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JANUSZ MATKOWSKI
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Abstract. According to a new mean-value theorem, under the conditions of
a function f ensuring the existence and uniqueness of Lagrange’s mean, there
exists a unique mean M such that

f(x)− f(y)

x− y
= M

(
f ′(x), f ′(y)

)
.

The main result says that, in this equality, M is a power mean if, and only if,
M is either geometric, arithmetic or harmonic. A Cauchy relevant type result
is also presented.

Introduction

In a recent paper [4] the following counterpart of the Lagrange mean-value
theorem has been proved. If a real function f defined on an interval I ⊂ R

is differentiable, and f ′ is one-to-one, then there exists a unique mean function
M : f ′ (I)× f ′ (I) → f ′ (I) , such that

f(x)− f(y)

x− y
= M (f ′(x), f ′(y)) , x, y ∈ I, x �= y.

In this connection the following problem arises. Given a mean M, determine all
differentiable real functions f such that

(1)
f(x)− f(y)

x− y
= M (f ′(x), f ′(y)) , x, y ∈ I, x �= y.

In the case when M is the geometric mean this equation has appeared in [3] and
was useful in solving an open problem related to convex functions (cf. Remark 5).

In the first section we consider equation (1) in the case when M = M [ϕ], where

M [ϕ](u, v) = ϕ−1

(
ϕ(u) + ϕ(v)

2

)
, u, v ∈ J,

and ϕ : f ′ (I) → R is a continuous and strictly monotonic function; so M is a quasi-
arithmetic mean of a generator ϕ. Assuming three times continuous differentiability
of f , and twice continuous differentiability of ϕ, we give some necessary conditions
for equality (1) (Theorem 1). Applying this result, in the next section we give a
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complete solution of the problem in the case when M [ϕ] is positively homogeneous,
that is, when either ϕ (t) = Atp + B or ϕ (t) = A log t + B for some real p,A,B

such that A �= 0 �= p. Then M = M [p] : (0,∞)
2 → (0,∞) is a power mean, that is,

M [p](u, v) :=

{ (
up+vp

2

)1/p
if p �= 0,√

uv if p = 0.

The main result (Theorem 2) says that equality (1) withM = M [p] holds if, and only
if, the mean M is either arithmetic (M [1] (u, v) = u+v

2 ), geometric (M [0] (u, v) =√
uv) or harmonic (M [−1] (u, v) = 2uv

u+v ).
Assume that the functions f, g : I → R satisfy the conditions ensuring the

existence and uniqueness of the classical Cauchy mean-value. Then (cf. [4]) there

exists a unique mean M : J2 → J, with J := f
g′

′
(I) , such that

f(x)− f(y)

g(x)− g(y)
= M

(
f ′(x)

g′(x)
,
f ′(y)

g′(y)

)
, x, y ∈ I, x �= y.

Applying Theorem 2, we determine all power means M and the functions f, g
satisfying this equation.

1. The case when M is quasi-arithmetic

In this section we prove:

Theorem 1. Let I, J ⊂ R be intervals. Suppose that
f : I → R is three times continuously differentiable, f ′′(x) �= 0 for x ∈ I;
ϕ : J → R is twice continuously differentiable, and ϕ′(u) �= 0 for u ∈ J.

If

(2)
f(x)− f(y)

x− y
= M [ϕ] (f ′(x), f ′(y)) , x, y ∈ I, x �= y,

then there exists C ∈ R, C �= 0, such that

(3) ϕ′ (f ′(x)) =
C

f ′′(x)2/3
, x ∈ I,

and
(4)

f ′′(x)

(
f ′(x)− f(x)− f(y)

x− y

)3

=f ′′(y)

(
f(x)− f(y)

x− y
− f ′(y)

)3

, x, y ∈ I, x �= y.

Proof. Without any loss of generality we can assume that ϕ′(x) > 0 in J. Suppose
that (2) holds true. Then, from the definition of the quasi-arithmetic mean,

2ϕ

(
f(x)− f(y)

x− y

)
= ϕ (f ′(x)) + ϕ (f ′(y)) , x, y ∈ I, x �= y.

Differentiating both sides, first with respect to x and then with respect to y, we get

2ϕ′
(
f(x)− f(y)

x− y

)
f ′(x)(x− y)− f(x) + f(y)

(x− y)
2 = ϕ′ (f ′(x)) f ′′(x),(5)

2ϕ′
(
f(x)− f(y)

x− y

)
f ′(y)(y − x)− f(y) + f(x)

(x− y)
2 = ϕ′ (f ′(y)) f ′′(y)(6)
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for all x, y ∈ I, x �= y. Subtracting the respective sides of these equalities and
dividing the obtained differences by x− y we have

2ϕ′
(
f(x)− f(y)

x− y

)
[f ′(x) + f ′(y)](x− y)− 2[f(x)− f(y)]

(x− y)3
(7)

=
ϕ′ (f ′(x)) f ′′(x)− ϕ′ (f ′(y)) f ′′(y)

x− y

for all x, y ∈ I, x �= y. Applying L’Hospital’s rule (or Taylor’s theorem) we easily
get

lim
y→x

[f ′(x) + f ′(y)](x− y)− 2[f(x)− f(y)]

(x− y)3
=

f ′′′(x)

6
, x ∈ I.

Hence, letting y → x in (7), we obtain

2ϕ′ (f ′(x))
f ′′′(x)

6
= ϕ′′ (f ′(x)) [f ′′(x)]2 + ϕ′ (f ′(x)) f ′′′(x),

whence
3ϕ′′ (f ′(x)) [f ′′(x)]2 + 2ϕ′ (f ′(x)) f ′′′(x) = 0, x ∈ I.

Assume first that f ′′(x) �= 0 for all x ∈ I. Then, by the Darboux property of a
derivative, f ′′ is of a constant sign in I. Dividing both sides by f ′′(x)ϕ′ (f ′(x)) we
hence get

3
ϕ′′ (f ′(x))

ϕ′ (f ′(x))
f ′′(x) + 2

f ′′′(x)

f ′′(x)
= 0, x ∈ I,

or, equivalently,

(3 logϕ′ (f ′(x)) + 2 log f ′′(x))
′
= 0, x ∈ I,

whence, after simple calculation,

ϕ′ (f ′(x)) =
C

f ′′(x)2/3
, x ∈ I,

for some C ∈ R, C �= 0.
Hence, dividing the respective sides of (5) and (6) (by the assumption it can be

done), we obtain

f ′(x)(x− y)− f(x) + f(y)

f ′(y)(y − x)− f(y) + f(x)
=

(
f ′′(y)

f ′′(x)

)1/3

, x, y ∈ I, x �= y,

which implies (4). This completes the proof. �

Remark 1. The function f(x) = αx + β, x ∈ I, satisfies equation (1) with an
arbitrary mean M : J2 → J. Therefore in Theorem 1 we assume that f ′ is not a
constant function.

Remark 2. From equation (1) we have

f(x)− f(y) = M (f ′(x), f ′(y)) (x− y) , x, y ∈ I.

Since f(x)− f(y) = [f(x)− f(z)] + [f(z)− f(y)] , for all x, y, z ∈ I, we get

M (f ′(x), f ′(y)) (x− y) = M (f ′(x), f ′(z)) (x− z) +M (f ′(z), f ′(y)) (z − y) .

Assuming that f ′ is one-to-one and putting h := (f ′)
−1

, we hence obtain

M (u, v) [h(u)− h (v)] = M (u,w) [h(u)− h (w)] +M (w, v) [h(w)− h (v)]

for all u, v, w ∈ J := f ′ (I) .
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If f(x) = a
2x

2 + bx+ c for some a, b, c ∈ R, then h(u) = u−b
a . It is easy to verify

that h and M(u, v) = u+v
2 satisfy this equality.

2. The case when M is a power mean

In this part we assume that M in equation (1) is a power mean. The main result
reads as follows.

Theorem 2. Let I ⊂ R be an interval. Suppose that f : I → R is differentiable,
f ′(x) > 0 for x ∈ I, and f ′ is not constant in I. Then

(8)
f(x)− f(y)

x− y
= M [p] (f ′(x), f ′(y)) , x, y ∈ I, x �= y,

for some p ∈ R if, and only if, one of the following cases occurs:

(i): p = 0 (that is, M [p] is the geometric mean) and for some a, b, c ∈ R,
ac− b �= 0,

f(x) =
ax+ b

x+ c
, x ∈ I;

(ii): p = 1 (that is, M [p] is the arithmetic mean) and for some a, b, c ∈ R,
a �= 0,

f(x) =
a

2
x2 + bx+ c, x ∈ I;

(iii): p = −1 (that is, M [p] is the harmonic mean) and for some a, b, c, k ∈ R,
a �= 0 �= k,

f(x) = k
√
ax+ b+ c, x ∈ I.

Proof. First consider the case when p = 0. If f satisfies equation (8), then

f(x)− f(y)

x− y
=

√
f ′(x)f ′(y), x, y ∈ I, x �= y,

whence

f(x)− f(y) =
√
f ′(x)f ′(y) (x− y) , x, y ∈ I.

Since f(x)− f(y) = [f(x)− f(z)] + [f(z)− f(y)] for all x, y, z ∈ I, we hence get√
f ′(x)f ′(y) (x− y) =

√
f ′(x)f ′(z) (x− z) +

√
f ′(z)f ′(y) (z − y) , x, y, z ∈ I.

Setting here z = x+y
2 , x �= y, and then dividing both sides by x− y, we get

2
√
f ′(x)f ′ (y) =

√
f ′(x)f ′

(
x+ y

2

)
+

√
f ′

(
x+ y

2

)
f ′(y),

which, obviously, also remains true for all x, y ∈ I. Dividing both sides of this

equality by 2
√
f ′(x)f ′

(
x+y
2

)
f ′(y) we hence get

1√
f ′

(
x+y
2

) =

1√
f ′(x)

+ 1√
f ′(y)

2
, x, y ∈ I;
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that is, 1√
f ′( x+y

2 )
is the arithmetic mean of 1√

f ′(x)
and 1√

f ′(y)
(and

√
f ′

(
x+y
2

)
is

the harmonic mean of
√
f ′(x) and

√
f ′ (y)). It follows that the function γ := 1/

√
f ′

satisfies the Jensen functional equation

γ

(
x+ y

2

)
=

γ (x) + γ (y)

2
, x, y ∈ I.

Since γ is Lebesgue measurable, there are k,m ∈ R such that γ (x) = kx +m, for
all x ∈ I (cf. M. Kuczma [2, Chapter XIII, Section 2]. Hence

f ′(x) =
1

(kx+m)
2 , x ∈ I,

where k �= 0, as f ′ is not constant, whence, for some real a,

f(x) = a− 1

k (kx+m)
=

ax+
(
am
k − 1

k2

)
x+ m

k

, x ∈ I.

Setting b := am
k − 1

k2 , c :=
m
k we get

f(x) =
ax+ b

x+ c
, x ∈ I,

and

ac− b = a
m

k
−

(
am

k
− 1

k2

)
=

1

k2
�= 0.

It is easy to verify that f satisfies equation (8).
Now assume that p �= 0. In this case,

ϕ(t) = Atp +B, t > 0,

for some A,B ∈ R, A �= 0, is a generator of the mean M [p], and equation (8) can
be written in the form

f(x)− f(y)

x− y
=

(
[f ′(x)]

p
+ [f ′(y)]

p

2

)1/p

, x, y ∈ I, x �= y.

Assume that f : I → R satisfies this equation. Then, obviously, f is of the class
C∞ in I.

Let I0 ⊂ I be a maximal open and non-empty interval such that f ′′(x) �= 0 for
all x ∈ I0. By the Darboux property of a derivative, f ′′ is of a constant sign in I0.
Since, by assumption, f ′′ does not vanish everywhere in I, such an interval exists.
In view of Theorem 1, there is C �= 0 such that

pA[f ′(x)]p−1 =
C

|f ′′(x)|2/3 , x ∈ I0,

whence

(9) [f ′(x)]p−1|f ′′(x)|2/3 =
C

pA
, x ∈ I0.

If p = 1 we hence get

f ′′(x) = a, x ∈ I0,

for some a ∈ R, a �= 0. Consequently

f(x) =
a

2
x2 + bx+ c, x ∈ I0,
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for some b, c ∈ R and, obviously, I = I0. Since

f(x)− f(y)

x− y
= a

x+ y

2
+ b =

(ax+ b) + (ay + b)

2
= M [1] (f ′(x), f ′(y))

for all x, y ∈ I, x �= y, equation (8) is satisfied.
In the sequel we assume that p �= 1. Since f ′′ is of a constant sign in I0, from

(9) we get

(10) [f ′(x)]qf ′′(x) = a, x ∈ I0,

for some a �= 0 and

(11) q :=
3

2
(p− 1).

If q = −1, then (10) implies that

log f ′(x) = ax+ b, x ∈ I0,

for some b ∈ R, whence

f(x) =
1

a
eax+b + δ, x ∈ I0,

and, of course, I = I0. From (11) we get

p =
1

3
.

Since
f(x)− f(y)

x− y
=

eax+b − eay+b

a (x− y)
, x, y ∈ I, x �= y,

and

M [1/3] (f ′(x), f ′(y)) =

([
eax+b

]1/3
+

[
eay+b

]1/3
2

)3

, x, y ∈ I, x �= y,

equation (8) is not fulfilled.
If q �= −1, then, from (10),

1

q + 1
[f ′(x)]

q+1
= ax+ b, x ∈ I0;

that is,

(12) f ′(x) = [(q + 1) (ax+ b)]
1/(q+1)

, x ∈ I0.

For q = −2, we hence get

f ′(x) = − 1

ax+ b
, x ∈ I0,

whence, for some m ∈ R,

(13) f(x) = − log |ax+ b|+m, x ∈ I0,

and, of course, I = I0. In this case, (11) implies that

p = −1

3
.
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From (13) we have

f(x)− f(y)

x− y
=

1

x− y
log

∣∣∣∣ay + b

ax+ b

∣∣∣∣ , x, y ∈ I, x �= y,

M [−1/3] (f ′(x), f ′(y)) =
8(

3
√
ax+ b+ 3

√
ay + b

)3 , x, y ∈ I,

and, obviously, equation (8) is not satisfied.
Assume that q /∈ {−1,−2} . From (12) we get

f(x) =
1

(q + 2) a
[(q + 1) (ax+ b)](q+2)/(q+1) +m, x ∈ I0,

for some k,m, r ∈ R, k �= 0. Thus

(14) f(x) = k (ax+ b)
r
+m, x ∈ I0,

where

(15) r :=
q + 2

q + 1
�= 0, k :=

(q + 1)
(q+2)/(q+1)

(q + 2) a
�= 0.

Making use of (14) and setting u := ax+ b, v := ay + b for x, y ∈ I0, x �= y, we
get

f(x)− f(y)

x− y
= k

(ax+ b)r − (ay + b)r

x− y
= k

ur − vr

u−b
a − v−b

a

= ka
ur − vr

u− v
,

and

f ′(x) = kar (ax+ b)r−1 , f ′(y) = kar (ay + b)r−1 .

Thus

M [p] (f ′(x), f ′(y)) = kar

(
(ax+ b)p(r−1) + (ay + b)p(r−1)

2

)1/p

= kar

(
up(r−1) + vp(r−1)

2

)1/p

,

whence, by (8),

ur − vr

u− v
= r

(
up(r−1) + vp(r−1)

2

)1/p

for all u, v ∈ J0 := aI0 + b, u �= v. The right side,

R(u, v) := r

(
up(r−1) + vp(r−1)

2

)1/p

,

is an analytic function (in the real sense) in (0,∞)2. This equality implies that the
function on the left side extended to the diagonal by the formula

L(u, v) :=

{
ur−vr

u−v for u �= v,

rur−1 for u = v

is also analytic in (0,∞)2 (cf. also Remark 3 below) and we have

R(u, v)− L(u, v) = 0, u, v > 0.
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Setting v = 1 we get

g(u) := R(u, 1)− L(u, 1) = 0, u > 0,

and, of course,

g(k)(1) = 0 for all k ∈ {0, 1, ...}.
After some calculations we get

g′′(1) =
1

12
r(1− r)[3p(r − 1)− (r + 1)]

and

g(4)(1) =
1

80
r(r − 1)[10p3(r − 1)3 + 15p2(1− r)3 + 10p(1− r)(3r2 − 24r + 43)

+ 11r3 − 69r2 + 61r + 141].

Since p �= 0 and p �= 1, from the equality g′′(1) = 0 we get

(16) p =
r + 1

3(r − 1)
.

Setting this value into the equality g(4)(1) = 0 we get

g(4)(1) =
r(2− r)(r − 1)(r + 1)(2r − 1)

540
= 0.

By (15) and (16), respectively, we can omit the cases when r = 0 or r = 1. If
r = −1, then, by (16), we get p = 0, the case already considered. Therefore,
applying (16), we conclude that either r = 2 and p = 1 or r = 1

2 and p = −1.
If r = 2 and p = 1, then, by (14), we get

f(x) = k(ax+ b)2 for x ∈ I0 and M [1](u, v) =
u+ v

2
, u, v > 0,

and, if r = 1
2 and p = −1, we get

f(x) = k
√
ax+ b for x ∈ I0 and M [−1](u, v) =

2uv

u+ v
, u, v > 0.

It is easy to verify that in both cases equation (8) is fulfilled. Moreover, in each
of these cases, the regularity of the solutions implies that I = I0. This completes
the proof. �

Remark 3. The analyticity of the function L can also be obtained as follows. Treat-
ing L as a function of two complex variables, u and v, it is easy to see that, at any
point of the diagonal points (u, u) �= (0, 0), the function L is separately analytic
(holomorphic) at (u, u) with respect to each variable. Therefore, by the famous
theorem of Hartogs [1], L is analytic at (u, u) with respect to both variables.

Remark 4. The necessity of the positivity of f ′ in Theorem 2 follows from the
definition of the power means. Defining M [p] : (−∞, 0)2 → (−∞, 0) by the formula

M [p](u, v) :=

{
−

(
(−u)p+(−v)p

2

)1/p

if p �= 0,

−√
uv if p = 0,

we can formulate the counterpart of Theorem 2 for f such that f ′ < 0.
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Remark 5. Equation (8) for p = 0 has appeared to be useful in solving a problem of
Zs. Páles concerning existence of discontinuous Jensen affine (convex and concave)
functions in the sense of Beckenbach with respect to the two-parameter family of
curves generated by a Tchebycheff system [3].

Applying Theorem 2 we can prove the following:

Theorem 3. Let I ⊂ R be an interval. Suppose that f, g : I → R are differentiable,
f ′(x)g′(x) > 0 for x ∈ I and f ′/g′ is not constant in I. If M is a power mean, then

(17)
f(x)− f(y)

g(x)− g(y)
= M

(
f ′(x)

g′(x)
,
f ′(y)

g′(y)

)
, x, y ∈ I, x �= y,

if, and only if, one of the following cases occurs:

(i): M is the geometric mean, g is arbitrary, and for some a, b, c ∈ R, ac−b �=
0,

f(x) =
ag (x) + b

g (x) + c
, x ∈ I;

(ii): M is the arithmetic mean, g is arbitrary, and for some a, b, c ∈ R, a �= 0,

f(x) =
a

2
g (x)2 + bg (x) + c, x ∈ I;

(iii): M is the harmonic mean, g is arbitrary, and for some a, b, c, k ∈ R,
a �= 0 �= k,

f(x) = k
√

ag (x) + b+ c, x ∈ I.

Proof. Suppose that the functions f and g satisfy the assumptions and equation
(17) where M = M [p] for some p ∈ R. Obviously g(I) is an interval and the
function f ◦ g−1 : g(I) → R satisfies all assumptions of Theorem 2. Take arbitrary
u, v ∈ g(I), u �= v. Setting x := g−1 (u) , y := g−1 (v) in (17) we get

f ◦ g−1(u)− f ◦ g−1(v)

u− v
= M [p]

(
f ′ ◦ g−1(u)

g′ ◦ g−1(u)
,
f ′ ◦ g−1(v)

g′ ◦ g−1(v)

)

= M [p]
((

f ◦ g−1
)′
(u) ,

(
f ◦ g−1

)′
(v)

)
,

which means that the function f ◦ g−1 satisfies equation (8). Theorem 2 implies
that either p = 0 and for some a, b, c ∈ R, ac− b �= 0,

f ◦ g−1(u) =
au+ b

u+ c
, u ∈ g(I),

or p = 1 and for some a, b, c ∈ R, a �= 0,

f ◦ g−1(u) =
a

2
u2 + bu+ c, u ∈ g(I),

or p = −1 and for some a, b, c, k ∈ R, a �= 0 �= k,

f ◦ g−1(u) = k
√
au+ b+ c, u ∈ g(I).

Setting in these formulas u = g(x) for x ∈ I, we obtain the result. �
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3. Final remark

Replacing f ′ by h of the equation for p = 0, p = 1, and p = −1 (the cases
itemized in Theorem 2) we get three functional equations:

f(x)− f(y)

x− y
=

√
h(x)h(y), x, y ∈ I, x �= y,

f(x)− f(y)

x− y
=

h(x) + h(y)

2
, x, y ∈ I, x �= y,

f(x)− f(y)

x− y
=

2h(x)h(y)

h(x) + h(y)
, x, y ∈ I, x �= y.

It is not difficult to show that, without any regularity assumptions on f and h, each
of these equations characterizes the respective function f and its derivative h.

It is interesting that this fact remains true if we “pexiderize” these equations by
replacing f(y) by φ(y) and h(y) by γ(y).
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