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POWER MEANS
GENERATED BY SOME MEAN-VALUE THEOREMS

JANUSZ MATKOWSKI

(Communicated by Edward C. Waymire)

ABSTRACT. According to a new mean-value theorem, under the conditions of
a function f ensuring the existence and uniqueness of Lagrange’s mean, there
exists a unique mean M such that

w =M (f'(2), I'(%)) -

The main result says that, in this equality, M is a power mean if, and only if,
M is either geometric, arithmetic or harmonic. A Cauchy relevant type result
is also presented.

INTRODUCTION

In a recent paper [4] the following counterpart of the Lagrange mean-value
theorem has been proved. If a real function f defined on an interval I C R
is differentiable, and [’ is one-to-one, then there exists a unique mean function

M: ' (I)x f'(I) = f"(I), such that

f(z) — f(y
(x)fy()_M(f,(x)af,(y))a 1“7116[’33753%
In this connection the following problem arises. Given a mean M, determine all
differentiable real functions f such that

fz) — f(y
1) MO0 _s(p@). ), et ot
In the case when M is the geometric mean this equation has appeared in [3] and
was useful in solving an open problem related to convex functions (cf. Remark 5).

In the first section we consider equation (1) in the case when M = M (¢l where

M (u,v) = o~ (@(U) ;- @(U)) C wwveld
and ¢ : f/(I) — R is a continuous and strictly monotonic function; so M is a quasi-
arithmetic mean of a generator ¢. Assuming three times continuous differentiability
of f, and twice continuous differentiability of ¢, we give some necessary conditions
for equality (1) (Theorem 1). Applying this result, in the next section we give a
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complete solution of the problem in the case when M¥! is positively homogeneous,
that is, when either ¢ (t) = AtP + B or ¢ (t) = Alogt + B for some real p, A, B
such that A # 0 # p. Then M = M!: (0, oo)2 — (0,00) is a power mean, that is,

wPoP /P
MP (g, v) = () if p#0,
(u,0) { Vuv if p=0.

The main result (Theorem 2) says that equality (1) with M = M?! holds if, and only
if, the mean M is either arithmetic (MM (u,v) = “2), geometric (M) (u,v) =
Vuv) or harmonic (M1 (u,v) = 242),

Assume that the functions f,g : I — R satisfy the conditions ensuring the

existence and uniqueness of the classical Cauchy mean-value. Then (cf. [4]) there
exists a unique mean M : J% — J, with J := %l (I), such that

F@) = f@) o (F@) PN
g(a?)—g(y) _M<g/(x)’gl(y))’ 7961, #y

Applying Theorem 2, we determine all power means M and the functions f,g
satisfying this equation.

1. THE CASE WHEN M IS QUASI-ARITHMETIC
In this section we prove:

Theorem 1. Let I,J C R be intervals. Suppose that
f: I — R is three times continuously differentiable, f"(x) #0 for xz € I;
v J = R is twice continuously differentiable, and ©'(u) # 0 for u € J.

If
) TOZTO) 0 (f@) /) wwel ot
then there exists C € R, C # 0, such that
1t _ C T

3) @)= i el
and
(4) , ,

" / f(x)_f(y) =" f(l')_f(y)_ / T z
7ta) (#1) - HEZIOY gy (HDZLO ) e ra

Proof. Without any loss of generality we can assume that ¢’(x) > 0 in J. Suppose
that (2) holds true. Then, from the definition of the quasi-arithmetic mean,

2¢ (W) =e(f'@)+e(f'v), wyel z#y.

Differentiating both sides, first with respect to x and then with respect to y, we get

CRE (S T pLLESSES (LER CR P
6) 2 (f (92 = ;” (y)> 'y —(z)_—yJ; gy) 1@ _ ) ()
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for all z,y € I, x # y. Subtracting the respective sides of these equalities and
dividing the obtained differences by x — y we have

o f@) = fW) (@) + W)l —y) —2[f(z) — f(y)]
™) 2 ( rT—y ) (x — y)3
_ (=) (=) =" (f' (W) [ (y)
-y
for all z,y € I, x # y. Applying L'Hospital’s rule (or Taylor’s theorem) we easily
get
o @ SO —y) 2@ - W)
3 , .
yoe (z—y) 6
Hence, letting y — z in (7), we obtain
26! (1/(a) L0 = 7 (@) [ @ + ¢! (7)) 1" (2,

whence

3" (f'(@) [f" (@) +2¢' (f'(2)) f"(x) =0, zel
Assume first that f”(z) # 0 for all x € I. Then, by the Darboux property of a
derivative, f” is of a constant sign in I. Dividing both sides by f”(z)¢’ (f'(z)) we

hence get
@) iy o ()
e M e

=0, zel,
or, equivalently,

(3log¢’ (f'(z)) +2log f"(x)) =0, wxel,

whence, after simple calculation,
C
1l _
2 (f (x)) - f,/(x)2/37 S Ia
for some C € R, C' # 0.
Hence, dividing the respective sides of (5) and (6) (by the assumption it can be
done), we obtain

Fla)(@—y) - fl@)+ fly) <f“<y>>”3
Py o) —f@) + i) \fiwy) » “velbrFv
which implies (4). This completes the proof. d

Remark 1. The function f(x) = ax + 8, ¢ € I, satisfies equation (1) with an
arbitrary mean M : J? — J. Therefore in Theorem 1 we assume that f’ is not a
constant function.

Remark 2. From equation (1) we have
f@) = fly) =M ('), f(W)(@-y), zyel
Since f(z) — f(y) = [f(z) = f(2)] + [f(z) = f(y)], for all z,y,z € I, we get
M (f'(2), f'(y)) (@ —y) = M (f'(2), f'(2)) (z = 2) + M (f'(2), f'(4)) (= — 9).
Assuming that f is one-to-one and putting h := (f’ )™, we hence obtain
M (u,v) [h(u) = b (v)] = M (u, w) [h(u) = h (w)] + M (w, v) [h(w) = R (v)]
for all u,v,w e J:= f'(I).
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If f(z) = %22 + bz + ¢ for some a,b,c € R, then h(u) = “=L_ Tt is easy to verify
that k and M (u,v) = “2 satisfy this equality.

2. THE CASE WHEN M IS A POWER MEAN

In this part we assume that M in equation (1) is a power mean. The main result
reads as follows.

Theorem 2. Let I C R be an interval. Suppose that f : I — R is differentiable,
f'(x) >0 forx € I, and f' is not constant in I. Then

©) T =T i (@) @), el oty
for some p € R if, and only if, one of the following cases occurs:
(i): p = 0 (that is, M is the geometric mean) and for some a,b,c € R,
ac—b+#0,
ar +b
z+c’

fz) =

(ii): p = 1 (that is, M is the arithmetic mean) and for some a,b,c € R,

a#0,

z € I;

f(x):gx2+bx+c, x €I

(iii): p = —1 (that is, M) is the harmonic mean) and for some a,b, c,k € R,
a#0+#k,
flz)=kvVar+b+c¢, zel.

Proof. First consider the case when p = 0. If f satisfies equation (8), then
%jy)—vf(@f’(y), vyel, x#y,
whence
@)= fy) = V' @) ') (e -y),  wyel
Since f(z) — f(y) = [f(x) — f(2)] + [f(2) — f(y)] for all z,y,z € I, we hence get
f@)f'(y) (@ —y) = V(@) f(2) (e =2) + V') (z-y),  zyzel

Setting here z = %, x # y, and then dividing both sides by x — vy, we get

2/ F @) (y) = \/f’(x)f’ (x “’) + W (M) ),

2 2

which, obviously, also remains true for all z,y € I. Dividing both sides of this
equality by 2\/f’(x)f’ (%) f'(y) we hence get
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that is, m is the arithmetic mean of \/fll(w) and \/fll(y) (and \/ f' (Z£Y) is
the harmonic mean of /f’(x) and 1/ f' (y)). It follows that the function v := 1//f7
satisfies the Jensen functional equation
z+y\ _ @)+
0 2 - 2 ’

Since v is Lebesgue measurable, there are k,m € R such that v (x) = kxz + m, for
all x € I (cf. M. Kuczma [2, Chapter XIII, Section 2]. Hence

x,y € 1.

1
") = ——, rzel,
fle) (k;Jc—i—m)2
where k # 0, as f’ is not constant, whence, for some real a,
L (o)
=a— = , el.
(@) =a k (kx 4+ m) T+ v
Setting b := 4" — k—lz, c:= 7 we get
ax+0b
= 1
fl@) =2 zel,
and
m am 1 1

It is easy to verify that f satisfies equation (8).
Now assume that p # 0. In this case,

pt)=At? +B, t>0,
for some A,B € R, A # 0, is a generator of the mean M), and equation (8) can
be written in the form

7 — )P / p\ 1/p
f(;_;”(@_([f( )] ;r[f(y)] > . ayel atuy.

Assume that f : I — R satisfies this equation. Then, obviously, f is of the class
C*in I.

Let Iy C I be a maximal open and non-empty interval such that f(z) # 0 for
all € Iy. By the Darboux property of a derivative, f” is of a constant sign in Ij.
Since, by assumption, f” does not vanish everywhere in I, such an interval exists.
In view of Theorem 1, there is C' # 0 such that

C
PA[f (x)P~t = @R’ x € Iy,
whence
©) F@P @R = el

If p =1 we hence get
' (x) = a, z € Iy,
for some a € R, a # 0. Consequently

f(x)z%ﬁ—i—bx—l—c, x € Iy,
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for some b, c € R and, obviously, I = Ij. Since

f@) = f) _ oty (ex+b)+(ay+b)

Ty 93 ; = MU (f' (@), (1))

for all z,y € I, x # y, equation (8) is satisfied.
In the sequel we assume that p # 1. Since f” is of a constant sign in Iy, from
(9) we get

(10) [F@)f"(x) =a,  xzel,

for some a # 0 and

3
(11) ¢:=5(p-1).
If ¢ = —1, then (10) implies that
log f'(z) = ax + b, x € Iy,

for some b € R, whence

1
flz) = aea“b + 0, x € Iy,

and, of course, I = Iy. From (11) we get

1
p=3
Since
_ ax+b _ _ay+b
-y a(z—y)
and
ax+b 1/3 ay+b 1/3 3
MWﬂqhmf@»—<k kS >, ryel oy,
equation (8) is not fulfilled.
If ¢ # —1, then, from (10),
1
q_+_—1 [f'(;v)]q+1 =ax + b, T € _[0,
that is,
(12) (@) =g +1) (e +0)]" ", el
For ¢ = —2, we hence get
1
/
= I
f ($) ar + ba T € lo,
whence, for some m € R,
(13) f(@) = —loglaz + bl +m, €,
and, of course, I = I. In this case, (11) implies that
1
b= 3
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From (13) we have

flx)—fly) 1 ay+b
MV (f (), £ () = i o amyel

(Vaz + b+ ay +b)

and, obviously, equation (8) is not satisfied.
Assume that ¢ ¢ {—1,—2}. From (12) we get

1
f(z) = @+2)a [(q+ 1) (az + b)) @F2/TD 4y, T € I,
for some k,m,r € R, k # 0. Thus
(14) f@)=k(az+b)" +m,  z¢€l,
where
9 1)(a+2)/(a+1)

(15) SO L A () £0

q+1 (g+2)a

Making use of (14) and setting v := ax + b, v:=ay + b for x,y € Iy, x # y, we
get

f@) = /y) _jleotb) —(ay+d) _, w=v" _ w v
z—y -y il v
and
f’(:c) — kar (a:[’—l—b)ril, f’(y) = kar (ay—i—b)ril,
Thus

_ _ 1/
(ax—|—b)p(r 1) + (ay + b)P( 1)) P
2

MPL(f'(z), f'(y)) = kar (

wP(r=1) 1 gyp(r=1)\ /P
= kar ( ) ,

2
whence, by (8),

u =" wP(r—1) + pP(r=1) 1/p
S S—
for all u,v € Jy := alp + b,u # v. The right side,

p(r=1) 4 op(r=1)\ /7
R(u,v) :==r (u —;—v ) ,

u—v

is an analytic function (in the real sense) in (0, 00)2. This equality implies that the
function on the left side extended to the diagonal by the formula

u"—v"
L=t for u#w,

O

ru for u=w
is also analytic in (0,00)? (cf. also Remark 3 below) and we have

R(u,v) — L(u,v) =0,  w,v>0.
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Setting v = 1 we get
g(u) := R(u,1) — L(u,1) =0, u>0,
and, of course,
g® (1) =0 forall ke{0,1,..}.

After some calculations we get

¢(1) = Zor(1 = r)[3p(r — 1) = (r+ 1]

and
1
gPa) = A D[10p3(r — 1)® +15p*(1 — 7)3 + 10p(1 — 7)(3r% — 247 + 43)
+ 1173 — 69r% + 617 + 141].

Since p # 0 and p # 1, from the equality ¢”(1) =0 we get

r+1

Setting this value into the equality g(* (1) = 0 we get
2—r)(r—1(r+1)2r-1)

="

=0.
540
By (15) and (16), respectively, we can omit the cases when r = 0 or r = 1. If
r = —1, then, by (16), we get p = 0, the case already considered. Therefore,

applying (16), we conclude that either r =2 and p=1orr =3 and p= —1.
If r =2 and p = 1, then, by (14), we get

f(x) =k(ax +b)? for €Iy and M[l](u,v):u—;v7 u,v >0,

and, if r = % and p = —1, we get

2uv
u-+v
It is easy to verify that in both cases equation (8) is fulfilled. Moreover, in each

of these cases, the regularity of the solutions implies that I = Iy. This completes
the proof. |

f(@)=kVar+b for zely and MUy 0) =

,  u,v > 0.

Remark 3. The analyticity of the function L can also be obtained as follows. Treat-
ing L as a function of two complex variables, v and v, it is easy to see that, at any
point of the diagonal points (u,u) # (0,0), the function L is separately analytic
(holomorphic) at (u,u) with respect to each variable. Therefore, by the famous
theorem of Hartogs [I], L is analytic at (u,u) with respect to both variables.

Remark 4. The necessity of the positivity of f’ in Theorem 2 follows from the
definition of the power means. Defining M) : (—oo, O)2 — (—00,0) by the formula

— )P4 (—v)P 1/p .
MW (u,0) = ~ (%) if p#0,
—v/uv if p=0,

we can formulate the counterpart of Theorem 2 for f such that f’ < 0.
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Remark 5. Equation (8) for p = 0 has appeared to be useful in solving a problem of
Zs. Péles concerning existence of discontinuous Jensen affine (convex and concave)
functions in the sense of Beckenbach with respect to the two-parameter family of
curves generated by a Tchebycheff system [3].

Applying Theorem 2 we can prove the following:

Theorem 3. Let I C R be an interval. Suppose that f,g: I — R are differentiable,
f(@)g'(x) >0 forx €I and f'/g" is not constant in I. If M is a power mean, then

f@)— 1) (@) F)
o) —gly) - <g/<x>’ g/<y>) ’

if, and only if, one of the following cases occurs:

(17)

v,yel, x#y,

(i): M is the geometric mean, g is arbitrary, and for some a,b,c € R, ac—b #
0,

ag (x) +b

OET

(ii): M is the arithmetic mean, g is arbitrary, and for some a,b,c € R, a # 0,

flx) = <

@)= 59@)? +bg (@) +e, wel;

(iii): M is the harmonic mean, g is arbitrary, and for some a,b,c,k € R,
a#0+#k,
flz)=kvag(x)+b+c, xz€l.

Proof. Suppose that the functions f and g satisfy the assumptions and equation
(17) where M = M) for some p € R. Obviously g(I) is an interval and the
function fo g1 : g(I) — R satisfies all assumptions of Theorem 2. Take arbitrary
u,v € g(I), u# v. Setting z := g~ (u), y := g~ (v) in (17) we get

fogtw)—fog ' (v) _ i (f o9 (w) fog(v)
u—v =M <g’og‘1(U)’g’og‘1(v))

/

= M) ((fog_l)

1

(), (Fog™) @),

which means that the function f o g~' satisfies equation (8). Theorem 2 implies
that either p = 0 and for some a,b,c € R, ac — b # 0,

au+b

fog ) =T weg),

or p =1 and for some a,b,c € R, a # 0,
fogt(u)= %u2+bu+c, u € g(I),
or p=—1 and for some a,b,c,k € R, a # 0 # k,
fogt(u)=kVau+b+e, wuegl).

Setting in these formulas u = g(z) for « € I, we obtain the result. O
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3. FINAL REMARK

Replacing f’ by h of the equation for p = 0, p = 1, and p = —1 (the cases
itemized in Theorem 2) we get three functional equations:

%{1{@)_ h(z)h(y), = ye€l,xz#y,
f(xzig(y) _ h(x)‘;h(y)7 sycloty
f@) = fy) _ 2h(x)h(y)

=y h@thy) “YEDTEY

It is not difficult to show that, without any regularity assumptions on f and &, each
of these equations characterizes the respective function f and its derivative h.
It is interesting that this fact remains true if we “pexiderize” these equations by

replacing f(y) by ¢(y) and h(y) by v(y).
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