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ON WEIGHTED EXTENSIONS OF BAJRAKTAREVIC
MEANS

JANUSZ MATKOWSKI

ABSTRACT. For real functions £.g.a. 3 defined in an interval I we in-
troduce a mean By . which extends m» Bajraktarevié meen B0 in
I.. The problem of symmetry
two unknown function
tions, every Bajraktarcvié mean B
a two-parameter family of means { B,

. leading to a functional with
show that. under some condi-
n (0.5) can be embedded in
a.b > 0}. As a special case
a new family of means {B” : t > 0}, which can be treated as the
weighted s, is constructed. As an application. the pairs of the
these means which leave the geometric mean invasiant are indicated.
the effective limits of the sequence of iterates of the relevant mean-type
mappings are given, as well as some functional equations are solved.

1. INTRODUCTION
A function M : I x I — R is called a mean in an interval I C R if

min(z,y) < M(2.y) < max(z,y). z,y €l

A mean M is called strict if these inequalities are \mct forallz.ye .z #y:

and symmetric if it is a symmetric function. [ (y.x) for all
r.y € 1. A function M : I xI — R is called increasing if it is increasing with

1especr to each of the variables. It is obvious that an increasing function

M is a mean iff it is reflexive, i.e. if M(z,2) = 2 for all 2 € I. A mean
1:(0.2¢)2 = (0.) is called homogencous if

M(ta.ty) = tM(z.y).  t.a.y>0.

=

If the continuous functions f: I — R and g : I — (0. o) are such that é
is strictly monotonic. then they generate the mean B9 : I? — I defined
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_[”fm4m> oo
= <g) (y(l‘)—g(y) i sl

which is symmetric in I (in general, not incleaaina) It is called B[ijktam ié
mean (briefly, B-mean) (cf. Bajractarevi¢ [1]. Bullen, Mitrinovi¢ Vas
263; Bullen [3]. p. 310-316, where it is written in an equivalent fas]
a constant g the mean Bl becomes a quasi-arithmetic mean AV : I? — I
defined by

Every B-mean M4 can be imbedded in a family {;\1.:,

<

means defined by

oz y) = (L
Mfolay) - (y) ((1

Clearly. ;\Il’::f =
are treated as weighted extensions of B¢ and the number w € (0.1) is

referred to as its weight.
Let a.3: I — I be a bijective and continuous mappings of an interval I.
In Section 4 of the present paper we show in particular that. if the function
B qm(:n w 3

fg)

1791, and M is symmetric iff w = 1. The means M

is strictly monotonic, then (Theorem 3) the function BYS : I? = I defined
by

(f(a ) + f(3()) )

gla(2)) + g(8(y)) e

a.ﬂ

BYgz,y) = [wf]
is a strict and continuous mean and B = Bl for o = 8 = id|;.
The problem of the symmetry B(f;’ is decided. It leads to the functional
equation
bW _ FG
1+Gh )] G
where a0 37" and the functions F.G are unknown.

Applying this result we show that if I = (0,2c), then any Bajraktarevi¢
mean. can be. in an natural way. imbedded in a two-parameter family of

ryel
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means {B" 5 anbis. U} defined by

ety ) [l ( @)+ Fby)
e =[] <9(a-7:) )

earsil

We prove that BY;
For the power functions f(x) = xP.
p # q are arbitrarily
of means { BP9t > 1)} different than the respective { MPD we o, 1;}
). In
Section 6 we indicate the mean type mappings of the forms (B,‘" a, Bi:"*\)

L symmetric iff a = b.
g(z) = 2% (z > 0). where p.g € R.
fixed. in Section 5 we introduce a one-parameter family

b

which may be regarded as the weighted Gini means (cf. (3] p.

and (.\[.{" u.\l,-_",;_) which leave the geometric mean invariant. We apply
these properties to find effectively the limits of the sequence of iterates, as
well as, to solve some functional equations.
2. AUXILIARY RESULTS
We begin this section with the following

Remark 1. If the functions f.F : I = R and g.G : I — (0.c) satisfy the
equation

F(x) = F(y) = fly)
alG At el 1
GG smrgw Y &
then p .
f=x) f(y)) ( () 7’(.1/))
LA I ' R b 0 T =0, yel. 2)
(.v(.r) 9/ \glx) gy e l
Proof. Taking y = x in (1) we get
F(x) = %G(r). TEL (3)
By (1) we hence obtain
FLEI P TIR I
6@ + E86W) _ 1) + f) e

Gla)=Gly)  g@) =g’
which is equivalent to (2). u]
Lemma 1. Let I C R be an interval. Suppose that the functions f.F : T —
R.9.G: I — (0.) are continuous and L is one-to-one. Then equation (1)
is satisfied if. and only if, there s o real constant a such, that

F(x) = af(x). G(x) = ag(x). 2Eel:
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Proof. Let us fix a y € I and put a :=
formula (2) of Remark 1. we get $2 = a for all ¢ € L. & # y. whence. by
the continuity of the functions G and g.

G(x) =ag(x), el

Since the relation (3) holds true under the assumption of the lemma. we
infer that

GW) Gince £ s .
35 Since £ is one-to-one, by

F(2)=af(). x€l

Theorem 1. Suppose that the functions f.F.H : I — R. g.G.K : I =
(0.5) are continuous and £ is one-to-one in an interval I C R. Then the
equation
Fla) = H(y) _ flo) + flw)
Go)+ Ky  gla)+gly)”
is satisfied if. and only if, there is o real constant a > 0 such that
H(x)=af(z)- F(x), K(z)=ag(x)-Gx). =zl (5)
and the function

xyel. (4)

F(x) - F(y) +af(y)
G() - G(y) + agly)
Proof. To prove the “only if” part of the theorem suppose that the functions
f,F.H, g.G.K satisfy equation (4). Setting y = x in (4) we get

P3(xy) = is symmetric. (6)

H(')——F(Y)—L%_G(:)—Ix(v) rel
Hence. making use of (4\ we have
F(x) - F(y) + y“n LG (y) + K(y)] + ) ., ~
G(x) = K(y) EETON vl o)

Since the right-hand side of this equation is symmetric with respect to &
and y. we infer that, for all 2.y € I.

Fla) - Fly) + {8160) + K(y)] _ Fy) - Fla) + £51G@) + K@);
G(r)+ K(y) - Gly) - K(x) t
whence, for all 2,y € I,
F(x) - F(y)
_ Ii66) « K@)G) ~ Kw)l - LY1G(y) + K(y) Gly) = K(2)

Gly) + K(2) - G(x) + K(y)



WEIGHTED MEANS 173

Replacing the difference F(x) — F(y) in the denominator of the left-hand

side of (7) by the expression of the right-hand side of the above relation,

after simple calculation. we obtain

181Gy + K () GW)+ KW fla) =~ f)
G =K@ =Gy~ KW~ g@ =)’

3G (2)+ K(x)] and G replaced by G+ K

Applying Lemma 1 with F(x) :=
we infer that there is an a € R such that
G(z) + K(z) = ag(x). zel.
The number a is positive as, by the assumption, the values of the functions
G. K and g are positive. Hence. setting y = x in (4). we obtain
F(2)+H(@) =af(x). axel
Thus H = ~F = af. K = -G — ag and equation (4) takes the form
Fla) = F(y) = af(y) _ f2) = fy) i
G -Gy ~agly) _ g@ =gy o~ TYE
Since the right-hand side of this equation is a symmetric function. so is the
function (6). This completes the proof of the “only if” part of the result.
Now suppose that the conditions (3) and (6) hold true. From (3). for a
positive real a. we have
F(x)+ H(y) _ F(2) = F(y) + af(y)

G@=Ku) ~ 0@ -Cw-ag) V"
From (6) we have
F(x) - F(y) +af(y) _ Fly) = F(x) + af(x) s
ryel,

Glr)=Gly) = agly) ~ Gy) - G(2) ~ ag(x)’

which implies that. for all 2.y € 1.
F(z) - F(y)]lg(x) + 9(w)] = [G(x) = GW)If (@) + fW)]
=af(x)gly) - afly)g(x).
Since
af(x)g(y) — af(y)g(z) = ag(y)[f(x) = F(W)] = af(y)[g(x) + g(y)

we hence get. for all .y € I.
Flx) = Fy)+af(y)lg@) + )] - [G) - Gy) + agy)][f () + F3)]

whence F ; ;
[l)vFU/)'u (y) _ f@)+ f(y)
G(x) —Gly) +agly)  g(x) +g(y) By
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which shows that
Hy) _ f@)+ f) EIT
@)+ K@y  g@)+gy)’ ’

This completes the proof. (]

3. A FUNCTIONAL EQUATION

Theorem 2. Let I C R be an interval and v : I — I humeumozp/mm
of 1. Suppose that the continuous functions F.G I+ R, G(x) #0 for all
a € I, satisfy the functional equation

Fly@)]+Fr~ )] _ F@) + F@y)

- - = ; xyel, 8
Gh@ =G G e Y 2
where y~1 is the inverse function of 7.
Then
) if G is constant then eq. (8) is satisfied if, and only if. for some
ceR,

Fly(x)] - Flx) =
(2) if G is not constant then eq. (8) is satis,
p.q € R, q#0. such that
either F = pG
or F=pG+qand Goy=G.

d if. and only if. there are

Proof. The proof of the first part is obvious.

To prove the second part suppose that F.G : [ = R
and G is not constant. Applying Theorem 1 wi :rh B H
respectively. by the functions Fov, Fo
that there is a > 0 such that

F(y(x)) + F(v"'(x)) = aF(x).
and., consequently.
F((2)) = F(v~'(y) + aF(y) _ F(x) + Fy)
G(y(2)) - G(r1y) +aGly) ~ Gl2) = Gly)
whence, for all z.y € I,
F(y(2))G(2) + F(4(2))G(y) — G)F(v(y) - Fx(1))Gly)
= G(y(2))F(a) + G(y(@)F(y) - F@)G((y)) - Fy)G(r(y)
= aF(2)Gly) — aG(x)F(y).

isfy equation (8)
K. f. g replaced.
v~1, F, G. we infer

Gy (x)) =aG(a). x€el.
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Replacing y by § we hence get. for all . € I.
F(3(2)G (@) + F(v(x)G(H) - G@)F(v(@) - F(+(3))G(y)
= G(1(2))F(x) + G(+(2))F(9) - F(x)G(v(@)) - F@)G (@)
+aF(2)G(g) - aG(x)F(F).
Subtracting these two equations by sides we obtain, for all z.y.§ € I.
(@))[Gy) -~ G@] - G(v()Fy) - F(§)]
= F r){ ﬂG -Gl
- G(J‘){:“F(I/) = F(y(y)] - [aF(§) - I
~{[F(v)Gy) - GO F)] - [F((@)G®)] - Gh@)F@)]}-
Choosing arbitrarily some pairs (yx. 7x) € I%. k = 1.2.3 and purtting
Ap=Glyw) = G(lk). Bri= F(y&-) = F(3x).
aGlyx) = G(v(ue)] = G(¥(@))]
Fly) = F(v(ws F(JA) F(v(ox))]
= (F (3 () Glue) = Gl () Fu (Y1) G () = Gv(n) F ()]
in xhe above formula we obtain the system of functional equations
ApF(~(2) = BiG(+(2)) = CrF(2) - DiG(2)+ B, x€ 1. k=1.2.3. (9)

Since G is not constant, there are y;.§ € I such that 4; # 0. For k = 1,
from (9). we get

By (&) Dy ., 2
= 1) = 22G(3() = 2F@) - 226 + 22, zeR
Flr=1)= 360 + T F@ = L6+ 3

Hence. making use of (9) we obtain, for k =
B [
Ay z{a( (a ))-—r( G(z)-f — BiG(y(x))
=CpF(x) - DiG(x ) Ey,
whence. for k =2.3 and all z € I,
(Ax By — A1 By) G(v(x))
= (A1Ck = A1) F(2) = (A1Dx — AxD1) G(x) + (A1 B — AyEr) . (10)
If for all pairs (y1.§1). (y2.52) € I we have A3B; — A1 By = 0. that is. if
G(y2) = G(32)|[F(y1) = G({n)] = [Gly1) = G@)][Fy2) = G(32)]-
then. for all .y.w.v € I such that G(x) # G(y). G(u) # G(v).
F(x) - F(y) o F(u) — F(v)
G(x) -Gy~ Gl -G)

2.3,
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Hence, by the the continuity of F and G. there arc some real constant p. ¢
such that F(z) = pG(x) + ¢ for all a

Consider the opposite case when for some pairs (y1.71) and (y2.92) we
have A>B; — A1 B> # 0. Then from (10) with k = 2 we get. for all 2 € I.
ACo — A2Cy Fla) - A\Dy — AsDy o)+ ABy — AsEy
A3B; — A1B; AsBi—A1By " AxBi - A1By’
This relation and (10) with & = 3 imply that
ACy=AaCrp ) ADy=ADi ) AiEa= 4B I
4B, — A1Bs AsB1—A1B; "' AsBi— ABs)
= (4103 = 43C1) F(x) — (A1 D3 — A3Ds) Gla) = (A1 B3 — A3Ey)
whence, for all x € 1,

IF () + mG(x) =n = 0. reR, (11)

Glx+1)=

(A3B1 — A1Bs)

where

AsBy — AlBu
If for some pairs (Y. u,\/ k=1,2.3, we have [ # 0 then. from (11). F(x) =

pG(x) +qforalxcR.
Now suppose that I = 0. Since G is not constant, it follows from (11)
that m = 0 and n = 0 for all the choices of (yx. k). k¥ = 1.2.3 such that
A1Bs. In this case. from the definitions of the numbers l.m and n
r that
Az A A A A Ay A3
By | =det| By By By | =det| B, B: By | =0.
Cs Dy D; Dy E, Ey E
Since A2 B1—A1Bs # 0. the vectors (A1, A2. A3) and (By. By. Bs) are linearly
independent. It follows that there exist a. 5 .8.%.p € R such that
Ci=0Ax+ 8By, Dip=vAx+0By, Ep=rAr+pB,. k=123
Hence and from the definitions of Cj and Dy we get, that for k =1,2.3.
(a = o)Ay = BBy = G(v(yx)) — G(v(3)- (12)
(a — 0)Ar — vBi = F(y(yr)) — F(+(3k)). (13)
mple caleulation. we also get

whence. using the definition of Ei. by

G yx) — F(v(3x))] = Brl(a = 8)Gyx) = pl. b =1.2.3.

Alr
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which can be written in the form
&+ G — F(v(5r)
(a=8)G(ux) - p
Putting here J3 := 2 and y3 := y. we hence get
K+2Gy) - F(x(x) _ F(x) - F(y)
(a=0)Gly-p  Gl)-Gly)
for all 2.y € I. 2 # y. From the symmetry of the right-hand side we obtain
K+9G(y) — F(x(@) _ 5+7G(@) - F(+(3))

(a=0Gy)-p ~ (@=08)G@) -

whence
[0 = 6= v)G(x) - [(a - 6)G(x) - plF(7(2))
10\G(y) = [(a — 8)G(y) - pIF(7(y)
which implies the existence of a constant co such that
Kla =68 +p)IG(x) = [(a = 8)G(x) — p|F(3(x)) = co.

= [k(a

and. consequently.
Kla=0+7pGlx) —cy
(a=0)G(x)—p
for all the admissible » € I. Assume that a — d # 0. Then we have
bG(x) + ¢
F(y(x)) = To=d
for some constant b, ¢.d. Similarly. by the symmetry of the considered func-

tional equation we conclude that, if @ — a # 0 then. for some constant
B.C.D

F(y(x) =

(14)

L _BF@)=C .
G(v(2) = F@ <D " (15)
From (13) and (14) we obtain
¢ bd - c e L .
| ——————— = (a=0)| [G(2) = G(y) = ~[F(x) = F(y).
Gy ~d
Similarly. from (12) and (15) we obtain

BD-C
F@=DFw =Dl
Dividing the last two equations by sides gives the equation
T bd — ¢ 5 BD - ('
|Gm-demra “@” "’} [(Fm “DFW=D "

(a=—a)Gla)-Gly) = [ o+ .3} F(x) - F(y)].

.5} =1(a-a)
(16)
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Setting here y = yo € I we infer that, for some constant Ag. By. Cy. Do.

Replacing F(2) and F(y) in (16) by the suitable values given by this for-
mula, we easily conclude that G is a constant function. This contradicts our
assumption. Since in the case when o — 6 = 0 or a — o = 0 the respective
argument substantially simpl; i
Thus we have shown that in all the possible cases there are p.q € R such
that F = pG + g. Suppose that g # 0. From (8) we have
PG((@) + Gt (y)) +2¢ _ pGla) = pGly) +2¢
G(v(@) +G(y~Hw) G()+ Gly)

whence

ay €l

G(v() - G@) = Gly) - G(v (). zyel
Thus, for a constant ¢ € R,
G(y(x)) = G(x) +c. el
whence. by induction.

G @) =Gx)+ck,  wel ke
where Z stands for the sct of all integers. If ¢ # 0. taking into account
the continuity of G. we get G(I) = R. This is a contradiction. because,
by assumption. the function G does not vanish in ®. Thus ¢ = 0 and.
consequently,

G(v()) =G(). wel
The proof is completed. [m]

Corollary 1. Let 4 be a homeomorphic map of an interval I C 2. Suppose
that the continuous functions F.G : I = R. G # 0 in I C R, satisfy the
functional equation
F(y(a) = F(v~'() _ F(x) + F(y)
GH@) =GO y) ~ G =Gl
If G is not constant and & is monotonic then &
Proof. Suppose that in the second part of the above theorem the number
q is different than 0. Then F = pG + ¢ and G(v(x)) = G(x) for all v € I.
Hence we get
Fo@)_ ., o _,. g _@*s_F@)
G(y(x)) Gy(x)) Glz) G(x) Glx)
ie. the function 5(7(!)) = gla) for all # € I. This contradicts to the
assumption that § is monotonic. Thus ¢ = 0 and the proof is completed. T

vyel

s a constant function.
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4. A TWO PARAMETER FAMILY OF MEANS RELATED TO A B-MEAN

a non-zero constant, then B9 reduces to a
section we extend these means.

As we have observed. if g
quasi-arithmetic mean. In thi
Theorem 3. Let f: (0.0) = R and g : (0.0c) — (0.2¢) be continuous
and non-constant. Suppose that, for some bijective and continuous functions
a.3:1 =1, the function v\§ : I 5 R,
fle(@) + f(5(x)
9(e(@)) + 9(5(x))

v an

is strictly monotonic. Then
(1) the function B9 . I* - I given by
i (f(a(r)) t f(»*(zx)))
J gla()) = g(3(y) )’
is a strict and continuous mean and, for o =
B4l = Blidl;
i

ing conditions are eg

B ,(x y) = (18)

¢ is a symmetric mean,

G ot orh A iaast it adh ol Pl e o B o AR 0%

3=a.

Proof. Suppose that ¢
Then

is strictly increasing and take 2,y € (0.20). x < y.

gl gy - fa@) + FB@) _ flal) + FBG)) _
) = @) =98 < glaw) = S5y = vl

-1
is strictly increasing,

whence, as [L
. tra1-} [ flaz) — fby)
min(z.y) = < {Ln,” (m

is strictly decreasing the respective argument is si-

) <y = max(z.y).

In the case when ¢

. This proves that B4 is a strict mean. The continuity of BY4 i
obvious. '

2) The eq\\i\alence (i) <= (ii) is obvious. To prove that (i) = (i),
suppose that B 4 is symmetric, that is that

S
mn
o

vy =BYw.a).  ay
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Hence. by the definition of /%',

fla@) + fF(B®) _ fle) + F3@) e
9(a(2)) +9(3¥) — glay) + 9(8(x) i
With » := a0 37! this is equivalent to
1l fa—1 il o
e ORI e 7

1+ W] g@) +9(y)
Now we can apply Theorem 2. If g is constant then this equation is
satisfied iff. for some ¢ € R

x)l = fla)=c. r

that is iff. for some ¢ € R.
f13(x)] = flaa))
If g is not constant then this equation satisfies iff there are p. qg#0
such that either f = pg or f = pg+qand goy = g. The case f = pg cannot
happen because then the function ¢}’ would be constant. Assume that
f=pg+qandgoy=g.
Then go 3= goo and. for all « € I. we have

(pglo

zel

q
golr)’

Since v
go 3 =goaimplies that a
As the implication (i) <=

and a are one-to-o;

it follows that so is g. Now the equality

is easy to verify, the proof is complete.

Remark 2. In the case when the function f is unknown and I = R. the

functional equation f[¥(z)] — f(z) = ¢ due to Abel (cf. M. Kuczma

Applying Theorem 3 and Theorem 2 we prove

Theorem 4. Let f: I = R, g: 1 — (0.5) be continuous and let a.b > 0
ol o

be fived. Suppose that the function v\E : (0.) — R,

g xr) +
Wy = SO HIOD) g,
Slaz) ~ gbD)

is strictly monotonic. Then
(1) the function B;

ab

/g _ [lra] ™t (£laz) + f(b
Bailrau): V ] (y(a-r)—g(b‘r))'

1 (0.5)2 = (0.x) given by

2,y € (0.%).
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is a strict and continuous mean and, for a
g _ plfel,
(2) the following conditions are equivalent:
() BYY is a symmetric mean,
@ Bl =By
(i) b=a.
Proof. Dehne a, f (0.) = (0.2¢) by afa) = ax. B(x) := ba for x > 0.
Since B# = B4\, the first result follows from part 1 of Theorem 3.
Now assume that BY! is symmetric, that is that
B (z.y) = BYfy.x).  wy>o.
By the definition of Bﬂj,,“ this equation holds if. and only if.
flax) = fiby) _ flay) = flbx £y
glaxr) + glby)  glay) + g(ba
Replacing & by ¢. y by § and setting ¢ -
1
sl z,y > 0.
g(a ¢
Setting
F(u):= f(¢").  G(u) =g(c*). uER.
we can write this equation in the form
+Fv) _ Flu+1)+F(v-1) Ao
Glu)=Glv)  Glu=1)=Gle-1) s
Since F and G are continous, G is non-constant, and 4(u) = £(c*)

where ¢ # 1, the function £ cis suicrlv monotonic. On the other hand. in
view of Corollary 1, the function & ¢ must be constant. This c-onlmrlxmon

proves that a = b and completes the proof of part 2.

T the case when the generator g of BY; is constant we have the following

Theorem 5. Let f : (0.x) =R be continuous and strictly monotonic.

Then

(1) for a.b > 0 the function v} : (0.) = R.

flax) + f(br)
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is strictly monotonic; the function By, : (0.5)% = (0.%) given by

By = W] (fan) = S0w). w0,
is a strict and continuous mean and, for a = b= 1.
BYf] = Alf;
(2) the following conditions are equivalent:
W 87,
(i) B,y
(lll) a=b
(3) BY} is p-conjugate of the mean AV} with ¢(z) = ax. (x> 0). that
is

is symmetric,
{f
By,

Bifl(z.y) = ZAJ([“ ay),  wy>0;
(4) for every (2.y) € (0.00)%. the fum'fmn

(0.50)? 3 (a.b) = BY}(e.9)

b

is continuous.

Remark 3. Let f:(0.5c) = R and g : I = (0.%) be continuous and non-
constant. If the function v
according to the first part of the theorem. the B-mean B9l : (0.c)* —
sts, can be imbedded in the two-parameter family of the means
ta.b> 0} such that BY¥ = BI/sl
'Io show that the assumption of the strict monoton

519 for all a.b > 0 is essential. consider the following

is strictly monotonic for all @.b > 0 then.

v of the function

Example 1. Let f(2) == 2(2~ and g(x) : inr for € 2. Since
x for x € (0.5¢). the function £ is strictly increasing, which implies

f the mean B9 It is to verify that for some a.b > 0 the
s not strictly monotonic.

Remark 4. It is easy to xhu\\ that. under the assumptions of Theorem 3
(or Theorem 4). the mean BI%/! is well defined and

B = B

Moreover BYi¢' is p-conjugate of B9/l with p(x) = ax. (¢ > 0). that is

B2y = -ny(a.r.a_.,). 2.y >0

@ a.a
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Example 2. For f(x) = exp(a). g(z) =  and a > 0 we have v/¥(x) =

exp(ar) and
sl 1 & 4o
Dff(x.y)=~log{ —— .
a T=y

bx :
. and we do not know the effective formula

If a # b, then v/ () =
-1
for (0) ™ as well as for B

In this connection consider the following

Remark 5. Suppose that £ : (0.5) — & and g1 (0,5) = (0.5) satisfy
the assumptions of Theorem 3. It is seen from the definition of v, that,
in finding the effective formula for BY;%. the relation v é(a.b)y, for
some functions ¢ : (0.50)2 = R and ¥ : (0,5¢) = B, can be helpful.

Motivated by this remark we prove

Proposition 1. Let f : (0.0c) = R and g : (0.5) — (0.2¢) satisfy the
assumptions of Theorem 3. Suppose that, for some functions ¢ : (0.5c) =
Rand ¥:(0.0c) » R,

Ve,

Pi(x) =ola.byy(z).  abzx>0. (19)
Then there are p.q € & \{0} such that

flo)=f)aP.  g(z)=g(M)2?%. (@) =vQ)2*?. x>0
Proof. Setting 2 =1 in (19) and taking into account (17). we get

is(q) = L0 = )

(1) = . b,
oa.bye(1) = ¢, e
Hence. by (19).
_ fl)+ ) v) 2 o
Son c ol = s s e BbE0edb @)
Letting b — a we obtain
flaz) f@ile) g, (1)

@ oD’

glax
Setting a = 1 gives
= LL
v(1)  ¢(1) gl

)

x> 0.
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whence. by (21).
9(1) flax (gtl) f(@) ( >
= (== LT >-0;
70 glax) = \F(D) gla) i
which proves that the continuous function 7—1 is multiplicative. Thus
there is an » € R such that
) _ f)

. 250
d@ " a” !

Of course r # 0 (in the opposite case the function £ would not be strictly

monotonic). It follows that
fl@) =ca"g(x), x>0: where (22)
and
V) =vl). >0 (23)
From (20) and (23) we obtain
l9(a) = g(b)][f(az) + £(b [f(a) + F(®)]lg(az) + g(ba)].  a.b.x >0,

which reduces to the equation
(O - a”) lg(a)g(bx) - g(b)glax)] =0,  a.b.a>0.
Since r # 0 we hence get
glaz) _ g(br)

=, b C
P o) a.b.x> 0.
As the left-hand side does not depend on b we infer that
2 _ ey, >0,
g(@)

for some function ¢ : (0.20) — (0.¢). Setting here a = 1 we get ¢(x,
for all 2 > 0. and consequently.

glax) _ g(a) glx)

9 gD g@’
which sho\\« that the function %” is multiplicative. By the continuity of g.
s a ¢ € B such that

glx) =g()a?, x>0
Put p := ¢ + r. Hence. making use of (22). we obtain
f@) = f0at™" = f(L)a?. x>0

a,x>0.

there e
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5. A WEIGHTED EXTENSION OF GINI MEANS
For power functions f(2) = P, g(x) = 29 (z > 0), where p # ¢. and
for the constant a.b > 0, for convenience, we put u”” instead of v,/ and
B instead of B}

Note that

AR x>0,

+ b
T b
is strictly monotonic. From Theorems 3 and 4 we obtain

bl Vip=a)
By (.r.y};( ) . g 00

In particular, for p =1 and ¢ = 0. we get v, () = (a = b)x and

a¥

a.b.xr.y>0.

a b

B = S a L

Remark 6. Note that the mean B! coincides with B where the func-
tious f. g are described in Proposition 1. and we have

BP(e.y) = B2 (a.y).  abay>0.

Thus B”;depends only on the parameter t = &

e

Applying Theorems 3 and 4 (if ¢ = 0) and making some obvious calcula-
tions in the cases when p = ¢ # 0 and p = ¢ = 0. we obtain the following

Theorem 6. For every p.q € R and ¢ > 0 the function B}
(0.¢) defined by the following formulas

.
b 1941 P22 + P\ 77
BP (2. y) = < 1u), Y, p#e t>0,

BPfziy) =177

(0.)% -

P=q#0: t>0.
Bltma)i=vfmy  p=g=0: t>:0;
is a strict. increasing and homogeneous mean.
Moreover,
) forall p.q € R and t > 0.

BP

B is symmetric iff t

wd -
BP(xy) = BPUy.a) ay> 0
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(2) for every x.y > 0. the function
(0.5)° 3 (p.q.t) » B (z.y)

is continuous:
(3) if p* + ¢* > 0 then. for all .y > 0.

y. p20.¢20
Py >0.4<0

2 s gl apayr p> 0. g
,_"“;B;y. z.y) = Jim B (y,x) = (s b <7,
2 =Py, p<0,¢>0
7 p<0.¢g<0

Remark 7. For p.q € R. p # ¢. and w € (0.1) the function .‘\1‘."‘".
(0.5¢)2 = (0.%¢). '
Y )1 (p—q

is a mean and M%7, = B4, Letting ¢ — p in this formula, one could

b
My

define MP%* by the formula

)

(mua?

) wzP i
T e y TR for p £ 0. and My,

MPH(a.y) :
Note that the families {B% : t > 0} and {MP? : w € (0.1)} ave different.
To see this note that

1t =y (1= w)ab = wy?
=199 =yt (L= w)at = wyd’

x,y >0,
for some ¢ > 0 and w € (0,1) iff t = 1 and w = 1/2. In particular

(BP9t > 0y n (M

liwe (0.1)} = {Biwi :]7#q}.

and a counterpart of Theorem 5.3 is no longer true for the means Mv"u'f “. The
family {B/** : p.q € R. t > 0} can be treated as the weighted extension of
Gini means.

- 0.0
Remark 8. Note that B;”
geometric mean G(x.y) :=

for all ¢ > 0. coincides with the svmmetric
and does not depend on .
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6. AX APPLICATION TO ITERATION THEORY

Proposition 2. For every p.q € B, t > 0 and w € (0.1). the geomet-
ric mean G : (0.%)2 = (0.00). G(x.y) = /7. is invariant with re-

#70) £ (0.50)? -+ (0.5¢)* and

spect to the mean-type mappings (B,""" By

(.\[.'{,':"_;\ '1'_”":“3) 1 (0.20)? = (0.%0)2, iie.

o (Bl Bl

Moreover. for all (x.y) € (0.%)?.
iy (BB (2uy) = (VA5 VAT

w (B, B ),

where (B, B,"""") denotes the uth iterate of (BP9, BP0

Proof. The invariance of the geometric mean is easy to verify. Now the result
follows from Theorem 1 in [6] which asserts the existence and uniqueness
of the invariant mean and the pointwise convergence of sequence of itera-
tions of every continuous mean-type mapping (M.N) if M or N is strict
(cf. also J.M. Borwein, P.B. Borwein | 4, Theorem 8.2, where the
¢ of means M and N is also usumod) ]

comparability

Proposition 3. Let p.q € R and t > 0 be fived, and let F : (0,0¢)? = R
be continuous on the diagonal {(x.x) : & > 0}. The function F satisfies the
functional equation
F (8P (z,y), B (.x'.y)) =F(z.y). 2.y>0. (24)
if. and only if. there is a single variable function f : (0,oc) = & such that
Fle.y) = flzy).  x.y>0. (25)

Proof. Assume that F : (0.2c)?
induction.

- R satisfies equation (24). Hence. by

E(x,

(B,"ru,) q(ry])-‘ r.y>0.

for all positive integers n € N. Applying Proposition 2 and taking into
account the continuity of F on the diagonal, we get, for all .y > 0,

"“'(r.y))”] = F (/&7 Vi) =

Flo.y) = lim F ((B,'«"-q (x.y). Bf

where f(t) = F (V. V%), t> 0.
Since it is easy to verify that every function F of form (25) satisfles [he
cquation (24). the proof is complete. o
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Remark 9. A ('oumclparl of Proposition 3 for the mean-type mappings
is also true.
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