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Abstract In this paper, we apply the idea of -local contraction of Rincén-Zapatero
and Rodriguez-Palmero (Econometrica 71:1519-1555, 2003; Econ Theory 33:38
391, 2007) to study discounted stochastic dynamic programming models with un-
bounded returns. Our main results concern the existence of a unique solution to the
Be]]man equalmn and are applied to the theory of stochastic optimal growth. Also a
k-local and global isincluded.
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1 Introduction

The theory of stochastic dynamic programming (or Markov decision processes) with
uncountable state space started with the fundamental work of Blackwell (1965). His
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ideas were extended in many directions, with a number of applications to economics.
engineering, and operations research were presented. For a good survey the reader
is referred to Bertsekas and Shreve (1978), Herndndez-Lerma and Lasserre (1999).
Puterman (2005) and other books and articles. A large part of the theory of stochastic
optimal growth lies in the framework of dynamic programming. The classical paper
of Brock and Mirman (1972) as well as the book by Stokey et al. (1989) are very
much related to Blackwell’s work and deal with infinite state space models. However.
many issues considered by economists (like properties of trajectories, steady states
for specific models, etc.) are not covered in the aforementioned books on stochastic
dynamic programming (control processes). In many applications of decision processes
to operations research or economics it is natural to use unbounded return functions.
The bounded case with discounted evaluation directly leads to the Banach contraction
mapping theorem, see, e.g., Bertsekas and Shreve (1978) or Stokey et al. (1989). The
unbounded case, however, requires different methods (techniques): “weighted norms™
in the underlying function spaces, or limits of solutions for “truncated models™, see
Durén (2003), Herndndez-Lerma and Lasserre (1999). Stokey et al. (1989) and others.
A large survey of the existing literature on various economic models with unbounded
returns can be found in a recent volume edited by Dana et al. (2006). Here, we men-
tion important works by Boyd (1990), Boyd and Becker (1997), Le Van and Morhaim
(2002), Le Van and Vailakis (2005) representing different methods and levels of gen-
erality. Moreover, the papers by Rincon-Zapatero and Rodriguez-Palmero (2003);
Rincén-Zapatero and Rodriguez-Palmero (2007). which are point of our departure,
contain a great deal of information on this topic, including models with recursive
utility.

The aim of this paper is to apply the valuable idea of Rincén-Zapatero and
Rodriguez-Palmero (2003) to k-local contraction to study stochastic dynamic pro-
gramming models with unbounded return functions. Our main results are concerned
with the existence of a unique solution to the Bellman equation and are applied to the
theory of imal growth. We give twi ions motivated by the work of
Stokey et al. (1989). Before describing our stochastic dynamic programming model
and stating the results, we discuss one of the results given in Rincén-Zapatero and
Rodriguez-Palmero (2003) in detail. It turns out that Proposition 1(b) stated in Rincén-
Zapatero and Rodriguez-Palmero (2003) is false. In Sect. 2 we give a counterexample
to support our claim. Proposition 1(b) is fundamental for some parts of the further
research demonstrated by Rincén-Zapatero and Rodriguez-Palmero (2003); Rincn-
Zapatero and Rodriguez-Palmero (2007). For our purpose, we present in Sect. 3 a
modification of their approach and state some fixed point results related to their
Theorem 2.! The metric induced by the norm defined in Sect. 3 is basically the same
as in Theorem 2 in Rinc6n-Zapatero and Rodriguez-Palmero (2003), but we do not
consider in our approach their concept of a “bounded set”.

! After finishing the first draft of this paper, we obtained a communication from Martins-da-Rocha and
Vailakis (2008) where a different counterexample is shown and different corrections to Rincon-Zapatero
and Rodriguez-Palmero (2003) are given. We would like to thank Filipe Martins-da-Rocha and Yiannis
Vailakis for some useful comments on our work.
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Sections 4-6 contain applications to dynamic programming with stochastic transi-
tion functions and economic growth, respectively. Our results on stochastic optimal
‘growth theory are new and can be applied to multi-sector models. The weighted norm
approaches of Boyd (1990), Boyd and Becker (1997), Durdn (2003) applied in eco-
nomic models as well as the one by Herndndez-Lerma and Lasserre (1999) applied in
the theory of Markov decision processes are of different nature and require additional
assumptions (see Remark 9).

2 Local contractions: a counterexample

In an interesting paper, Rincén-Zapatero and Rodriguez-Palmero (2003) address the
issue of existence and uniqueness of solutions of the Bellman equation in the un-
bounded case. The proposed method is based on the Banach Fixed Point Principle
and on an ingenious idea of construction of a special metric space. Unfortunately,
part (b) of Proposition 1 in Rincén-Zapatero and Rodriguez-Palmero (2003) is false.
Below we give a counterexample. In Sect. 3, we present some modifications of the
results in Rincon-Zapatero and Rodriguez-Palmero (2003) which are very useful to
study Markov decision processes, in particular stochastic optimal growth models with
unbounded returns.

Throughout this paper N and R denote, respectively, the set of positive integers
and the set of real numbers. Rincén-Zapatero and Rodriguez-Palmero (2003) assume
that X is a topological space such that X = 32, K where {K } is an increasing
sequence of compact subsets of X. Assume that

x = | mu(k)).

(&=

J

Let C(X) denote the set of all continuous real-valued functions on X. Define

dj(@.¥) = A l¢x) =y @)l jeN.
xeK;

Then {d;} is a countable family of semimetrics and d defined by

4. ¥)

TGy Tl ecin )

=
d@.y) = 27
J=1

is a complete metric on C(X); for more details see Lemma 1, Remarks 1(a) and 2 in
Sect. 3.

Following Rincén-Zapatero and Rodriguez-Palmero (2003); Rincén-Zapatero and
Rodriguez-Palmero (2007), we say that an operator T : C(X) + C(X) is a 0-local
contraction relative to a set G C C(X) if

dj(T$.T¥) < Bjd;(@.¥) foreachj e Nandforall¢.y €G. (2

where 0 < f; < 1 forevery j € N.
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Here and in the sequel 0 denotes the function ¥ such that (x) = 0 forall x € X.

In Rincén-Zapatero and Rodriguez-Palmero (2003); Rincon-Zapatero and Rodri-
uez-Palmero (2007), aset G C C(X) is called “bounded”, if there is a sequence of
positive real numbers {m} such that d; (. 0) < m; for each ¢ € G and j € N.
Thus, if the set G contains an unbounded function . then the sequence {1 ;) must be
unbounded as well.

A key role in some parts of Rinc6n-Zapatero and Rodriguez-Palmero (2003) plays
the following statement (Proposition 1): If an operator T : C(X) = C(X) is a 0-local
contraction relative toa bounded set G C C(X). then there exists aconstant € [0. 1)
such that

d(T¢.TY) <ad(¢.y) forallg, ¥ €G. (©)]

It turns out that this proposition is false. An “‘a contrario” argument used in the proof
(see page 1548, just before the Lebesgue dominated convergence theorem is applied)
is erroneous.

Example I Assume that X = (0, 1]and K = [4, 1] for each j € N. Let {m;} be an
increasing sequence of positive numbers. Consider the “bounded set” G € C(X) (in
the sense of Rincon-Zapatero and Rodriguez-Palmero (2003); Rincén-Zapatero and
Rodriguez-Palmero (2007)) containing functions f; (i € N) such thatd; (f;. 0) = m;
forall j > i, and d;(f,0) = O forall I < j < i. For instance take

5

m; if
fiy={ili— l)m.( ! —x) if
o 3

x

IA A
£

<
<X

fori € N,i > 1,and f; = m. Assume that ¢ € G if and only if there s some i such
that 0 < ¢(x) < fi(x) forall x € X. Let T¥(x) := By (x) for some B & (0, 1).
Then T : G +> G. Clearly, T i a 0-local contraction relative to the set G with f; =
forall j € N. Take i > 1. Since 70 = 0 and d;(Tf;. 0) = fm; for all j > i, and
d;(Tf.0)=0forall j € N, j <i, we have

d(Tf,. TO

< d;(Tfi. 0) di(Tf;,0)
i _di(Tf; _di(Tfi,0)
b3 1+d;(Tf;, 22 1+di(Tf;.0

=1

G0 oy i B
S T+4(Tf 0)2 T T

Suppose that there exists an & € [0, 1) such that (3) holds. Taking ¢ =
in (3) we get
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S d;(fi.0)
_ -i_dii
d(Tf;.T0) < ad(fi.0) = m;:]Z 54,00
< di juy_om
= 2 T b U S 2 s
amz 1 +di(f;, 0) ? 1+m;

It follows that

whence

o
T Bl-a)

mj <

Since i € N is arbitrarily fixed, we have shown that the sequence {;} is bounded
and. consequently, the set G must be bounded in the usual sense. Note that, by the last
inequality, the sequence {m ) can be unbounded only if & > 1. Thus the unbounded-
ness of the sequence {m } excludes the contractivity of T.

‘The above example shows that the metric d given by (1) does not have the proper-
ties expected by Rincon-Zapatero and Rodriguez-Palmero (2003); Rincén-Zapatero
and Rodriguez-Palmero (2007). This metric “kills” the contractivity of mappings on
“bounded sets”.2

3 Fixed points of local contractions

In this section. we present two fixed point results which are similar to those stated in
Theorem 2 in Rincon-Zapatero and Rodriguez-Palmero (2003) and Proposition 1 in
Rincén-Zapatero and Rodriguez-Palmero (2009). Let X be a nonempty set. By (K}

we shall denote a strictly increasing (in the sense of inclusion) sequence of subsets of
X and assume that

o
x=UK. @
=1

Lemma 1 Let F(X) be a vector space of functions ¢ : X > R such that, for any
jen,

igll; := sup (x| < oo ©
xeK;

2 Rincén-Zapatero and Rodriguez-Palmero (2009) recently corrected their Proposition | by changing the
metric on C(X) and under an additional assumption that sup ;< f; < |
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Assume that

(@ foreveryi € N the set F(K;) of restrictions of all functions ¢ € F(X) 10 K
endowed with the norm |-|; is a Banach space,

(b,

ifforeachi € N,g; € F(K;) and pj21(x) = 9;(x) forall x € Kj.j € N,
then ¢ defined by ¢(x) := ¢;(x) for x € K; belongs to F(X).

Letc > Land m = {m;) be an increasing unbounded sequence of positive real
numbers. Let Fyy(X) be the set of all ¢ & F(X) such that

oo
> L o0. ©)
el

=

ligl

Then (Fyy(X), |1-1) is a Banach space.
Proof Take a Cauchy sequence {#,) and & > 0. Thus, for some no.

ln — xll = Zw <& forall n.k=no, %)
z

whence, for any j € N.
in — ¢xll; < mjcie forall n.k > no,
that is, for any j € N. the sequence of restrictions (¢ |« } of () to the set K is

Cauchy. By assumption (a). for any j € N, there is a function ¥; € F(X) such that
limy—.cc [ ¢ — ¥ ; = 0. Define

Y@) =) for xe K. jeN.

‘This definition is correct because K j C K j+1 forall j & N. By assumption (b). v &
F(X). Let us fix an arbitrary J € N. From (7) we have

L <& forall nk > no.

Letting here 1 — o0 we get

J
SO tora k2 e
P~

Fix arbitrarily k > g. Hence, by the triangle inequality.
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whence, as J € N is arbitrary,
vl
Iyl = Z—’ <&+ ol <o,
i=l i
which shows that ¢ € F,,(X). Letting k — oo in (7) we obtain

Igw =¥l = Z 1n "["'”l <e forall n>ng,
j=! L)

that is, the sequence {¢,} converges to ¥ in the norm |- o
Define
Fup(X) :={¢ € F(X): l¢ll; <mj forall je N}
Clearly, F,u5(X) is a closed subset of Fy (X).

Remark I Tn this paper, we are mainly interested in two special cases:

(2) X is ametric space. the sets K are compact and

~
x= k., ®)
j=1

F(X) i the space C(X) of all continuous functions on X. Let {¢;} be a sequence
of continuous functions on X such that forevery j & N and x € K j, ¢j+1(x) =
(). Let g(x) := ;(x) forx € K;. Then ¢ € C(X). For this, take a sequence
{xx} converging to some xo € X. Then the set So := {x; : k € N} U {xo} is
compact in X. Since the sequence {IntK ;) is increasing. from (8). it follows that
there is some jo € N such that Sy C IntKj, C K. We have o(x) = ¢}y (x)
forall x € Kj,. Hence ¢(xi) = ¢j, () — ¢j,(x0) = 9(xo) as k — oc.
Thus, assumption (b) of Lemma 1 holds. The spaces £y, (X) and Fyup(X) will
be denoted by Cyu(X) and Cyup (X), respectively.

(b) (X.) is a measurable space, {K;} is an increasing sequence of measurable
sets satisfying (4), F(X) is the space M (X) of all measurable functions on X
satisfying (5). To see that M (X) satisfies assumption (b) of Lemma | consider
functions ¢ € F(X) such that g4 (x) = ¢; (x) for each x € K, j € N, and
9(x) = ¢;(x) for x € K;. Note that ¢; defined as ¢; (x) := ; (x) for x € K;
and ;(x) := Oforx € X\K; belongsto M (X). Clearly. ¢(x) = lim . ¢; (x)
for all x & X. Hence, ¢ is measurable and is a member of M(X). The spaces
Fn(X) and Fyup(X) will be denoted by My, (X) and My, (X), respectively.

Remark 2 If we drop i ) in Remark 1(a), then i functi it
enough to make F, (X) complete. Consider X = [0, 1], K; = [0, ]H]U(I) JjeN.
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Then (¢} where g, (x) = x" is a Cauchy sequence with respect to the norm | - || and
6(x) = limy o0 ¢ (x) is zero for x € [0, 1). ¢(1) = 1. Therefore, the correct defi-
nition of F(X) making Fy, (X) complete is the set of functions which satisfy (5) and
are continuous on [0, 1). Note that every F(K ;) (endowed with the supremum norm)
is the Banach space of continuous functions on K, but taking continuous functions
on the closed interval [0, 1] is not a good choice for F(X).

In the remaining part of this section we assume that properties (a) and (b) in
Lemma | are satisfied.

LetG C Fy(X) andk € {0. 1). Inspired by Rincon-Zapatero and Rodriguez-Palmero
(2003), we say that a mapping T : F,(X) = F(X) is a k-local contraction (relative
w0 the set G) if there is a B € [0, 1) such that

IT¢=Tyl; <plig =Vl forallg, ¥ €GandjeN.

Note that this definition is in some sense stronger than that of Rincén-Zapatero and
Rodriguez-Palmero (2003).

Proposition 1 Let T : F,,(X) = F(X) be a 0-local contraction relative to G =
Fn(X). Then

IT¢ =Tyl < Blig - ¥l ©)

for any ¢, € Fu(X). I TO € Fyy(X), then T maps F(X) into itself and has a
unique fixed point ¢* € Fyy(X). If in addition,

ITOl; < (1 — Bym; forall j €N,
then T 2 Fup(X) = Fup(X) and has a unique fixed point ¢* € Fyp(X).

Proof Tt is easy to see that (9) holds. Assume that 70 € F,(X). Note that, for all
¢ € Fu(X).

IT¢ll = IT¢ = TO+TOll < IT¢ — TOIl + ITOIl < B lI$ll + I TOll < co.

Then T maps F,,(X) into itself and is a contraction. Suppose now that € Fp(X).
For each j € N. we have |T0]|; < (1 = B)m;. Thus

IToll; <1 Té —TOI;+ITO0l; < Bligll; + (1 = Bymj < mj+ (1 = Bymj = mj.

The existence of a unique fixed point for 7 in Fy,(X) or Fys(X) follows from the
Banach Contraction Principle. o

Remark 3 Rincon-Zapatero and Rodriguez-Palmero (2003); Rincén-Zapatero and
Rodriguez-Palmero (2009) view C,y5(X) as a closed subset of a space endowed with
a metric and study ions on closed subsets of Cyup(X). We
allow for a larger domain C,, (X) and work with a metric induced by a norm.
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The following result is closely related to Theorem 2 in Rincon-Zapatero and
Rodriguez-Palmero (2003).

Proposition 2 Let T : F,(X) > Fy(X) be a I-contraction relative to G = F(X).
If

mjs
y 1= cB sup —~
jeN mj

then T is a contraction mapping from Fy(X) into itself with the contraction coefficient
¥ and has a unique fixed point ¢* € Fn(X).

Proof For ¢,y € Fn(X) we have

& ITf - T,
7y - e = 32 T Tels Zﬁ"f 8l

st mjel
-
=3 (g uf—gum< 317 sl
=T micitt = Mg+l
7 j+! J

=t =1

iy U= W gl\/ =yIf-el
j=1

J

Thus T is contractive and by the Banach Contraction Principle has a unique fixed point
¢" € Fu(X).

Remark 4 We have shown that having ak-local contraction mapping T withk & (0, 1),
on asubspace of F(X), one can construct a Banach space using some subset, say S, of
F(X) on which T is contractive. Then the unique fixed point of 7 in § can be obtained
by taking the limit (in the norm on S) of the iterations T" o with an arbitrary fixed
function ¢ € S.

4 The model and main results

We start with some preliminaries. Let (X, ¥) be a space, ¥ a separable
metric space. A set-valued mapping A from X into the family of nonempty subsets
of Y is called (weakly) measurable if A='(D) := {x € X : AQ)ND # B} € £
for every open set D C Y. Assume now that X is a metric space. Then a set-valued
mapping A is called continuous if A~'(D) is closed for each closed set D C ¥
and open for every open set D C Y. Clearly, a continuous set-valued mapping A is
measurable if X is the Borel o-algebra on X. It is well-known that any measurable
mapping A having nonempty compact values A(x) for all x € X admits a measurable
selector, see Kuratowski and Ryll-Nardzewski (1965).
Fix a measurable compact set-valued mapping A and define

C:={(x.a):x € X,a € A(x)} (10)

&) Springer
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Then C is a measurable subset of X x Y endowed with the product o -algebra, see
Himmelberg (1975).

Lemma2 Let g : C > R be a measurable function such that a + g(x.a) is
continuous on A(x) for each x € X. Then

*(x) = max X, a.
8 L ae. MMg( )
is measurable and there exists a measurable mapping f* : X — ¥ such that
*(x) € arg max Xl
frx) g“y\mg( )

forallx € X.

This fact follows from the measurable selection theorem of Kuratowski and Ryll-
Nardzewski (1965) and Lemma 1.10 in Nowak (1984).
If in addition we assume that X is a metric space and A is continuous, then g* is a
continuous function by Berge’s maximum theorem, sce pp. 115-116 in Berge (1963).
A discrete-time Markov decision process considered in this paper is defined by the
objects: X, Y. {A()}xex. . ¢, and B satisfying the following assumptions:

Al: X is the state space endowed with a o-algebra .

A2: Y is a separable metric space of actions of the decision maker. For any x &
X, A(x) is a compact subset of ¥ representing the set of all actions available in
state x & X. Itis assumed that the set-valued mapping x — A(x) is measurable.
Define C as in (10).

A3: u: C — Risa (product) measurable instantaneous return function.

Ad: g is a transition probability from C to X, called the law of motion among states.

If x, is a state at the beginning of period 7 of the process and an action a; € A(x,)

is selected, then g (-|x;. ;) is the probability distribution of the next state xr.1.

B € (0, 1) and is called the discount factor.

=

AS:

I3

A policy is a sequence 7 = {x;} where 7, is a measurable mapping which associ-
ates an action @, € A(x;) for any admissible history of the process up to state x; € X.>
Let IT denote the set of all policies. Note that we restrict our attention to non-random-
ized policies which are enough to study the discounted models. For a more formal
definition of a general policy the reader is referred to Bertsekas and Shreve (1978) or
Herndndez-Lerma and Lasserre (1999). As usual, a starionary policy can be identified
with a measurable mapping ¢ : X + ¥ such that ¢(x) € A(x) for each x € X. More
formally, a stationary policy is a constant sequence 7 with 7, = ¢. We denote by &
the set of all stationary policies and identify @ with the nonempty set of measurable
selectors of the mapping x > A(x). Clearly, if a policy ¢ € ® is used, then the action
selected at state x; of the process is a; = ¢(x;).

3 A history
=1

by = xyfore = Lhy = (q.an...xop.a-p.x) fort 2 2.ar € Ale).t =
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For each initial state x; = x and any policy € I1, the expected discounted return
over an infinite future is defined as:

«
EY (Zﬁ'*’um.an). an

=1

Jx.m)

where E7 denotes the expectation operator with respect to the unique conditional
probabxlnv measure P defined (on the space of histories, endowed with the product
o -algebra, starting at 1he state x) by 7 and the transition probability ¢ according to the
Tonescu-Tulcea Theorem, see Proposition V. 1.1 in Neveu (1965): for a detailed discus-
sion consult Bertsekas and Shreve (1978) or Herndndez-Lerma and Lasserre (1999).
We shall accept conditions under which the expected returns (11) are well-defined.

We now describe some regularity assumptions on the return and transition proba-
bility functions.

Cl: Let X be a metric space and (K j} a strictly increasing family of compact sets
that satisfy (8). Let C.(X) be the space of all continuous functions on X with
compact supports. Suppose that the set-valued mapping x > A(x) is contin-
uous. In addition, assume that the return function « is continuous and, for any
v € Ce(X),

(x,a) = /N))q(d) lx.a)
¥

is also continuous on the set C.

If X is not necessarily a topological space, we accept the following regularity con-
dition:

C2: For every x € X. any measurable set D C X, the functions @ > u(x,a) and
a > q(D|x, a) are continuous on A(x).

Remark 5 The continuity assumptions of the above type are typical in the theory
of Markov decision processes, see Schil (1975) and Herndndez-Lerma and Lasserre
(1999). Using approximation by measurable step functions one can conclude from C2
thata — [y v(y)q(dylx. ) is continuous on A(x) for any x € X and every bounded
measurable function v on X.

Under C1 or C2 we can define

uj(0) == max |u(x.a)| ifx€K; and rji= sup u;(x). (12)
acA(x) xeK;

Consider the sequences {;} and (K j} as in Sect. 3. Assume that (4) holds. We can
now describe our basic assumptions.
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466 J. Matkowski. A. S. Nowak

DI: Forevery j € N and x € Kj.a € A(x), we have g(K |, )
D2: Forevery j € N.x € Kj,a € A(x), we have g(Kj+1]x. @)
we assume that there exists ¢ > 1 such that

1. In addition,

cBsup Tt . (13)
o,

;4

Moreover, there exists a function & € M, (X) (h € C,y(X) when X is a metric
space) such that for every j € N and x € K, [uj(x)| < h(x).

Note that (13) implies that
3
D(eB)'m; < co. (14)
=
Lemma 3 Assume (4) and either D1 together with rj < m; forall j € N or D2.

Then the expected returns (11) are finite.

Proof Suppose that D1 holds. Choose any j € N and x € K. Forany t > 2, we
have EF (ju(x:.@)]) < rj < mj. Hence |J (x, 7)| < 125. Let D2 be satisfied. Using
the norm (6), define r := [|2]|. Observe that [|h]|; < rm;c’ foralli € N.Letx € Kj.
Then for any # > 2 we have

1ET u(xr.a)) | < EY (h(x) < rmjycf=t

This and (14) imply that

o =
Vol < XA ET (usranl) < 3 e~ el
=1 =1

%

=
S B mja < 00,

7
=

which completes the proof. o

‘The Bellman functional equation (BE) plays a crucial role in the theory of dis-
counted Markov decision processes. We now describe its form. For any function v :
X > R which is integrable with respect to all ¢(-|x, @) where (x. a) € C, define

Lv(x,a) := u(x,a) +ﬁ/v()')q(d,\'lrr.a). (x.a)eC.
X

Using this notation we can write BE in the form

v*(x) = max Lv*(x.a), x€X. (15)
acA(x
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In this paper we are interested in the existence of a unique solution to (15) in the
space Cpy (X) when X is a metric space or in M, (X) in the more general state space
case.

Proposition 3 Assume D1. If C1 (C2 and r; < oo for each j & N) is satisfied,
then there exist an increasing unbounded sequence m = {m) and @ unique function
V" € Cu(X) (v" € My (X)) which satisfies the Bellman equation.

Proof First assume C1. By the maximum theorem of Berge (1963), every function
is continuous on the compact set K ;. Therefore r; < oc for each j. We can choose any
increasing unbounded sequence m = (m;) such that m; > r;. Consider the closed
subset Cpup(X) of the Banach space C, (X). Define an operator T on Cpis(X) by

Tu(x)
aeA(x)

— max ((l—ﬂ)u(x.a)+;9/V(J')q(d.\'\m)> 6
¥

where v € Cpy(X). x € X. By the maximum theorem of Berge (1963), Tv is con-
tinuous on every set K;. From (8). it follows that T is continuous on X (recall
Remark 1(a)). Under our assumption on it is now easy to see that 7 maps Cynp(X)
into itself. Moreover, for any v, w € Cpp(X), we have

ITv — Twllj < Bllv - wll;
forevery j € N. Thus, T is aO-local contraction. By Proposition | and Remark 1(a).
there exists a unique w* € Cpp(X) such that Tw* = w*. Put v* = 5. Clearly,
v* € C,n(X) and is a solution to the Bellman equation. The proof under condition C2
proceeds along similar lines if we apply Lemma 2, Proposition 1 and Remark 1(17)
Clearly, in that case v* € My, (X).

Remark 6 A modified form of (16) can be considered for v € M, (X). Such situations
we shall meet in the sequel.

Proposition 4 Assume D2. If C1(C2) is satisfied, then there exists a unique function
v* € Cu(X) (v* € M, (X)) which satisfies the Bellman equation.

Proof We first assume D2 and C1. In this proof we can consider a slightly modified
form of the operator (16) defined as

To(e) = max u(x4a)+ﬂ/v()')q(d)‘lx.a) an
ana,
X

where v € Cy(X).x € X. By the maximum theorem of Berge (1963), Tv is con-
tinuous. We shall show that Tv € Cyn(X). Let u*(x) = maxqeaco) [u(x. )|. Then
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[le*]| < |Ik]l. Choose any v € Cy (X). Define
aeA(x)

n(x) = max /u()‘)q(dyl_\'.a) W BEX,
X

Clearly, 7 is continuous. If x € K. then under D2, we have [|5]l; < [[v]lj+1 for all
J € N. Consequently,

LS Wl eBmpery _ yloll _ vl
""”Sﬂ,Zm; ) S T =

Thus, ITv]| < [[&] + |lv] < co. We have shown that T maps Cy,(X) into itself. If
v.w € G,y (X), then for any j, we have

ITv = Twllj < Bllv—wlj+1.

so T is a I-local contraction. By Proposition 2 and Remark 1(a), there exists a unique
v* € Cu(X) such that Tv* = v*. Clearly, v* is a solution to the Bellman equation.
‘The proof under condition C2 makes use of Lemma 2, Proposition 2, Remark 1(b)
and proceeds along similr lines. o

Remark 7 If v* is a solution to the Bellman equation, then by Lemma 2 one can find
ag* € & such that ¢*(x) € arg maxyea() Lv*(x, a) for each x € X. Using standard
iteration arguments and Lemma 3. one can prove that

v'(x)=J(x. ") =sup J(x.7), xe€X.
7eo

i.e.. ¢ is a stationary optimal policy. For more details about this iteration method the
reader is referred to Schil (1975), Bertsckas and Shreve (1978) or Puterman (2005).
Also one can show that v* is the limit (in the norm | - [} of the sequence 7”0 with T
defined as in (17), i.c., value iteration holds. Moreover, T0 s the optimal expected
return in the n-period model, see Bertsekas and Shreve (1978).

5 Extensions to the models with discontinuous return functions or non-compact
action spaces

In some applications of Markov decision processes in operations research or eco-
nomics it is desirable to allow for non-compact action spaces or discontinuous
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return functions.* We describe two possibilities for extending the results of last

section.

C3: Assume in C1 that u is upper semicontinuous and u(x. -) is bounded below on
every compact set A(x), x € X

Proposition § Assume C3 and either D1 together with the condition that sup, o,
SUPyeace) [4(x.@)| < o0 for every j € N or D2. Then the Bellman equation has a
unique upper semicontinuous solution.

Proof Denote by S(X) the set of all upper semicontinuous functions in M(X). Put
S(X) = S(X) N My (X) and S,up(X) := S(X) N Myp(X). Propositions 1 and 2
can be formulated for operators T : Syus(X) > Sup(X) or T & Syy(X) > Sp(X).
because the indicated subsets are closed in the Banach space F, (X). By Proposition
7.31 in Bertsekas and Shreve (1978), under assumption C3, for any v € 5, (X). the
function v(x, @) := [y v(y)q(dylx, @) is upper semicontinuous on every set {(x. @) :
x € Kj,a € A(x)}, j € N. From the maximum theorem of Berge (1963), it follows
that Tv defined by (16) is upper semicontinuous on K ;. Assume now D1 and that
SUPsck; SUPge () [14(x, @)| < oo for every j € N. Using our assumption (8), we
infer that Tv € S(X). Now we can easily see that T maps S,,5(X) into itself. The
remaining part of the proof is an adaptation of the arguments used in proving Prop-
osition 3. Under assumption C3 and D2, consider T defined by (17). Adapting the
arguments used in the proof of Proposition 4, observe that T maps the space Sy, (X)
into itself. An application of the modified version of Proposition 2 mentioned above
finishes the proof. o

C4: Let X, ¥ be Borel (subsets of complete separable metric) spaces. Assume that
C C X x Y is a Borel set and for each x € X, A(x) is o-compact, that is, A(x)
is the countable union of compact sets. Suppose that the sets K ; satisfying (4)
are Borel and the assumption on g in C2 holds, # : C + R is Borel measurable,
and for each x € X, a > u(x. a) is upper semicontinuous and bounded below
on A(x)
In this context, M(X) and My, (X) consist of Borel measurable functions.

Proposition 6 Assume C4. If D1 holds and sup, e, SUp,e.e I (x. @)| < 00 for all
Jj € N or D2 with I € My(X) is satisfied. then the Bellman equation

v@) = sup Lu(x.a), xeX.
aeA(x)

#  As noted by Dutta and Mitra (1989). standard continuity assumptions are quite restrictive in intertem-
poral allocation models. There are more arguments to study dynamic programming problems under some
discontinuity assumptions. Very often Nash equilibria in stochastic dynamic games are semicontinuous
(or more generally measurable) functions of the state variable. Studying the best responses of any player
1o discontinuous strategies of his/her partners leads to dynamic programming under conditions similar to
our assumptions in this section. We would like o emphasize that this happens even if we assume that the
instantaneous ility functions and transition probabilities are jointly continuous with respect to the state
and action variables. The reason is that the class of continuous strategies of the players s (00 narmow 1o
prove equilibrium theorems for games, especially in the class of general strategy profiles. For a further
discussion of these issues the reader is referred 1o Dutta and Sundaram (1992) and Nowak and Raghavan
(1992)
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has a unique solution v* € My (X).

Proof Consider first C4 and D2. It is sufficient to show that Tv(x) := Sup,ea(r)
Lv(x. a) maps My, (X) into M(X). Let v € M,,(X). Then the function v(x, a) :=
Jy v(»)q(dylx. a) is Borel measurable on € and a + v(x. a) is continuous on A(x)
for each x € X. Therefore Lv is Borel on C and a — Luv(x. a) is upper semicontin-
uous on A(x) for each x € X. The fact that the function 7v belongs to M(X) now
follows from Corollary 1 in Brown and Purves (1973). A simple adaptation of the
proof of Proposition 4 yields that if v € M,y (X), then Tv € M,,(X) and T is a 1-local
contraction. The assertion now follows from Proposition 2. If C4 and D1 hold and
SUPyek, SUPge A (Y, @)| < 0o for all j € N, then the proof follows along similar
lines to that of Proposition 3 with T defined by

Tu(x):= sup | (I —ﬂ)u(x.n)+ﬂ/v(y)q(d,\‘|x.a) s VE Myp(X).
agA(x)
Xi

o

This result, Corollary 1 in Brown and Purves (1973), and standard iteration argu-
ments in dynamic programming, see Blackwell (1965), lead to the following conclu-
sion.

Corollary 1 Under assumptions of Proposition 6, for any € > 0 there exists some

¢" € @ such that

Lv*(x,¢"(x)) +€(1 = B) = sup Lv*(x,a), x€X,
aeA(x)

which implies that

e+ J(xp%) = sup J(x.7), x€X.
men

Remark 8 The regularity assumptions C1-C4 can be considerably weakened if the
state and action spaces are Borel. One can assume that « is a Borel measurable func-
tion. Using universally measurable policies, it is possible to obtain (under similar
assumptions to D1 or D2) that there is an upper semi-analytic solution to the Bellman
equation and (for any € > 0) there exists an ¢-optimal universally measurable policy.
For a background material for this modification consult Bertsekas and Shreve (1978).
Finally, we would like to point out that our results can also be applied to discounted
stochastic games with unbounded payoffs studied in Nowak (1984, 1985), Nowak and
Raghavan (1992) and related articles under a boundedness assumption.

6 Applications to one-sector models of stochastic optimal growth

The results of Sect. 3 may have many applications to various models in operations
research as studied in Herndndez-Lerma and Lasserre (1999) or Puterman (2005) and
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in economics. We now show two applications of Propositions 3 and 4 to the theory
of stochastic optimal growth. We have in mind classical models studied in Brock and
Mirman (1972) and Stokey et al. (1989). However, within our framework we allow for
unbounded utility (return) functions. Let X = [0, 00) be the set of all capital stocks.
If x, is a capital stock at the beginning of period 7, then consumption a; in this period
belongs to A(x;) := [0, x;]. The wility of consumption ay is U(a;) where U : X + R
is a fixed function. The evolution of the state process is described by some function
f of the investment for the next period y; = x; — ; and some random variable &.

In the literature, f is called production technology, see Stokey et al. (1989). We shall
view this model as a Markov decision process with X = [0, 50), A(x) = [0, x], and
u(x,a) = U(a),x € X.a € A(x). The transition probability will be specified in
two different cases. Assume that (£} are independent and have a common probability
distribution 4 with support included in [0, z] for some z > 1.

Example 2 (A model with multiplicative shocks) Assume that
X4l = f(xr—ak, teN, 18)

where f : X — R is a continuous and increasing function, f(0) =

0.00)3y — & is strictly decreasing: (19)
lim M >1 (20)
e
and
iim £ o, @n
vty

Conditions (19)-(21) imply that there exists yo > 0 such that
FG) >y forall ye(©.y0) and f(y) <y forall y>yo. (22)

We shall consider the more interesting case when f is unbounded. Observe that the
transition probability g is of the form: for any Borel set B C X. x € X.a € A(x), we
have

a0 = [ 16070 - @O
0
where 1 is the indicator function of the set B. If v € C.(X). then the integral

/v(,qu(de.a) =/v(f(X—n)E)u(d£)

X 0
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depends continuously on (x. a). From (22) and our additional assumptions on f. it
follows that forany j € N, thereexists y; > yo such that f(y;)z/
{y;} is increasing. Define K ; := [0, y;] for cach j & N. Note that if i
then for any & € [0,z], we have §7(y) < 2f(yj) < f(yp)z) = y;. From (18)
we conclude that g(Kjlx,a) = 1 for every x € Kj,a & A(x). We have shown
that assumptions of Proposition 3 are satisfied. Therefore, for arbitrary unbounded
continuous utility function U the Bellman equation has a unique continuous solution.

Note that Stokey et al. (1989) (see pp. 104, 288) assume the following stronger
conditions: f : X +> R is a bounded strictly concave continuously differentiable
increasing function such that £(0) = 0 and (22) holds.

Example 3 (A model with additive shocks) Assume that

Xpr=(+p)xi—a)+&, teN. 23)
Here p > 0 is a constant rate of growth and & an additional random income received
in period 1. The transition probability g is of the form

q(Blx,a) = / 1p((1 + p)(x — @) + &) u(dE).
0

where B C X is a Borel set. If v € Cc(X), then the integral
/v(,v)qm,vv.r.a) = / W1+ p)(x — @) + Ea(dE)
X 0

is continuous in (x. a). Fix a number d > 0. Define k; := d and then recursively
(1+ p)k; + 2 where

- i-lg4+ il i
ki =(1+p) d+p[(]+p) x]. JEN.

Put K;

[0.k). j € N. Assume that U(a) := a”,0 € (0, 1) is fixed and put
maxaek, U(a). The sequence m ) is increasing, unbounded and, as

migi _ (e +pd+z[a+py 1] Y sy
my \oU+pidtz(atpyi-1]) 5T

itis easy to check that the sequence (1',,4,7—') is decreasing and thus

su)
jen mj om

iyl e
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Therefore  defined in (13) satisfies
f: Z\7
;/_Cﬁ(lfp+d) <1

only for some ¢ > 1and B < 1. Note that d can be arbitrarily large. For example.
we can take d such that z/d < p. Then y < 1if cB(1 + 2p)° < L.If p is small,
then we can consider discount factors very close to one. From (23), it is easy to see
that g(Kj1]x, @) = 1 for each x € K, a € A(x). Assumptions of Proposition 4 are
thus satisfied. Therefore for this model the Bellman equation has a unique continuous
solution.

Remark 9 The model based on assumption D1 discussed in Proposition 3 and
Example 2 can also be analyzed using the weighted norm approach (see Hernéndez-
Lerma and Lasserre (1999) for more details on this idea). Let @ : X + [1,00)
be a measurable weight function. The weighted norm of a function ¥ : X +— R is
¥l := supyex [¥(x)|/(x) if it s finite. Using this weight it is assumed that

/Xm)q(dy\x.a)
B sup

<t 24)
(x.a)eC (x)

More details can be found in Herndndez-Lerma and Lasserre (1999) and related
analysis in Durdn (2003). This inequality does not follow from D1 and is an addi-
tional restriction on g. Suppose that (24) holds. Then it is required that there is a
constant / > 0 such that |u(x. a)| < lw(x) forall (x,a) € C (see Herndndez-Lerma
and Lasserre (1999)). This is a restriction on the utility functions which does not
take place in Proposition 3 or Example 2. Having fixed the transition probability ¢
as in Example 2, we can consider arbitrary unbounded continuous utility function
u(x. @) = U (a). The sequence {m;} is determined by u and not conversely (recall the
proof of Proposition 3).
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