THE BOUNDED LOCAL OPERATORS IN THE BANACH SPACE OF HÖLDER FUNCTIONS

Janusz Matkowski^{a,b}, Małgorzata Wróbel^c

^aFaculty of Mathematics, Computer Science and Econometrics University of Ziehona G\u00fan, 2069tna 50 65246 Ziehona G\u00fan, 20pand e-email: Matkowskilwmieux_zgora.pl ^bInstitute of Mathematics, Silesian University

Bankowa 14, 0007 Katowice, Poland

CInstitute of Mathematics and Computer Science

*Institute of Mathematics and Computer Science Jan Długosz University in Częstochowa Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: m.wrobel@ajd.czest.pl

Abstract. It is known that every locally defined operator acting between two Hölder spaces is a Nemytskii superposition operator. We show that if such an operator is bounded in the sense of the norm, then its generator is continuous.

1. Introduction

Let $I \subset \mathbb{R}$ be an arbitrary interval and by \mathbb{R}^I we denote the set of all functions $\varphi: I \to \mathbb{R}$. For a given two-place function $h: I \times \mathbb{R} \to \mathbb{R}$, the mapping $K: \mathbb{R}^I \to \mathbb{R}^I$ defined by

$$K(\varphi)(x) := h(x, \varphi(x)), \quad \varphi \in \mathbb{R}^{I}, x \in I,$$

is called a Nemvtskii superposition operator of the generator h.

It is known that every locally defined operator mapping the set of continuous functions $C(I, \mathbb{R})$ into itself must be a superposition operator [2]. Moreover, K maps $C(I, \mathbb{R})$ into itself if and only if its generator h is continuous. At this background it is surprising enough that there are discontinuous

functions $h:I \times \mathbb{R} \to \mathbb{R}$ generating the superpositions operators K which map the space of continuously differentiable functions $C^1(I,\mathbb{R})$ into itself (cf. [1, p. 209]). In [3] it has been proved that if a locally defined operator maps the Banach space $H_d(I,\mathbb{R})$ of all Hölder functions $\varphi:I \to \mathbb{R}$ into $H_q(I,\mathbb{R})$ then it is a Nemytskil superposition operator. The purpose of this paper is to show that if, additionally, K is bounded with respect to $H_{\varphi}(I,\mathbb{R})$ -norm, then its generator must be continuous.

2. Main result

Let $\phi : (0, \infty) \rightarrow (0, \infty)$ satisfy the following condition:

(i) ϕ is strictly increasing, $\phi(0+) := \lim_{t \to 0+} \phi(t) = 0$ and the function

$$(0,\infty)\ni t\to \frac{\phi(t)}{t}$$

is decreasing.

Let us note the following (easy to verify)

Remark 1. If $\phi:(0,\infty)\to(0,\infty)$ satisfies condition (i), then ϕ is subadditive and continuous.

Let $I \subset \mathbb{R}$ be an interval and let $x_0 \in I$ be arbitrarily fixed. For a given $\phi : (0, \infty) \to (0, \infty)$, having the above properties, by $H_{\phi}(I, \mathbb{R})$ we denote the Banach space of all Hölder functions $\varphi : I \to \mathbb{R}$ equipped with the norm

$$||\varphi||_{\phi}:=|\varphi(x_0)|+\sup_{x,y\in I, x\neq y}\frac{|\varphi(x)-\varphi(y)|}{\phi(|x-y|)}.$$

Clearly. $\varphi \in H_{\phi}(I, \mathbb{R})$ if and only if there exists a constant c > 0 such that

$$|\varphi(x) - \varphi(y)| \le c\phi(|x - y|), \quad x, y \in I.$$

Let us notice that if $\phi(t) = t^{\alpha}$ for some $\alpha \in (0, 1]$, then $H_{\alpha}(I, \mathbb{R}) := H_{\phi}(I, \mathbb{R})$ is the classical Hölder functions space and $H_1(I, \mathbb{R})$ becomes the Banach space of Lipschitz functions.

Definition. Let $\phi, \psi : (0, \infty) \rightarrow (0, \infty)$ satisfy condition (i). An operator $K : H_{\phi}(I, \mathbb{R}) \rightarrow H_{\psi}(I, \mathbb{R})$ is said to be locally defined if for any open interval $J \subset \mathbb{R}$ and for any functions $\varphi, \psi \in H_{\phi}(I, \mathbb{R})$,

$$\varphi\big|_{J\cap I} = \psi\big|_{J\cap I} \Rightarrow K(\varphi)\big|_{J\cap I} = K(\psi)\big|_{J\cap I},$$

where $\phi|_{J\cap I}$ denotes the restriction of φ to $J\cap I$.

In [3] the following result was proved:

Theorem 1. ([3], Corollary 2). Let $I \subset \mathbb{R}$ be an interval. If a locally defined operator K maps $H_{\phi}(I, \mathbb{R})$ into $H_{\psi}(I, \mathbb{R})$, then there exists a unique function $h: I \times \mathbb{R} \to \mathbb{R}$ such that

$$K(\varphi)(x) = h(x, \varphi(x)), (x \in I),$$

for all $\varphi \in H_{\phi}(I, \mathbb{R})$, that is K is a Nemytskii operator of the generator h.

We say that an operator $K: H_{\phi}(I,\mathbb{R}) \to H_{\psi}(I,\mathbb{R})$ is bounded if it maps the convergent sequences of $H_{\phi}(I,\mathbb{R})$ into bounded sequences in $H_{\psi}(I,\mathbb{R})$.

The main result reads as follows:

Theorem 2. Let $I \subset \mathbb{R}$ be an interval. If a locally defined operator $K: H_{\phi}(I, \mathbb{R}) \to H_{\psi}(I, \mathbb{R})$ is bounded, then there exists a continuous function $h: I \times \mathbb{R} \to \mathbb{R}$ such that

$$K(\phi)(x) = h(x, \phi(x)); \quad \phi \in H_{\phi}(I, \mathbb{R}), \quad (x \in I).$$

Proof. By Theorem 1, there exists a function $h: I \times \mathbb{R} \to \mathbb{R}$ such that the formula of our result holds true. We shall show that h is continuous.

Without any loss of generality we can assume that I=[a,b), where $0< b \leq +\infty,$ and that

$$\|\varphi\|_{\phi}:=|\varphi(a)|+\sup_{x,y\in I, x\neq y}\frac{|\varphi(x)-\varphi(y)|}{\phi(|x-y|)}.$$

First we show that h is continuous with respect to the second variable. To this end let us fix $(x_0,y_0)\in I$ and choose arbitrarily a real sequence $(y_n)_{n\in\mathbb{N}}$ such that

$$y_n \neq y_0, n \in \mathbb{N}, \lim y_n = y_0.$$
 (1)

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence such that $x_n \in I$, $n \in \mathbb{N}$, and

$$|x_n - x_0| = \phi^{-1} \left(\sqrt{|y_n - y_0|} \right), \quad n \in \mathbb{N}.$$

Hence we obtain

$$\frac{|y_n-y_0|}{\phi(|x_n-x_0|)} = \frac{|y_n-y_0|}{\phi\left(\phi^{-1}\left(\sqrt{|y_n-y_0|}\right)\right)} = \sqrt{|y_n-y_0|}, \quad n \in \mathbb{N}. \tag{2}$$

Define the functions $P_{y_n}:I\to\mathbb{R},\ \ \varphi_n:I\to\mathbb{R},\ n\in\mathbb{N},$ by the following formulas:

$$P_{y_n}(x) := y_n, \quad n \in \mathbb{N},$$
 (3)

$$\varphi_n(x) = \begin{cases} y_0, & \text{for } x \in [a, x_0], \\ \frac{y_n - y_0}{x_n - x_0}(x - x_0) + y_0 & \text{for } x \in (x_0, x_n), \ n \in \mathbb{N}, \\ y_0, & \text{for } x \in [x_n, b]. \end{cases}$$
(4)

and put

$$\varphi_0(x) = y_0, x \in I.$$

Of course.

$$P_{y_n}, \varphi_n \in H_{\phi}(I, \mathbb{R}), n \in \mathbb{N}.$$

Since

$$||P_{y_n} - \varphi_0||_{\phi} = |y_n - y_0|, \quad n \in \mathbb{N},$$

applying (1) and (2), we get

$$\lim_{n\to\infty} ||P_{y_n} - \varphi_0||_{\phi} = 0, \quad \lim_{n\to\infty} ||\varphi_n - \varphi_0||_{\phi} = 0. \quad (5)$$

Making use of (3), (4), the triangle inequality and by the definition of the norm, we have

$$\begin{split} |h(x_0,y_n) - h(x_0,y_0)| &\leq |h(x_n,y_n) - h(x_0,y_n)| + |h(x_n,y_n) - h(x_0,y_0)| \\ &= |h(x_n,P_{y_n}(x_n) - h(x_0,P_{y_n}(x_0))| \\ &+ |h(x_n,\varphi_n(x_n)) - h(x_0,\varphi_n(x_0))| \\ &= |K(P_{y_n})(x_n) - K(P_{y_n})(x_0)| \\ &+ |K(\varphi_n)(x_n) - K(\varphi_n)(x_0)| \\ &= \frac{|K(P_{y_n})(x_n) - K(P_{y_n})(x_0)|}{\psi(|x_n - x_0|)} \psi(|x_n - x_0|) + \\ &+ \frac{|K(\varphi_n)(x_n) - K(\varphi_n)(x_0)}{\psi(|x_n - x_0|)} \psi(|x_n - x_0|) \\ &\leq |K(P_n)||_{W_0} \psi(|x_n - x_0|) + |K(\varphi_n)||_{W_0} \cdot \psi(|x_n - x_n|). \end{split}$$

Taking into account (5), the equality $\psi(0+) = 0$, the boundedness of the operator K and letting n tend to the infinity, we get the continuity of h with respect to the second variable.

To show that h is continuous fix $(x_0,y_0)\in I\times\mathbb{R}$, take two arbitrary sequences $x_n\in I,\ y_n\in\mathbb{R},\ n\in\mathbb{N}$, convergent to x_0 and y_0 , respectively, and define $P_{y_n}:I\to\mathbb{R},\ n\in\mathbb{N}\cup\{0\}$, by

$$P_{y_n}(x) = y_n, \quad n \in \mathbb{N} \cup \{0\}.$$

Hence, by the triangle inequality and by the definition of the norm, we have

$$\begin{split} |h(x_n,y_n) - h(x_0,y_0)| &\leq |h(x_n,y_n) - h(x_0,y_n)| + |h(x_0,y_n) - h(x_0,y_0)| \\ &= |h(x_n,P_{y_n}(x_n)) - h(x_0,P_{y_n}(x_0)| \\ &+ |h(x_0,y_n) - h(x_0,y_0)| \\ &= |(K(P_{y_n})(x_n) - K(P_{y_n})(x_0)| \\ &+ |h(x_0,y_n) - h(x_0,y_0)| \\ &= \frac{|K(P_{y_n})(x_n) - K(P_{y_n})(x_0)|}{\psi([x_n - x_0))} \cdot \psi([x_n - x_0]) \\ &+ |h(x_0,y_n) - h(x_0,y_0)| \end{split}$$

Since, by the definition of P_{u_n} , $n \in \mathbb{N} \cup \{0\}$,

$$\lim_{n\to\infty} ||P_{y_n} - P_{y_0}||_{\phi} = 0,$$

applying the boundedness of the operator K, the equality $\psi(0+)=0$ and the first part of the proof, i.e. the continuity of h with respect to the second variable, letting n tend to the infinity, we get the required claim.

Remark 2. Taking in the above theorem a compact interval $I \subset \mathbb{R}$, one gets Theorem 7.3 from [1].

To construct an example showing that the assumption of the boundedness of K is essential, we need the following

Lemma. Let $(X, d), (Y, \rho)$ be metric spaces. Suppose $A, B \subset X$ are closed, int $A \cap int B = \emptyset$ and adjacent in the following sense: for any $x \in A$, $y \in B$ there exists a point $z \in A \cap \delta B$ such that

$$d(x, y) = d(x, z) + d(z, y).$$
 (6)

 $< ||K(P_{u_0})||_{\mathcal{H}} \psi(|x_n, x_0|) + |h(x_0, y_n) - h(x_0, y_0)|.$

If the functions $f:A \to Y$ and $g:B \to Y$ are Lipschitz continuous and

$$f(z) = g(z)$$
 for all $z \in \delta A \cap \delta B$,

then the function $h: (A \cup B) \rightarrow Y$ defined by

$$h(x) := \begin{cases} f(x) & for & x \in A, \\ g(x) & for & x \in B \end{cases}$$

is Lipschitz continuous. (Here δA stands for the boundary of A.)

Proof. Since f and g are Lipschitz continuous, there is $c \in \mathbb{R}_+$ such that

$$\rho(f(x), f(y)) \le cd(x, y)$$
 for $x, y \in A$; $\rho(g(x), g(y)) \le cd(x, y)$ for $x, y \in B$.

Take $x, y \in A \cup B$ and assume that $x \in A$ and $y \in B$. By assumption, there is $z \in \delta A \cap \delta B$ such that (6) holds. Hence, by the triangle inequality,

$$\rho(h(x),h(y)) \leq \rho(h(x),h(z)) + \rho(h(z),h(y)) = \rho(f(x),f(z)) + \rho(g(z),g(y))$$

$$\leq cd(x, z) + cd(z, y) = cd(x, y).$$

As the remaining two cases are obvious, the proof is complete.

Example. Define a two-place function $h:[0,1]\times\mathbb{R}\to\mathbb{R}$ by the formula

$$h(x,y) := \begin{cases} 0 & \text{if } y \le 0, \\ \frac{y}{\sqrt{x}} & \text{if } 0 < y \le \sqrt{x}, \\ 1 & \text{if } y > \sqrt{x}. \end{cases}$$

$$(7)$$

Observe that h is continuous in $[0,1] \times \mathbb{R} \setminus \{(0,0)\}$ and discontinuous at the point (0,0). In fact we have more, namely outside of any neighbourhood of (0,0), by Lemma, the function h is Lipschitzian.

Denote by $\mathcal{F}[0,1]$ the set of all functions $\varphi:[0,1]\to\mathbb{R}$. Let $K:\mathcal{F}[0,1]\to\mathcal{F}[0,1]$ be the Nemytskii composition (so locally defined) operator generated by h. i.e.

$$K(\varphi)(x) := h(x, \varphi(x)), x \in [0, 1],$$

We shall show that K maps the space $H_1([0,1],\mathbb{R})$ of all Lipschitz continuous functions $\varphi:[0,1]\to\mathbb{R}$ into itself.

Take $\varphi \in \check{H}_1([0,1],\mathbb{R})$. If $\varphi(0) \neq 0$, then as h is Lipschitz continuous outside any neighbourhood of (0,0), the function $K(\varphi)$, as composition of Lipschitz continuous functions, is Lipschitz continuous in [0,1], so $K(\varphi) \in H_1([0,1],\mathbb{R})$. If $\varphi(0) = 0$, then $K(\varphi)\big|_{[\ell,1]}$ is Lipschitz continuous for any $\varepsilon \in (0,1]$. In view of Lemma, it is enough to show that $K(\varphi)\big|_{[0,\ell]}$ is Lipschitz continuous. To this end assume that φ satisfies the Lipschitz condition with a constant c, that is

$$|\varphi(x)-\varphi(\overline{x})|\leq c|x-\overline{x}|,\quad x,\overline{x}\in[0,1].$$

Setting $\overline{x} = 0$, we hence get

$$|\varphi(x)| \le cx, \quad x \in [0,1],$$

so the graph of the function φ is contained in the triangle set

$$D := \{(x, y) : x \in [0, 1], |y| \le cx\}.$$

If φ is nonpositive on any subinterval of $I \subset [0,1]$, then, by the definition of h, we have $K(\varphi)|_{\mathfrak{f}} = 0$ and, obiously, $K(\varphi)$ is Lipschitz contininous on I with zero Lipschitz constant. Therefore, it is enough to confine our considerations to the case when the graph of $\varphi|_{0,F}$ is contained in the set

$$D_{\varepsilon}:=\{(x,y):x\in[0,\varepsilon],\ 0\leq y\leq cx\}.$$

Let us choose $\varepsilon>0$ such that $c<\frac{1}{\sqrt{\varepsilon}}$. Then, clearly $cx<\sqrt{x}$ for all $x\in(0,\varepsilon]$. Since for all $(x,y)\in D_\varepsilon$ we have

$$\left|\frac{\partial}{\partial x}h(x,y)\right| = \left|-\frac{y^2}{2x\sqrt{x}}\right| \leq \frac{(cx)^2}{2x\sqrt{x}} \leq \frac{c^2\sqrt{\varepsilon}}{2}$$

and

$$\left|\frac{\partial}{\partial y}h(x,y)\right| = \frac{2y}{\sqrt{x}} \leq \frac{2cx}{\sqrt{x}} \leq 2c\sqrt{\varepsilon},$$

we infer that $h\big|_{D\varepsilon}$ is Lipschitz continuous. It follows that $K(\varphi)\big|_{[0,\varepsilon]}$, as a composition of Lipchitz functions, is Lipschitz continuous.

We claim that K is unbounded. To see this take a sequence of constant functions convergent to zero, $\varphi_k \colon [0,1] \to \mathbb{R}, \ k \in \mathbb{N}$, defined by $\varphi_k(x) = \frac{1}{\sqrt{k}}$. According to (7), we get

$$K(\varphi_k)(x) = \begin{cases} 1 & \text{for } 0 \le x < \frac{1}{k} \\ \frac{1}{\sqrt{k \cdot x}} & \text{for } \frac{1}{k} \le x \le 1 \end{cases}$$
 $k \in \mathbb{N}.$

Since

$$||K(\varphi_k)||_{\psi} \ge \left|\frac{\varphi_k(x) - \varphi_k(\overline{x})}{x - \overline{x}}\right|, \quad x, \overline{x} \in [0, 1], \quad x \ne y,$$

setting $x = \frac{4}{L}$, $\overline{x} = 0$, for all $k \ge 4$, we get

$$\|K(\varphi_k)\|_\psi \geq \frac{k}{8}, \quad k \geq 4,$$

which shows that K is not bounded.

References

- J. Appell, P.P. Zabrejko. Nonlinear Superposition Operators. Cambridge University Press, Cambridge, 1990.
- [2] K. Lichawski, J. Matkowski, J. Mis. Locally defined operators in the space of differentiable functions. *Bull. Polish Acad. Sci. Math.*, 37, 315–125, 1989.
- [3] M. Wróbel. Locally defined operators in Hölder's spaces. Nonlinear Analysis, 2010. doi: 10.1016/j.na.2010.08.046.