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Quotient mean, its invariance with respect to a quasi-arithmetic
mean-type mapping, and some applications
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Abstract. Under some conditions on the functions f and g defined in a real interval I the

function
=
(a4 i (L flz)
AL (q) (y(yl)

is a strict mean in /. We examine the invariance of this mean with respect to the weighted
quasi-arithmetic mean type mapping generated by f and g.
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1. Introduction

Let the real functions f and g be continuous, positive, and of different type
of strict monotonicity in a real interval . Then the function QU9 : I* — R

defined by
=t

is a strict mean in I, and we call it a quotient mean. In this note we examine
its invariance with respect to the weighted quasi-arithmetic mean type map-
ping (A1, A)), where A} denotes the weighted quasi-arithmetic mean of the
generator f and weight p. Theorem 1 says that QU4 is (A}f), A¥))-invariant,
that is

QU9 (a,y

Qo (AL/].A@]) = qlrdl

iff the product fg is a constant function and p +1r =
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As an application we ly determine the limit of the sequence of the
mean-type mapping (AV ! A[9’> (Theorem 2).
For I = (0,00), f(z) = z,9(z) = L and p = r = & we have QU9 =

G, Al = 4,A” = H, where G, A and H denole the geometric, arithmetic
and harmomc means, respectively. Since the product fg is a constant function,
Theorem 1 implies
Go(AH)=
the known invariance of the geometric mean with respect to the mean-type
mapping (A, H) : (0,00)> — (0,00). Applying this fact (cf. Theorem 2), we
conclude that
% w5
Jim (A H)" = (G.G),

where (A, H)" is the n-th iterate of the mapping (4, H).
Let us note that this invariance relation G o (4, H) = G is equivalent to
the classical Pythagorean harmony proportion
A_G
G H
An application in solving a functional equation is given (Corollary 3).

2. Result on invariance

Recall that a function M : I* — R is called a mean in an interval I C R, if
min(z,y) < M(z,y) < max(z,y), zyel
If for all z,y € I,z # y, these inequalities are strict, M is called strict; and
symmetric, if M(z,y) = M(y,z) for all z,y € I.
If M is a mean in I, then M(.J?) = J for every subinterval J C I. Moreover
M is reflexive, i.e.
M(z.z)
It is easy to see that every reflexive function M : I? — R that is (strictly)
increasing with respect to each variable is a (strict) mean in I.
For any continuous and strictly monotonic function f : I — R and p €
(0.1). the function M = AY) : 12— T,

Af(z,y) =7 (f @)+ A -P)fW),  wyel

is a mean. A is called a weighted quasi-arithmetic mean, f is called its gen-
erator, and p its weight.

zel
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The means of this type form one of the most important class of mean values.
For a survey of other classes of means cf., for instance, Bullen-Mitrinovié-
Vasi¢ [2], Bullen [3].

We begin with the following easy to verify
Remark 1. Let I C R be an interval. If f. g : I — (0, 50) are continuous, strictly
monotonic, and such that £ is one-to-one, then the function QY9I : I* — R

defined by
ONC

is a strict mean in I if, and only if. either f is increasing and g is decreasing,
or f is decreasing and g is increasing.

QUal(a,y

In the sequel, if f.g : I — (0.00) are continuous and of different types
of strict monotonicity, the function Q9 is called a quotient mean and the
functions f and g its generators.

Clearly. in the definition of QI/¢], without any loss of generality, we can
assume that f is increasing and g is decreasing.

Remark 2. The mean QU9 is symmetric iff the product fg is a constant
function and, consequently iff,

QUdl(z,y) = i (VI@IW) =97 (Vi) . wyel.

Let I C B be an interval and M, N. K : I2 — I be means. A mean K : [ —
1 is called invariant with respect to the mean-type mapping (M, N) : I> — I?
(briefly, K is (M, N)-invariant). if

K(M(z,y).N(z.y)) = K(z.y). z.yel,

(c£. [5], also [6-8]). The mean K is also referred to as the Gauss composition
of means M and N (cf. Daréczy and Pdles [4]). The invariant mean is useful
when we are looking for the limit of the sequence of iterates of the mean-type
mapping (M, N) : I2 — I

In this context, the following result is a motivation for introducing quotient
means.

Theorem 1. Let [ C R be an interval and p.r € (0,1) be fired. Suppose that
the functions f,g : I — (0,50) are continuous functions, f strictly increas-
ing. g strictly decreasing, and such that £ is one-to-one. Then the following
conditions are equivalent
(i) the quotient mean QU9 is invariant with respect to the mean-type map-
ping (A, A)), that is

1, A;_g]) — QUdl; (21)
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(ii) the product fg is a constant function and
pHr=1.
(iii) forallz,yel,
19z ) = 1 (VTG AWy = —x(_M)_

Q) =1 (VI@I®), AP =5 (ot 0 a7
Proof. Assume that condition (i) holds true, that is QU9! is invariant with
respect to the mean-type mapping (A,[,f ].A[rg]). From (2.1), by the definitions
of QU1 AY and A, we get

pf@) + (1 -pf) _ fz)

rg(@) +(1-r)gly) ~ 9(y)
which reduces to the equality

@ +r-Df(@)+1-p)fW) =rfl®)g(), @yel (22)

Since the right-hand side does not depend on y, taking here an arbitrary fixed
z, we get

z,y€el,

c ¥
9(y) = e Y el (2.3)
for some ¢ > 0 and b € R. Setting this function into (2.2) we get
m[(P+7‘"1)f( ) + (1-p)f(y, }_Tf(ﬂbA-f(r) Ty e

which reduces to the equality
[f@) - fA-p-)f(@@)-blp-1)]=0 wzyel
The assumptions on f imply that b =0 and p +r = 1, whence, by (2.3),
fl@)g(z) =c, zel
Thus condition (i) implies condition (i).
Assume condition (ii). Thus g = ¢/f for a nonzero constant ¢ and r = 1—p.
Hence, by the definitions of Q-9 and Al we get, for all 2,y € I,
Fal(e,y) = £~ (VT@T@D) . Abwy) = £ (M)
Q) = £ (VIGT®), 429@0) =1 (S i a7
that is condition (iii) holds true.

Now, simple calculations show that condition (iii) implies (i). This com-
pletes the proof. [m]

Remark 3. Taking I = (0,00), f(z) = 2,9(z) = £ and p € (0,1), we get,
QU 9l(z,y) = G(z,y) = v,

ANy =pr+Q-py. AW (2.y) = ——

pr+(1-ply’
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for all zyy > 0; Since: F{a)g(z) =1 for,all 2> 0, we Heve
S e R
9 (e b)) = oo (R

=QV9(z,y),

for all 2,y > 0.
For p = 4 we hence get G o (4, H) = G.

3. An application

From [8] (cf. also [5,7]) we quote the following

Theorem 2. Let I C R be an interval and let M,N : I* — I be continuous

means. If for every point (z,y) € I%,x #y, we have

0 < max(M(z,y), N(z,y)) —min(M(z,y). N(z,y)) < max(z,y) —min(z,y),
(3.1)

then

(1) there exists a unique continuous (M, N)-invariant mean K : I* — I, that
is

K(M(z,y).N(z.y) = K(z.y). zyel

(2) the sequence (M,N)".n € N, of the iterates of the mean-type mapping
(M.N):I? — I? converges to the mean-type mapping (K, K), that is

lim (M N (@y) = (K@y) K@), (@y)el
Applying Theorem 1 and 2 we obtain the following

Corollary 1. Let I C R be an interval and p € (0,1) be fized. Suppose that

£ 1 — (0.00) is continuous and f strictly ., and g = c/f for a

constant ¢ > 0. Then the sequence (A, APL)") _ of the iterates of the
neN

mean-type mapping (A1, Al9]) converges pointwise and

Jim, (4, 481,)" = (U0, Q1)

Q[/»y](:,;_y):f“( f(:c)f(y)). zyel

where

Proof. Since the means M := AUl and N := Al are strict, assumption (3.1)
of Theorem 2 is satisfied.

By Remark 3 we hence obtain
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Corollary 2. Let f(z) =z.g(x) = forx >0, and p € (0.1). Then

Af(z,y) =pr+ (1 -ply, AY (r.y) = 2,y>0,

pr+(1-ply’
and, for all x,y > 0,

i AUl

A

y). A (2. ))" = (G(z,9), Gz, ).

Corollary 3. Let p < (0.1) be ﬁJPri Suppose that a function F : (0,00)° — R
is continuous on the diagonal {(x,x) : x > 0}. Then F satisfies the functional
equation

F(p.wufp)ym):ﬂw). zy>0, (32)

if, and only if. there is a continuous function o : (0,00) — R such that
F(z,y) = ¢(VTy), z,y> 0.

Proof. Assume that F satisfies Eq. (3.2). From (3.2), by induction, we have

F('l:y)-—F((p.T, + (1*]1)_1/‘m> ) z,y>0neR.

From Corollary 2. letting here n — oo, by the continuity of F on the diagonal,
we get
= F (/35 Vay). a.y>0,
whence, setting
o) = F(t.t), t>0,
we obtain F (z,y) = ¢ (/Zy) for all 7,y > 0.
The converse implication is easy to verify. o
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