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Abstract. Tt is known that every locally defined operator acting between two Holder
spaces is a Nemytskii superposition operator. We show that if such an operator is
bounded in the sense of the norm, then its generator is continuous.

1. Introduction

Let I C R be an arbitrary interval and by R/ we denote the set of all functions
¢ : I — R. For a given two-place function h : I x R — R, the mapping
K :R' — R/ defined by

K(p)(z) := h(z, (), ¢eRl zel,

is called a Nemytskii superposition operator of the generator h.

It is known that every locally defined operator mapping the set of con-
tinuous functions C(I,R) into itself must be a superposition operator [2].
Moreover, K maps C(I.R) into itself if and only if its generator A is contin-
uous. At this background it is surprising enough that there are discontinuous
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functions h : I x R — R generating the superpositions operators K which
map the space of continuously differentiable functions C'*(I,R) into itself (cf.
[1, p. 209)). In [3] it has been proved that if a locally defined operator maps
the Banach space Hy(I.R) of all Hélder functions ¢ : I — R into Hy(I,R)
then it is a Nemytskii superposition operator. The purpose of this paper is to
show that if, additionally, K is bounded with respect to H,(I,R)-norm, then
its generator must be continuous.

2. Main result

Let ¢ : (0,00) — (0,20) satisfy the following condition:

(i) ¢ is strictly increasing, ¢(0+) : ‘lhs) ¢(t) = 0 and the function
&
©00)5t— 20
t

is decreasing.

Let us note the following (easy to verify)

Remark 1. If ¢: (0,00) — (0, 20) satisfies condition (7), then ¢ is subad-
ditive and continuous.

Let I C R be an interval and let o € I be arbitrarily fixed. For a given
6 (0,00) — (0,0), having the above properties, by Hs(I, ) we denote the
Banach space of all Holder functions ¢ : I — R equipped with the norm

sup 12— 2@
zyelaty ST —9l)

Clearly, ¢ € Hy(I.R) if and only if there exists a constant ¢ > 0 such that
lo(a) —p(y)| < collz —yl), z.yel

Let us notice that if 6(t) = t* for some a € (0,1], then Hu(I,R) :=
H4(I.R) is the classical Holder functions space and Hi(I.R) becomes the
Banach space of Lipschitz functions.

Definition. Let 6.7 : (0,00) — (0,00) satisfy condition (i). An operator
K : Hy(I,R) — Hy(I,R) is said to be locally defined if for any open interval
J C R and for any functions ¢,¥ € Hy(I,R),

Dyt = ¥loer = K@)y = K@)\ yye

where 6|, denotes the restriction of ¢ to JN 1.
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In [3] the following result was proved:
Theorem 1. ([3], Corollary 2). Let I C E be an interval. If a locally

defined operator K maps Ho(I.R) into Hy(I.R). then there exists a unique
function h: I x R — R such that

(z€l);

for all ¢ € Hy(I,R), that is K is a Nemytskii operator of the gemerator h.
We say that an operator K : Hy(I,R) — Hy(I,R) is bounded if it maps

the convergent sequences of Hy(I,R) into bounded sequences in Hy(I,R).
The main result reads as follows:

Theorem 2. Let I C R be an interval. If a locally defined operator
K : Hy(I,R) — Hy(I,R) is bounded, then there exists a continuous function
h:IxR—R such that

K()@) = h(z.¢(@); ¢ € Hy(I.R), (z€l).

Proof. By Theorem 1, there exists a function / : I x R — R such that the
formula of our result holds true. We shall show that % is continuous.

Without any loss of generality we can assume that I = [a,b), where
0 < b < +o0, and that

Tl le@) — o)l
lelle : ‘p(a”ﬂ;‘,‘.‘iﬁ W=D

First we show that h is continuous with respect to the second variable. To
this end let us fix (zg.yo) € I and choose arbitrarily a real sequence (Yn)ner
such that

yaFyo. neN.  lm yn=yo. 1)

Let (2,)nert be a sequence such that 2, € I. n € N, and

20 = 20| = 671 (\«”yn = !/of)- n

Hence we obtain

I = I = w0 e
: = =Vla-wl neN. @
Aan=ad " 5 (o7 (Vmmw))

Define the functions Py, : I = R, ¢, :I — R, n € N, by the following
formulas:

Py, (z) :=yn, neN, 3)
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Yo, for € [a. o),
en(@) =8 LW gy gy for 26 (m,aa) nEN, ()
Tp — To )
Yo for « € [zn.b).
and put
(@)=, el
Of course,
By..on € Ho(I,LR), n€N.
Since

|Pys = %ollo = lyn —w0l. n€N,
applying (1) and (2), we get
lim ||Py, —¢olle =0, lim [lon — golle = 0. (5)
n—oc n—x

Making use of (3), (4), the triangle inequality and by the definition of the
norm, we have

[A(z0,yn) = h(@0,40)| S h(@nsyn) = M@0, yn)| + [A(Zn, yn) = hlo.10)|
= |h(@n: Py, (¥n) = h(@o, Py, (x0)|
+{h(@n. @n(@n)) = h(xo, #n(20))|
= |K(P,,)(xn) = K(By,)(wo)|
+ K () (@) — K (#n)(20)
_ [E(Py)(@n) - K (Py) (o)

i E(Jon = 20l)+
Ko@) = Ko@), _
(570l U(|an — o)

<K (Py) o (lain = 20]) + [ K (9n) [l - (2 = %o])-

Taking into account (5), the equality ¥(0+) = 0, the boundedness of the
operator K and letting n tend to the infinity, we get the continuity of h with
respect to the second variable.

To show that h is continuous fix (20,%0) € I x R, take two arbitrary se-
quences z, € I, y, € R, n € N, convergent to 2 and o, respectively, and
define B, : I =R, n&NU{0}, by

Py (z) =yn, neNU{O}
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Hence, by the triangle inequality and by the definition of the norm, we have

|P(@n.yn) = b2, 90)| < [R(Zn.yn) = h(z0.yn)| + [A(x0, yn) = h(z0, yo)|

= [h(@n. Pya (€n)) — h(zo. Py, (o)
= [h(x0. yn) = h(xo, o)

| (Py,)(@n) = K (Py, ) (x0)|
+ (2o, yn) = h(z0, o)

_ |K(Py,)(@n) — K(Py,)(@0)|
¥(|zn — ol)
+ |h(x0. yn) = h(xo. o)

- ¥(|n — zo|)

< K (Pl (|12n, 2o]) + [R(20, Yn) = h(0.30)]-
Since. by the definition of P,,. n € NU {0},

Jim 1Py, = Bylls =0,

applying the boundedness of the operator K, the equality ¢(0+) = 0 and
the first part of the proof, i.e. the continuity of h with respect to the second
variable, letting n tend to the infinity, we get the required claim. ]

Remark 2. Taking in the above theorem a compact interval I C R, one
gets Theorem 7.3 from [1].

To construct an example showing that the assumption of the boundedness
of K is essential, we need the following

Lemma. Let (X.d), (Y, p) be metric spaces. Suppose A, B C X are closed,
int AN intB = 0 and adjacent in the following sense: for any z € A, y € B
there exists a point > € SANSB such that

d(w.y) = d(z.2) + d(z.y). 0)
—Y andg: B — Y are Lipschitz continuous and
2) forall z€JANGB,
then the function h: (AUB) — Y defined by

L[ f@ for vea,
”‘”"{ g(z) for c€B

is Lipschitz continuous. (Here 6A stands for the boundary of A.)

If the functions f :
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Proof. Since f and g are Lipschitz continuous, there is ¢ € R such that
A(f(@). f)) < cd(x,y) forz.ye A plg(x).g(v)) < cd(x.y) forz,y € B.

Take 2.y € AU B and assume that * € A and y € B. By assumption, there
is 2 € JAN 6B such that (6) holds. Hence, by the triangle inequality,

p(h(x). h(y)) < p(h(x), h(2)) + p(h(2), h(y)) = p(f (@), F(2)) +p(g(2). 9(y))

2.y) = cd(z,y).
As the remaining two cases are obvious, the proof is complete. o
Example. Define a two-place function i : [0,1] x R — R by the formula
0 if y<o,
hew) =4 2 if 0<y<VE, ]
1. 48 g>./a.

Observe that h is continuous in [0,1] x R\{(0,0)} and discontinuous at the
point (0.0). In fact we have more, namely outside of any neighbourhood of
(0,0), by Lemma, the function h is Lipschitzian.

Denote by F[0,1] the set of all functions ¢ : [0,1] — R. Let K : F[0,1]
F[0,1] be the Nemytskii composition (so Jogally defined) operatorgener ated
by h.ie.

K(¢)(@) = h(z.0(), @€ [0,1].

We shall show that K maps the space H ([0,
functions ¢ : [0,1] — R into itself.

Take ¢ € Hy([0,1].R). If¢(0) # 0, then as h is Lipschitz continuous outside
any neighbourhood of (0,0), the function K(y), as composition of Lipschitz
continuous functions, is Lipschitz continuous in [0, 1], so K (¢) € H1([0,1].R)
If ©(0) = 0, then K(y e} is Lipschitz continuous for any ¢ € (0,1]. In view
of Lemma, it is enough to show that K()|,, , is Lipschitz continuous. To this
end assume that ¢ satisfies the Lipschitz condition with a constant ¢, that is

R) of all Lipschitz continuous

(@) = ¢(@)| S cle—F. x.Te(0.1].
Setting T = 0, we hence get

lo(z)| < ez, z€0,1],
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so the graph of the function ¢ is contained in the triangle set
Di={(x,y):ze01], |yl < cx}.

If ¢ is nonpositive on any subinterval of I C [0,1], then, by the definition of
h, we have I\'(',c)‘, =0 and, obiously, K () is Lipschitz contininous on I with
zero Lipschitz constant. Therefore, it is enough to confine our considerations
to the case when the graph of ¢ , is contained in the set

D.

{(z.,y):2€[0.¢], 0<y < ex}.

Let us choose £ > 0 such that ¢ <
Since for all (2.y) € D we have

Then, clearly ez < /7 for all ¢ € (0,¢].

a
Eh(my)‘

and

we infer that h|
composition of Li

We claim that X is unbounded. To see this take a sequence of constant
functions convergent to zero, ¢ : [0.1] — R, k € N. defined by ¢ () = 7‘k-

According to (7), we get

is Lipschitz continuous. It follows that I"('vj)"o 5
chitz functions, is Lipschitz continuous. :

IA
&

:
k ken.
b

0
Ko@) = 1
k

Since

1 (2r) s

1K ()l 2

which shows that K is not bounded. o
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