consequence are presented in Section 3.

Using these theorems. in Section 4, we prove some new results on the continuity
of a function £ : (0, 00) — R satisfying. for some positive & and f. the inequality

SO +ay) < f()+Bf(). xy>0.

Applying a special case when @ = B = 1 we prove an improvement of the con-
verse of Minkowski’s inequality theorem [4].
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2 Results of Tadeusz Swiatkowski

Let A C R be an arbitrary set. Recall that m(A). the inner Lebesgue measure of
A.is defined by

m(A4) := sup{ly (F) : F C A. F closed}.

where /; is the Lebesgue measure.

ForA C Randa € R.by Aq(A). A7 (4). A7 (4) denote, respectively, the lower
density. the right-lower density and the left-lower density of the set A at the point
4. defined by the formulas

o om(AN[a=h.a+h)
P g
m(An[a.a+h)

m(Ala — h.a))
h h ¥

AF(4) = ‘22‘.5‘? Az (A) = I[ggé]lf
We say that a is a density point of a measurable set A when A4(A) = 1. The
most important property of the density points of A4 is described in the famous
Lebesgue density theorem which says that the set of those points of A which are
not density points of A has measure zero (see, e.g., [9]).
The following properties are easy to verify:

Remark 1. Forall AC R,a € Rand 7 > 0,

Ja(A). AF(A). 27(A4) € [0.1]. %)\;(A);zgml51,,(,0.
Ma(tA) = do(A —a). A(tA) = A5 (A—a). AL(Ad)=2ig(A—a).
2L (=A) =05 (A). AZe(=4) = AJ(A).

Aa(AULE)) = ha(A). AF(AU{a}) =2J(4). A7(AU{a}) =27 (A).
Lemmal.Ler A CR,a € Rande € (0. }) be fixed. If 2 (A) > « then there

exists a closed set F C AU {a} such that 27 (F) > a.
Proof. By Remark 1 we may assume that = 0. Take an arbitrary § such that
a<B<Af(A).
From the definition of A5 (4) we have

" Anfo, L
)\0(.4J=1§'xﬁiox;fw>ﬂ.
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whence there exists 729 such that
! B
no, - = N, n = ng.
m(avopnfor])> £ neNonzm
As m is an inner measure, for any n > ng. there is a closed set £, C (AU {0}) N
[0. 1] such that

m(Fy) > é neN.n>np.
n

o
F={u | B
n=ny
Obviously. F € AU {0}. Since 0 € F and. for every ¢ > 0, there exists a positive
integer k = k(e) such that the set

k
Fnleod=lso0ln | Fr

n=no
is closed. it follows that F is a closed subset of [0, 00).

Now take an arbitrary & € (0. 1). There is a unique positive integer p =
p(h) = ng such that

i <h< l
»
Hence, as
m(F 0 [0.1) = m(F 0 o, ﬁ]) > m(Fpa1)s
we have
m(FN[0.h) _ m(Fps1) _ P m(Fp+1) 2 8
I - 23T e p+1

Since limj—g p(h)/(p(h) + 1) = 1. we hence get

liming CF 010D -

h—>0+ h
and, consequently, Ay (F) = B. o

As an easy consequence of Lemma 1, we get the following
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Remark 2. Forany 4 C Randa € R,
2F(4) = sup{AF (F): F C AU{a). Fis closed}
(and similar formulas hold true for 17 (4) and A4 (4)).

Lemma2.[fAj CR,aj € Randa; € [0.1] for j e{l..... n} are such thar

then
A+

ay+tay

(A1 +++ Ap) > L=y an.
In particular, if A C R, a € R and « € [0. 1] are such that
2 = l—a.

then
n

)\,,',,(ZA) >1-a".

Jj=1

Proof. We first show that this lemma holds true for n =
and, for the simplicity of notations, put

2. Take an arbitrary ¢ > 0

2 a=ay bi=ay o= +& fi=ate
By the assumptions we have
AJ(A) > 1—a. Af(B)>1-8.

In view of Lemma 1 we may assume that C := A U {a} and D := B U {b} are
closed. Moreover. by Remark 1. we may assume that @ = b = 0. Thus we have

Ag(C)>1-a. Ag(D)>1-8.
Tt follows that there exists § > 0 such that, for every h € (0.6).
m((0.h)\ C) <ah, m((0.h)\ D) < Bh.
Take i < 8. To estimate m((C + D) N [0.4])/h, the average density of the

set C + D in the interval [0. /], we shall consider two types of points of the set
C+D.
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(a) The points of the form x + 0 where x € C and. as D is closed. 0 € D.
These points form the set C and, by the definition of . its measure is greater than
(1—a)h.

(b) Note that

~
©0.m\ € = | (ex-dp)-
k=1
where (¢;.dj) N (cx.dx) = @ for j # k and, as C is closed, all the points ¢k . dg
are elements of C (for the obvious reason we have to admit that ¢ = dy for some,
or even for all k € N). We define the set E of points of the second type as

= U {ex+y:yeDNOd—cp)}
k=1
Obviously E € C + D.

U(zk d)NE =

Cz

{ex +y:y € DN (0. dx —cp)}

[

= U (cx +[D N (0. dg = ¢p)])
k=1

and

0.\ CINE = | {ex + [(0.di — i) \ [D N (0. = )]}

Hence. as d — ¢ < & forall k € N, we obtain

m([0.))\CI\ E) = 3" m((0.dg — i) \ [D N (0. di — i)

k=1
® ®

=3 m((0.dx —cx)\ D) < Y (di —cx)B < aph.
k=1 k=i

It follows that, for any / € (0.4).
m((0.1)\ (C + D)) < m([0.))\ C]\ E) < aBh.

We prove that the set (C + D) \ (A4 + B) is of measure zero. Since A + B C
C+Dand(C+ D)\ (A+ B) C (AUB)\(4+ B).itis enough to show that the
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sets A\ (A + B) and B \ (4 + B) are of measure zero. By the Lebesgue density
theorem, it is enough to consider density points of the sets A and B.

Assume that x € A is a left-sided density point of 4. Then, there is a number
h € (0.8) such that m((x — h.x) N A) > Bh. Since m((0.h) N B) > (1 - B)h,
50 x + [(=h.0) N (=B)] is a subset of the interval (x — /. x) with the measure
greater than (1 — )k, and consequently. the set

E

[(x = h.x) N A]N {x + [(=h.0) N.(=B)]}

is nonempty. Thus, for arbitrary 1 € E we havet € A and x —1 € B, whence
x € A+ B. It follows that 4 \ (A + B) is of measure zero. A similar reasoning
shows that B \ (A + B) is of measure zero.

Now the previous step of the proof and the equality

(0.h)\ (A + B) =[(0.h)\ (C + DU {(0. )N [(C + D)\ (4 + B)]}

imply that
m((0.h)\ (A + B)) < aph.
By the definition of the right-lower density of A + B at the point 0, we hence
get
A4+ B) > 1-ap.

that is
25 (A1 + A2) 2 1= (o1 + &)(ez + ),

whence, letting & — 0, we obtain
A (AL + A2) 2 1 — e
Thus we have shown that
Az (A1 + A2) 2 L — oy,

which proves that the lemma holds true for n = 2.
Now an obvious inductive argument completes the proof. a

Taking
aji=1-A%(45), Je{l...n}

in Lemma 2 gives the following
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Corollary 1. If Aj CRanda; e Rfor j €{l..... n}, then

A,,‘,+,__,a,,(ZA,) 21— (1=A5AD) oo (1= A% (4n).

j=1
In particular, forall A C R, a e Randn € N,
n
;\,7,,(2,4) > 1-(1-2F )"
i=
Now we prove the following
Lemma 3. Suppose that A.B C R, a.b € R, h > 0and
m(AN (a.a+h) =ah. mBN((b.b+h)=ph

for some a.B > 0. Ifa + B > 1 then there exist x € AN (a.a + h) and
y € BN (b.b+ h) such that

x+y=a+b+h

Proof. Without any loss of generality we can assume thata = b = 0. Put 4 :=
AN (0.h), By := BN (0.h) and note that

m(h — By) = m(By) = Bh.
Suppose that the lemma is false. Then
AN (h—By) =0
and, since Ay, By C (0.h), we would have
ah + Bh =m(Ay) +m(h— B) <m((0.h)) = h,
and, consequently, & + B < 1. This contradiction completes the proof. o
This lemma implies the following:
Corollary 2. If A. B C R, a.b € Rand
AF(A) + 27 (B) > 1.
then there exists § > 0 such that

(@a+b)+(0.8)Cc4+B.
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This corollary is a special case of the following

Theorem 1. IfAj CR,aj e Rfor j € {l.....

k n
TTa=25 @)+ TT (1 =234) <1
j=1 J=k+1
then there exists § > 0 such that
(ay +-++ap)+(0.8) C Ay + -+ + Ap.
Proof. Put
A=Ar+ -+ Ag. B = Agqpr + o0+ At
ai=ay+---+ag. bi=agyy + -+ an.

Applying Corollary 1 and the assumption we obtain
AF(A) + 2 (B)
= )»:,+.,.+ak(l4l +oed AR + )l,;"+v..+,,,,(t4k+1 +-ot+ 4n)

k n
21-[[O=-25@p) +1- [T (-2 4p) >1

J=1 J=k+1

Now the result follows from Corollary 2. a

Corollary 3.If A C R and a € R are such that 1} (A) > 0, then there exist
n €N and § > 0 such that

n
na+(0.8c Yy A
Jj=1

Proof. Let 4j := Aandaj := aforall j € N. Take k := 1 and put s := A7 (4).
As0 <1 <1, the number

k n
TTO=25@n) + TT (1-25,4))
i=1 J=k+1

= (=2 + (=A@ = -+ -0

is less than 1 for all sufficiently large n € N. The result follows from Theorem 1.
o
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In this context the following problem arises. Letn € N, n > 2, be fixed. Find
the infimum of all values « such that forall A C Randa € R,

"
AF(A4) >« impliesthat na +(0.8) C ) A forsome § > 0.
Jj=1

Relying on the proof of the above corollary. we get the following estimation.

Remark 3. Let A C R and @ € R. Denote by d, the smallest positive root of the
polynomial
px)i=l-x+(1=-0)"" -1
Asforanyn € N.n > 2, we have py(0) = 1. pa(1) = —1. the number dj, is well
defined, 0 < dy < 1 and limy 0 dy = 0. Itis easy to verify the following fact:
If A7 (A) > dj, then there is § > 0 such that

Moreover
d> ,]2:
dy = 3_2\/3. §l<113<§:
Gt e D

Remark 4. In the above remark we applied Theorem 1 for k = 1. This procedure
can be extended for other k € N.

To see this, let us fix n € N. Taking A; := 4 and ¢; := a € R for all
je{l A7 (A), the main assumption of Theorem 1 can be written
in the following form:

There exists k € {1..... n} such that

A=-nf+a-nF-1<0.
Since foreach k € {1,.... n}, the polynomial py, x defined by
Prk) = (-0 + (1-x)"* -1 xeR.
is decreasing in [0, 1] and

Puk(0) =1, pui(l)=-1.
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this polynomial has a unique zero r,, x € (0. 1). Put
rni= minfry kb= Lo, nj.

Now it is easy to see that the set A C R and ¢ € R satisfy the assumptions of
Theorem 1 if, for some k € {1,.... nh.

Tk <t wherer = A7 (A).

or, equivalently. if
w < /'L"'(A).

Since ppk = Pna—k and. forallk < 51, k € N, and x € [0. 1] we have
P () = Pge () = x(1 —.x;*[l - (=0 20,
the decreasing monotonicity of p, ¢ in [0. 1] implies that

rax ifn =2k,
Iy =
"7 \ragsrx ifn=2k+1.

(Note also that here rop 1 & = Fak+1.k+1-)
First consider the case when n = 2k. Then

k@) =20—x% -1 xeR.

and, consequently.
rak = rage =121k,
Note that " In2
r3=§: 7A<r2‘<7 fork e N.k > 1. )
To show this, observe first that, by the mean-value theorem, for any x > 0, there
is¢ =c(x) € (x.x + 1) such that
(v + D27VEHD _xgm V¥ = g1V (1 4 E)
c
Since (1 + (In2)x) < 2* forall x > 0, it follows that
Gk DEUER Vo | x>0,
Setting x = k in this inequality we conclude that

krag < (k+ Dragesry. k€N,
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i.e., the sequence (kra )72, is strictly increasing. Since
lim krye =In2.
k—oo

we hence get

In2
£ =i keN.
T2k < ¢

It is easy to check that the inequality

1 3

3 <7 KeN.kz2.

is true for k = 2. Suppose it holds true for some k € N, k > 2. Hence, by the
increasing monotonicity of the sequence (krax)fe, we get

1 ko1 k

20k + 1)

< Lup
B NI Y
T2k k+1 R Tk *

< ] (k + 1) =
T & T Dr2e+n = Fate+

and the induction completes the proof of (1).
Now assume that n = 2k + 1. In this case we have

Prria(®) = Q2-0)(1-x)F -1, xeR.

We shall show that

szél,k( @
i.e., that
1
(2 T % )(l &
which can be written in the form
1\2 4k + 142 A
(1+5) <(2k+l) . keN.
Of course we have o
(1+5) <e keN.
Since the sequence ay = l%‘j—})z is increasing and a2 > e. we conclude

that inequality (2) holds true for all k € N. k = 2. It is easy to check that this
inequality holds also for k = 1.
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Inequality (2) implies that

<T2k+1-

+1
Since pp g (¥) Z Pn+1(¥), we get
2In2
Fak+1 < T2k < S
Thus we have proved that
2In2
<741 <——. keN.

1
2%k +1 k

Hence, applying Theorem 1, we obtain the following
Corollary 4. Let AC R,a € R,n € N,n > L IfA; (A) > ry then there is § > 0
such that
2n
2ma+0.8)C Yy A
Jj=1

Moreover, if n = 2k then

ifn =2k + 1 then

Remark 5. Of course, Theorem 1, the earlier lemmas and corollaries remain true
if we replace “+" by “~" or if we omit “+".
Theorem 2. IfA; CR,a; €eRforj e{l..... n} and, for somek.l € {1..... n},

k n
[TO -2+ [T (-2 @p) <1
j=1

Jj=k+

1 n

[TO=2zm) + T[T (=254 <1.
Jj=1 J=l+1

then there exists § > 0 such that

(@1 +-++an) +(=8,8) CAr+ -+ An.

that is @y + +++ + ay is an inner point of the set Ay + -+ + Ap.
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Remark 6. To see that the theorem of Steinhaus is a consequence of Theorem 2,
take two sets 4. A> C R of positive Lebesgue measure. In view of the Lebesgue
density theorem, there are aj € 4. a2 € A of the density one. Consequently,

Ay (A1) = Ay (A2) = 1= 25 (A1) = 2 (42).

Since each of the assumed inequalities of Theorem 2 reduces to the trivial inequal-
ity 0 < 1. the result holds true.

3 Raikov’s theorem and its consequence
Given A C R.a € Rand x > 0. The number

m(AN(a.a+h)
h

Taasn(A) = inf{ he 0.1}

is called the density of the set A on the interval (a.a + X).
The theorem of Raikov [11] reads as follows:

Theorem 3. Forall A.B € R;a.b € Rand x > 0,
Tarbatben (A + B) 2 min{7(.as0(4) + 7pp+x)(B). 1}
If moreover,
Taa+x)(A) + T bix)(B) > 1.
then the set 4 + B covers the interval (a + b.a + b + x).

Note that this result is formulated for two sets and it does not use the density of
a set at a point. However, since

2G4 = lim Taasn(A):

we hence get

27.p(A+ B) = min{A7 (4) + A7 (B). 1}.
If moreover,

AF(A) +25(B)> 1.
then there exists § > 0 such that (g q+5)(4) + 7(+5)(B) > 1. By Raikov’s
theorem, the set A + B covers the interval (¢ + b.a + b + ).
Therefore, by an easy induction, we obtain the following
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Theorem 4. Ler A; C Randa; € Rfor j €{l..... np If
n
ZA;(A,-) =1,
j=1

then there is 8 > 0 such that
(ay + -+ ay) +(0.8) C Ay + -+ An.
In particular, if A C Randa € R, A7(A) > O andn € N is such that
ni;(A) > 1, then there is § > 0 such that
"
na+(0.8)C ) A

j=

(The result remains true when replacing A~ by 2~ or A.)

Remark 7.Let n = 2, A] = Ay = Aanda; = a2 = 0. According to
Theorem 3, if A} (4) > %, then (0.8) C A4 + A for some § > 0. By Remark 3,
asdy = % the same implication gives Theorem 1. Consequently, in this case the
results by Swiatkowski and Raikov coincide.

Forn > 3, A; = = Ay == Aand ay = --- = ap = 0, according to
Theorem 4, if A7 (4) > & then (0.8) € Y7, A for some § > 0. By Remarks
3 and 4 we have d, > % for n > 3. In this case Theorem 4 is a little better than
Theorem 1.

4 An application
We begin this section with the following

Theorem 5. Let f, o > 0 and a set A C (0, 00) such that A3 (4) > 0 be arbitrar-
ily fixed. Suppose that f : (0.20) — R sarisfies the inequaliry

S(x+ay)  f() +Bf0). x.y>0. 3
If the function f satisfies the condition
limsup f|4(x) <0, (4)
x=0+

then, for every x > 0, the one-sided limits
f-(x) = vET— f) fe(x) = )_Lh& f»)
exist and satisfy the inequality
f+(x) = f(0) < fo(x).
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Proof. From (3) we have
n
H(Zw)= Z By
j=1
Indeed, assuming that this inequality holds true for some n € N and applying (3),
we hence get

neN, x,....0 Xn:> 0. (5)

—

o

n+tl n+l

f(];\/) = j'(.\'l +(x}§ \a—/)
<f(x1)+ﬁf("i )

=2

=/(x|)+ﬂf(ixla—“)

=1

n et
. j=1 ¢
s,/mwﬂ[;ﬂ }(M"L,)]
i n+1 ?
G+ _ -1 X}
= o0+ 281 (L) = L8 ()
j=1 j=1
for all xy Xnt1 >0, and the induction completes the proof of (5).
Pul Aj = /14 for j € N. By Remark | we have § (4;) = A (4) for all
N. By Theorem 1 or Theorem 4, there exist 77 € N and § > 0 such that

"
©0.8cy o4

j=t

Take an arbitrary sequence x; € (0.8) such that limg_, Xz = 0. Hence there
exists yx,; €/ Aforj =1..... n such that

From (5) we have

f(’(k)=f(_
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Since
Yk,j

M_IEAA keN. j=

making use of (4), we obtain

n

y
limsup f(xz) < Y B/ Hlimsup f( =
koo ?_4 ko0 (“’

whence. as x € (0.8) such that limg_, o X = 0 is arbitrary, we have
limsup f(x) <0. (6)
X0+

Inequality (3) and condition (4) easily imply that f is bounded from above on
any interval (0.¢) for ¢ > 0. Let us fix an arbitrary ¢ > 0 and take M > 0
such that f(x) < M for all x € (0.¢). We shall show that f is bounded from
below in some right vicinity of 0. On the contrary. assume that there is a sequence
Vi > 0. limg o0 Yk = O such that limg o f(¥x) = —oc. Then. by (3), for any
x € (0. ¢) and sufficiently large k € N. we would have

f(x) = f((x —ayp) +avg) < fx—aye) + Bf (k) < M + Bf (k).
whence, letting & — oo, we obtain f(x) = —oc. This is a contradiction, as /" is
real-valued.

The boundedness from below of the function f implies that lim infy—o+ f(x)

is finite. From (3) we have

liminf f(x) = liminf f(x + @y) < liminf f(x) + Bliminf f(y).
X0+ X0+ X0+ Y0+

whence, as f > 0.
liminf f(x) > 0.
x=0+

This inequality and (6) imply that

£, /=0

Now take an arbitrary x > 0 and two Up, Vg satisfying the i
X < Uj < v with limg o0 Vg = X, and such that

liminf f(u) = lim f(ug). limsup f(u) = lim f(vg).
u—x+ ko0 u—x+ koo
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From (3) we have

700 = £+ e B < fon) + B (RE). ke

whence, letting k — oc. we obtain
limsup f(u) < liminf f(u).
U+ u=x+
It follows that fi(x) exists. We omit a similar argument showing that f-(x)

exists.
Now, taking a sequence u such that ug > X, limg o0 g = x, in view of (3),

S = f(x+a™22) < s+ 8 (HE). ke,

whence, letting k — oc. we obtain f(x+) < f(x).
The proof of the inequality f(x) < f(x—) is analogous. o

Remark 8. Taking @ = B = 1 in the above result we obtain an improvement of a
classical result for subadditive functions [2. p. 248, Theorem 7.8.3], as well as an
eatlier result of the present author (cf. [10, p.31]).

Now we can prove the following converse theorem for Minkowski’s inequality:
Theorem 6. Let (Q. . 1) be a measure space with two sets A. B € T such that
0 < u(A) <1< p(B) <oo.

Suppose that ¢ : [0.0c) — [0.05¢) is one-t0-one, onto and there is a set C C
[0.00) such that Ag (C) > 0 and the restriction ¢~ is right continuous at 0,
and

W_l(/wo(l'-v‘—.\‘)dﬂ)fv’_](/¢°»\‘11M)+V’_‘(/¢°_\'ll#) @)
Q Q Q

for all nonnegative ji-integrable step functions x.y : @ — R. Then there exists
p = 1 such that
o) =@, 120

Proof. Taking
0 s 0]

X_u(A) e u(B\A)’“’“
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in inequality (7) we get
eMs+n e+ s >0,

that is. ¢! is subadditive in [0.00). Since ¢! is onto, there is 1 > 0 such that
@~'(+) = 0. From the subadditivity of ¢~' we have ¢™'(21) < 2¢7'(1) = 0.
whence ¢! (21) = 0. The injectivity of ¢! implies that 2 = . whence 1 = 0
and, consequently, ¢! (0) = 0. Taking into account the nonnegativity of ¢, the
right continuity of ¢™!|4 at 0, and applying Theorem 5 with @ = B = 1 and
f := ¢~1, we conclude that ¢! is continuous at 0. Now the result follows from
[4, Theorem 1]. o

Remark 9. Theorem 6 improves the main result of [4] where it is assumed that
¢~} is right continuous at 0 and ¢(0) = 0.

Let us also note the following easy to prove

Proposition 1. Ler p € N and o;.f; € (0.00) for j € {1..... p} be fixed.
Suppose that Ay..... Ap C (0.00) are such that Ag (4;) > 0 and put

A ={0.....0,x;,0,....00 : x; € A4}, i=1.... p.

If a function f : ([0.00)? \ {0}) — R sarisfies the inequaliry
» »
/( Zu/x,) <SS B Kiexp € (0,097 \ {0}
=1

and

limsup f |, (x) < 0.
x—0+

then
limsup f(x) < 0.

x=0+
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