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Abstract. Composite functional equations in several variables generalizing the
Golab-Schinzel equation are considerd and some simple methods allowing us to de-
termine their one-to-one solutions, bijective solutions or the solutions having exactly
one zero are presented. For an arbitrarily fixed real p, the functional equation

6([po(y) + (1 - p)lz +[(1 - p)é(a) + ply) = 6()d(y), .y E€R,

being a special generalization of the Golab-Schinzel equation, is considered.

1. Introduction

Composite functional equations in several variables, i.e. equations involv-
ing the superpositions of unknown functions, represent an important class of
equations. The translation equation (cf. Aczél [1], p. 245),

o(o(x.s).t) = oz, s +1),
the Golab-Schinzel equation ([2], see also [1]. pp. 311-312)

oz + yo(z)) = 6(2)o(y). (1)
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or the equation [3]
oz +yo(x)) + oz — yo(a) = 26(2)o(y). @

are the examples. In section 1, we consider more general functional equations
than (1) and (2) and give some conditions allowing us to determine their one-
to-one solutions, bijective solutions or the solutions having exactly one zero.
In section 2, for an arbitrarily fixed real p, we deal with the functional equation

8(lpo(y) + (1 - p)le+ [(1 - p)o(z) +ply) = 6(2)6(y), =, yER,
being a special generalization of equation (1).
2. Main result

Let X be a set. For a function ¢ : X — X and a positive integer number k.
by the symbol ¢* we denote the kth iteration of the function ¢.

The following result reduces the problem of determining the solutions of
a functional equation of a composite type to an application of the implicit
function theorem.

Theorem 1. Let m,n € N be fized. Let I, Iy C R be intervals such that
0Ochandhcl LetG:(Ix D)2 T and H:(IxIP)x (I xI")— 1.
Suppose that for all z,y € I; 21, T, Y2s-. ,Ym € 1,

H(@, 21,220+ 3200 0,420+ Yim) 3)
If a function ¢ : T — I, satisfies the functional equation

(G2, 0(2),y,6(y)) = H(@. 6(x),8° (), ... . " (). 4. 0(), °(¥) ... . 0™ (%))
)

for all z, y € I and there exists exactly one z € I such that ¢(z0) = 0, then

G(z,6(2),20,0) = zel

Proof. Taking y = 2o in equation (4) and applying condition (3), we get

6(G(x,6(x),20,0)) = 0, zel

Since ¢ has exactly one zero, we obtain G(z,6(2).20,0) = zo for all 2 € I.
This completes the proof. (m]

Remark 1. Equation (4) generalizes the Golqb-Schinzel equation (1).
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In what follows, for p € R and ¢ : X — (0,00) the symbol X 3 z — [6(z)?
stands for the superposition of the power function (0.0¢) 3 u — ¥” and ¢.

Now we present some applications of Theorem 1.

Corollary 1. Let k, | € N be fived and let 6 : R — R be a function with
ezactly one zero point. Then o satisfies the functional equation

6 (2 +ylo (@)6y),  w.yeR ®)
if and only if for some c € R, ¢ £0,
#z) = (e + )L,  zeR. ®)

Pmnf In Theorcm ltake I =1 =R, n=m =1 and define
G:RY—R b

Gz.21.y.41) = @, 2,y €R,
and H:R*—R by
H(z.21,y.91) 7= 2191, z, 7,y nER.

Suppose that ¢ : R — R satisfies equation (5) and has exactly one zero 2o € R.
Since H(z,21.20.0) = 0 for all z, 21 € R, the assumptions of Theorem 1 are
fulfilled. From (5), applying Theorem 1, we get

G(2,6(2), 20,0) = 20, z€eR

that is
x + 20[6(a reR,
whence zo # 0 and
o) = (1 = rER.
20
Putting here ¢ we obtain (6). Since ¢ given by (6) satisfies equation
(3). the proof is completed. o

Remark 2. It is known that (cf. [1], pp. 182-133) if ¢ : R — R is a con-
tinuous solution of the Golgb-Schinzel equation

6z +yo(2)) = 8(2)6(y). 7Y ER,
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then there exists ¢ € R\ {0} such that either
6(x) =supfex + 1,0},  w€R,
or there exists ¢ € R such that

ofz) =ca+1, z€R, (7)

o(x) =0, z€R.

The second solution can be obtained from Corollary 1 in a different way.
Taking k = in the equation (5) and applying Corollary 1. we obtain (7) as a
only solution having only zero in R.

Corollary 2. Let a < 0 and p € R, p > 0, be fied. Suppose that
6+ [a,00) — [0,00) has ezactly one zero in [a,00). A function ¢ satisfies the
functional equation

6 (z+ylo@)l") = o(2)o(y). r2a y20, ®)

if and only if
1
= (=2 .
s)=(1-2)", e2a ©
Proof. Suppose that o : [a,20) — [0, ) satisfies equation (8) and 2 > a

is the only zero of ¢. In Theorem 1 taken =m =1, I := [a.o¢), I := [0,20),
the function G : (I x I;)? — I defined by

Gz, 21,y 1) =z +y(a1)". zyel, el
and the function H : (I x I;)* — Iy defined by
H(z,21,y,%1) = 2191, zyel, xip €l

Since H(z,21,%,0) =0, for all x, y € I, x1 € I1. the assumptions of Theo-
rem 1 are satisfied. Therefore

G(z,0(x), 20,0) = 20, weld,

s0 2+ 20[6(2)]P = 2o for all @ > a. Tt follows that 29 # 0 and, consequently,

Since ¢ is non-negative, we have 1 — £ > 0 for all = € [a.oc). Thus 2o
Since the converse implication is easy to verify, the proof is completed.
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Remark 3. Note that for p = 0 equation (8) in Corollary 2 becomes the
Cauchy functional equation.

Theorem 2. Letn € N be fized. Let I, I be intervals such that I; € I C R.
Let G: (I x I)* — I and H : (I x I}')?> — I, be given functions. Suppose
that H is symmetric, that is

H(z, .22

Yn) = Hy.y1.92. .« Y. T. 21,22, . Tn)
(10)

¥ y1,42,

for allz,y € I, 21,220\ Y12 Y2revr 1Un € T1.
If ¢: I — Iy is a solution of the functional equation

6(G(,6(2),y.6(v))) = H(x,6(x),6*(2), ... ,6"(2),4,0(y), *(¥) ... ,6"(¥))

(1)
Jor all x.y € I, then
o(G(x,0(x).y,0(y))) = S(G(y. o(y). x. 6(2))), z,yel.
If. moreover o is one-to-one function, then
Glx,0(x).y.0(y)) = Gly. 6(y). . o(x)). vyl (12)

Proof. Suppose that ¢ : I — I satisfies Eq. (11) and H : (IxI})? — I,
satisfies condition (10). Then for all . y € I we have

(G(z. 8(x),y,6(v))) = H(z, 6(x), *(2), ... ,6"(2), ¥, 6), W) - - ,6"(¥))
= H(y.6),8°®), ... ,¢"(),2,6(2), & (2)... . ¢"(x))
= 6(G(y. 6(y). z. 6(x))).
S0,
6(G (. 6(x).y.6(v))) = &(G(y. 6(v). %, 6(x))). zyel
If ¢ is one-to-one, then obviously equality (12) holds true.

Remark 4. If the function G in Theorem 2 is not symmetric, then in general
equality (12) allows us to obtain the one-to-one solutions of (11).

Applying Theorem 2 we obtain
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Corollary 3. Leta, p € R be fivred and such that a <0, p # 0. A one-to-one
function & : (a.50) — (0,0¢) satisfies the functional equation

6 + y[o(@)]P) = 6(x)6(), z>a,y20, (13)
if, and only if,
T ;
#=(1-3),  e>e e

Proof. In Theorem 2 take n =1, I = (a,20), Iy = (0,0¢), the function
G : (I x I;)? — I defined by

y(a1)P, z,yel, z,y €l

Gz, 21.9,31) =
and H : (I x I;)>— I defined by
H(z,z1,9.41) =21 z,yel, z,meh,
Since
H(z,21,y.5) = H(y, y1.2.21), royel znyp el

the assumptions of Theorem 2 are satisfied. Applying Theorem 2, we have
from (12):

z+ylo@)] =y + 2oy, z,y€l,
whence

B -1_ [br-1
x - y

zyel,  zy#0.
So, there exists a constant ¢ € R \ {0} such that
(o) -1) =c
forall # € I, @ # 0. Hence
b@)=(cx+1)5, z>a z#0.
Equation (13) implies that

cx+1>0, x>a,
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and, consequently, ca +1 > 0. On the other hand, if 6 satisfies equation (13),
then obviously the following inequality

x—:yi(c.r+1)5]“>a. z.y>a,
is true, which means that
z+yllcx+1)] >a, z,y>a.
It follows that a + ca® + a > a. so ca+1 < 0. Both inequalities imply that
ca+1=0, whence c = —%, and ¢ has to be of the form (14).

To show that the funcuon & given by (14) satisfies equation (13), let us
note that

z+ylo(x)P > a, .,y > a.

In fact, this inequality is equivalent to (x — a)(y — @) > 0. Now, it is eas)
verify that (14) satisfies equation (13). This completes the proof. o

Remark 5. Taking a.p € B, a < 0, and p > 0, we can show in the same way

that the one-to-one function ¢ : [a,+o0) — [0,+00) satisfies the functional
equation
6 (x +y[o()]") = o(x)o(v). zy>a
if and only if
:

Ay A

o) = (1 a) . zz2a
Remark 6. Let I, I C R be intervals. Let G : (I x I)? — I and

H : Iy xIy — Iy be the given functions. Assume that¢: 11— I, ¢(I) =1
is a bijective solution of the functional equation

A(G(z,0(x).y,0() = H(6(x), 6(y)), zyel (15)
Then the function 6=' : I, — I satisfies the (non-composite) functional
equation

G(o7 (2),2,67 (y).y) = 07 (H(z.¥)). zy€h. (16)

In fact, putting ¢~} (z) in place of  and 6™'(y) in place of y in equation
(15), we obtain (16).

Sometimes the above remark allows us to determine effectively the bijective
solutions for functional equations of form (15). We have the following
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Corollary 4. Let k, 1 € N be fived and let I = I = R. The bijection function
& : R — R satisfies functional equation

o (2 + 4@ ¥F) =o(@)olr),  wyeR a7

if and only if

z€R, (18)

for some c€R, ¢#0.

Proof. According to Remark 6, a bijection
(17) if and only if ¢~ : R — R satisfies the equation

— R satisfies equation

67! (@) + 67 (y)a zyeR
Putting here y = 0, we obtain
ol@) =070 ( zER

which implies (18). ]

3. A special generalization of Golab-Schinzel
functional equation

In this section we examine the functional equation
o(poy) + (1 - p)lz + [(1-p)o(z) +ply) =d(x)o(y). z.y<R, (19)

where p € R is an arbitrarily fixed parameter. For p=0 or p=1 it reduces
to the classical Golab-Schinzel equation.

Theorem 3. Let p € R be fived.

1. Ifp# 3%, then the one-to-one function ¢:R— R satisfies (19) if and
only if

() =ce+1, zER,

for some c € R\ {0}.

., then bijection ¢: R — R satisfies (19) if and only if
o@@)=ca+1,  z€R,

for some c € R\ {0}.
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Proof. Take n=1, I =R and define G : (R x R)> — R by

Gz, @1,y,31) = [py1 + (1 = p)lz + [(1 = p)an + ply. z, 9 &1, 5 ER,

and H: (R xR)?— R by

H(z.z1,y.91) = 2191 z,y, 1,4 €ER.
Note, that
H(z.x1,y.91) = H(y, 1.2, 71), z, 9, 3, n ER

Applying Theorem 2, we obtain

[po(y) + (1 = Pz + [(1 - p)o(2) +ply

= [po(x) + (1 = p)ly + [(1 - P)o(y) + P
for all 2, y € R, whence
(2p = Da(d(y) = 1)) = 2p - Dly(é(x) - 1)], zyeR
If p# 4. hence we get
z, y € R\ {0}.

Therefore, there exists a constant ¢ € R\ {0} such that ¢(z) = cx
2 € R\ {0}. Putting =y = 0 in equation (19). we get [6(0)]
consequently we obtain either ¢(0) =0 or ¢(0) = 1. Since o i

| = [6(0).
one-to-one
and a(—%) =0, the case ¢(0) =0 cannot occur. Thus ¢(x) = cx +1 for all
T €R.

For p =} equation (19) has the form:

[ (%[I(O(w +1) +y(6(x) + 1)]) = 0(@)9(y). z,y€R (20)

If a bijection ¢: R — R satisfies (20), then according to the Remark 2 the
function 6=} : R — R satisfies the equation

20 (zy) = (y + D)o~ (x) + (¢ + 1)o™ (v), z,yeR.
Putting here y = 0, we get

26710) = 67} (x) + (x + 1)67(0). zeR.
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Hence, as ¢71(0) # 0,

whence

o(z) =

Theorem 4. Let p € R be fized. A function ¢ : R — R satisfies equation
(19) and has ezactly one zero if and only if there ezists a constant c € R\ {0}
such that

o(x) =cr+1, zER.

Proof. Note that substitution of (1 — p) for p in equation (19) gives
the same equation. Thus, without any lo

s of generality, we sume that

p#l Taken=m=1 I=1I =R, and define H: (R x &
H(z.ony.m) =2 z. 2Ly ER (21)
and G: (R x R)? =R by
G ) = [py1 + (1= p)la + [(1 = p)ar + ply. z,21,y.41 ER.

Suppose that ¢ : R — R satisfies equation (19) and zo # 0 is a unique zero
of ¢. Note that if y = 29, then H(x,21,20,0) =0 for all z, 2; € R, so the
function (21) satisfies the condition (3) of Theorem 1. Therefore, if ¢ satisfies
equation (19), then

(1 =p)z+[(1-p)o@) + plzo z€R
Hence we obtain (z) Z forall z€R. [u]
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