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In the theory of equations of a single variable one of the most important equa-

tions has the form

VI ) = gx. ¥ () m
where f and g are given functions (cf. Kuczma [8)). For instance the Schroder
equation

VW) = syx)

and the Abel equation

Y]
both playing a fundamental role in iteration theory, are special cases of equa-
tion (1). This equation belongs to the so-called class of iterative functional equa-
tions mainly because the methods involving the iterative procedures are applied to
findits solutons.
i an invertible solution of (1) then ¢

=" satisfes the fune-

@
“conjugate’ to equation (1). in which the composition of the unknown function
appears.
A special case of equation (2).
@(xe(x) = [p(x)]?  forx € [0.¢). 3

which appeared in a division model of population, was considered by Dhom-
bres [1]. who characterized all continuous solutions of this equation. The con-
tinuous solutions of the equation

Pl = fp)P .
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where p # 0. are determined in [4]. The continuous solutions of the more general
equation

@(xG(p(x)) = @(x)G(p(x)) )
where G is a given continuous function. generalizing equation (3), have been es-
tablished in [10].

Let us mention that increasing solutions. srietly increasing solutions and big-
graph solutions of Dhombres equation (3) and its generalization were considered
by Kahlig and Smital in (5-7].

The functional equations with compositions of the unknown functions, called
“composite functional equations” are. in general. more difficult to examine. In
particular the “iterative methods” which are useful in solving functional equation

F(x.0(x).0(f(x)) = 0

are not applicable.
Let p > Oand r > 0 be fixed. In the present paper we determine all continuous
functions ¢ : (0.0) — (0. 00) satisfying the composite functional equation

I Glo())] = ¥ Vp()[Ge())P. x> 0.

where the given function G : (0. 00) — (0. 50) is continuous and strictly increas-
in

‘We apply the obtained result to the problem of invariant curves.

1 Main result
We begin with the following

Lemma L1 Let p.r € R, p # 0. be fixed. Suppose that G : (0.20) = (0.¢) is
continuous and strictly increasing, and the function

(0.00) 3 x — ¥"[G(x))? 5)
is one-to-one. If ¢ : (0.¢) — (0.0) satisfies the functional equation
Ol Glg()] = P Ve) (Gl x> 0. ©

then the finction M : (0.60) — (0.) defined by

M(x) = ¥ Glo(x)]. x>0, W)

is one-to-one.
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Proof. Define D : (0.50) = (0.5) by,

x>0, ®

R
and note that we can write equation (6) in the form

D(M() = D(¥). x>0, ©
If M(xy) = M(x3) for some x1.x2 > 0, then. obviously. D(x1) = D(x2) and,
consequently.

(DG MG = [D2)] [M(x2)]7.
In view of the definitions of M and D given in (7) and (8) it follows that
o) [Glo(x)]? = [ (Gl
Since the function (5) is one-to-one, we conclude that ¢(x1) = ¢(x2). Now (8)
and the equality D(x;) = D(x2) imply that x; = x2. This completes the proof.
a

Theorem 1.2. Let p > O and r > | be fived. Suppose that G : (0.20) — (0.5
is continuous and strictly increasing. Then a continuous function ¢ : (0.0¢) —
(0. 00) satisfies equation (6):

[¥ Gp(x)] = ¥ V() [Gle(x))?. x> 0.

if, and only if,there exist a.b € [0.00).a S banda # bifa = 0orb = oo,
such that

Clr, g<xza
¢(x)={6"1x"""). a<xsb. (10)
S s,

where G denotes the inverse function of G.

Proof. Suppose that ¢ : (0. 00) = (0. 00) is continuous and satisfies equation (6).
Define the functions M. D : (0.56) — (0.0) by (7) and (8).  Then equation (6)
becomes
DM(x) = D). x>0,
The function M is continuous and, by Lemma 1, M is one-to-one. Thus M is
strictly monotonic.
First consider the case when M is stictly increasing. Put

Fix(M) 1= {x > 0: M(x)

} an
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and note that

Fix(M) = {x > 0: ¢(x) = G~ (x'™")}. 12)
We shall prove that Fix(M) is a nonempty. closed subinterval of (0. 00). For an
indirect argument suppose first that Fix(M ) s empty. The continuity of M implies
that either M(x) < x forall x > 0or M(x) > x forall x > 0. Assume that
M(x) < x forall x > 0. Then. from the definition (7) of M and the increasing
‘monotonicity of M. we would have

9 <G x>0, a3
Notice that
o
0000 = |J (M™*1(1). M7 ()]

Since M and D are continuous and M is strictly increasing, we hence get
D((0.c) = |J DAM™' (1) M (1)

Since, from equation (9). D o M = D. we hence get
D((0.00)) = D(M(1). 1))

whence, setting

£D((0.00)). € :=sup D((0.0)).

we obtain
0<c<D(x)<C <oo forallx>0.
thatis
0<ex? sg(x) < CxP <oo forallx > 0.
Since p > 0. the graph of ¢ would be located between two graphs of increasing
power functions. This is  contradiction. Indeed. according to inequality (13). the
graph of ¢ is situated below the graph of the function

(0.00) 3 x — GH(x').
that for r > 1is decreasing. If M(x) > x for all x > 0 we can argue similarly.
This proves that Fix(M) # .

Now we shall prove that Fix(M) is an imterval. Assume. for the contrary. that
itis not the case. Since Fix(M ) is closed, there exist nonnegative ¢.d € Fix(M).
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¢ < d such that (c:d)N Fix(M) = 0. It follows that either M(x) < x for all
X € (c:d) or M(x) > x forall x € (:d). In the first case, for every x € (c:d).
the sequence of iterates (M (x))nex is decreas

Jm e

From equation (9) we get
D(x) = D(M"(x)). x€(0.20). n€N. a4)
Hence. by the continuity of D, letting 11 — o0, we obtain
D) = D). x€le.d).

whence. again by the continuity of D.

D) = D(e).

which means that
29 _ ¢ld)
e dr

Since ¢ < d. p > 0. and the increasing monotonicity of the power function
(0.00) 3 x > 7 implies that ¢ < . we hence get

#(0) < 9(@).
On the other hand we have M(c) = ¢. M(d) = d. whence
Glgle) =", Gled) =d'™".
The increasing monotonicity of G implies that

17 = Gle(e) < Glp(d) =d'™".

Since, for r > 1. the power function (0,00) 3 x ~ X7 is decre:
conclude that d < c. This contradiction proves that Fix(M) is an interval.

As the proof of the fact that Fix(M) is an interval also in the second case when
M(x) > x forall x € (c.d) is analogous, we omit it.

Now put

a:=infFix(M). b

sup Fix(M).
Accore

10 what we have already proved.

0<a<+oo. ash 0<bs+oo
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By the continuity of M we have Fix(M)
account (12), we get

[a.5] 0 (0.00). Hence. taking into

o(x) =G\ (x'""). x€la.b]N(0.00).

1fb < oo then we have either M(x) < x forall x > b. or M(x) > x forall x > b.
I the first case occurs then. for all x > b,

Jim 700

whence. by (14) and the continuity of D.
D(x)=D(). x>b.
Assume that M(x) > x for all x > b. Then, for every x > b.
Jim M) =
and. for the same reason,
D(x)=D(b). x>b.

Now the definition of D and the relation b € Fix(M) imply that

-1 pier
e e k| U [0 e
160 < a < oc. ina similar way we show that
it
o= gov<a

ar
Thus we have proved that every continuous solution ¢ : (0.00) — (0.50) of
equation (6) must be of the form (10). Since it s easy to verify that the function
(10) satisfies equation (6). it completes the proof in the case when M is increasing

Now assume that M is strictly decreasing. Then, by the definition (7) of M we

would have =
G"( ("). x>0

)

78

Because > 1and G is strictly increasing. the function ¢. being the superpesmon
of increasing function G and the decreasing function (0.00) 3 ¥ f
would be decreasing in (0. o). Then the left-hand side of (6). s the superposition
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of two decreasing functions ¢ and M. would be strictly increasing. On the other
‘hand. the right-hand side of equation (6) is of the form

GEXTPM@)P. x> 0.

Since M is strictly decreasing, the superposition of M and the power function
(0.00) 3 x = x? with p > 0 is decreasing. The functions ¢ and the power
function (0.00) 3 x — x7 are also decreasing. Thus the right-hand side of
equation (6) is strictly decreasing. The obtained contradiction proves that this case

cannot happen. The proof is completed. o

Remark 1.3. In the case when a = 0 and b = +oo the continuous solution (10)

has the form
9(x) =671 x>0

Theorem 14 Let the numbers p € . p > 0.r € (0.1) be fived. Suppose that
G (0.50) = (0.00) s continuous and strictly increasing and such that

v>0f =

i
sup{x”_”)/’ : \->n} o (16

Then a continuous function ¢ : (0.0¢) = (0.9 satisfies equation (6):

9l Gle()] = P Ve)[Ge))P. x> 0.

if, and only if, there exists a set K C N, such that either K = @ or K =
1} for some n € N or K = N, and a family of pairwise disjoint open
intervals {(@k bg) © (0.09) s ax < bg.k € K} such that

6-1(al- O
(7; _(41, P oap<x<bp. keK. (7
o o
and
00 =G, xe 0.0\ | (@xbr). (s
kK

Proof. Suppose that a continuous @ : (0.00) = (0.00) satisfies equation (6).
Defining the functions M. D : (0,00) > (0. o0) by formulas (7) and (8) we can
write equation (6) in form (9). Since the function (5) is one-to-one (0.00) =
(0.00). Lemma | implies that M is one-to-one as well. By the continuity of G
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and g the function M is continuous. Thus M is strietly monotonic. Denote by
Fix(M) the set of fixed points of M. It s easy to see that

Fix(M) = {x > 0:¢(x) = 67 (7)),

We shall show that Fix(M) # 0. If M is decreasing then, clearly. Fix(M) # 6.
Suppose that M is strietly increasing and, for the indirect argument, assume that
Fix(M) = 0. The continuity and strict monotonicity of M implies that either
M(x) < x forall x > 0or M(x) > x forall x > 0. In the first case, from the
definition of M and the monotonicity of G we would have

o) <G 1TN). x > 0. (19)

On the other hand. the continuity of M and D, the monotonicity of M. and equa-
tion (9). imply that
D((0.09)) = D(M(1). 1)).

Hence, setting

inf D(M(1).1)). € = sup D(M(D). 1))

we get
0<c=DW)C <0 x>0

From the definition of D we obtain the inequality
cx? Sg(x) CxP. x>0, 20)

whence, by (19).
0<ex? <G x>0

cr=D/P we obtain

Replacing here x by (£)!/7 and seting ¢;

G(x)

T < ¥>0

which contradicts the assumption (16).
In the case when M(x) > x for all x > 0. from the definition of M and the
striet monotonicity of G we would have
o(x)> G x>0,

whence, by (20),
0<G7Ix!I ) < CxP. x>0,
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Replacing here x by (%)"/7 and setting Cy 1= €~/ we obtain,

which contradicts the assumption (15). Thus Fix(M) is nonempty. Since Fix(M)
is closed, the set (0. 50) \ Fix(M) is a sum of at most countable family of pairwise
isjoint open intervals. Consequently.

0.0\ Fix(M) = | (@.b0)

where either K = @ or K = {1.2.....n} for some n € N or K = N. Hence

Fix(M) = (0.00) \ | (ax. by).

and. from (12).

@) =671"). xe .00\ | @by

Assume that K # 0. If x ¢ Fix(M) then there exists exactly one k € K such that
. bg). The continuity and monotonicity of M imply that either M(x) < ¥
forall x € (ag. bg) or M(x) > x for all x € (ag. b). In the first case, making
use of the continuity of D and (9) we obtain, for all x € (ag. by).

D(x) = Dlag).

If M(x) > x forall x € (k. by). then. for all x € (ax. by).

D(x) = Dlby).
“The continuity of D implies that D(ag) = D(bg). Hence, in both cases, we get
G}~ G o}
o= O e by
of o

It is not difficult to show that the functions (17) and (18) satisfy equation (6).
Now a similar reasoning as in the proof of previous result shows that M cannot
be decreasing. This completes the proof. o

Remark 15.1f K = 0 then Fix(M) = (0.0c) and the continuous solution of
equation (6) is of the form ¢(x) = G~ (x'~") forall x € (0. 00).
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Remark 1.6. Note that composite functional equation (6) s “conjugate” t0 itera-
tive functional equation (1) in the sense discussed in the Introduction, only in the
case when p = r = 1. Then equation (6) becomes equation (4):

PG = prGle(x). x>0,

examined in [10].

2 Application to invariant curves

We begin this section with the following

Definition 2.1. Let D C ®2 be an open and connected setand 7 : D — D.
T = (/.2) be a continuous selfmapping of D. Assume that / C R is an interval
and ¢z 1 — R a continuous function. The graph W, := {(x.¢(x)) : x € I} of
the function ¢ is called an invariant curve under the mapping T

- ()€ D forallx € I:

+ forevery x € I there is x' € I such that T((x.0(x))) = (x'. ¢(x")).

Remark 2.2. The graph of the function ¢ : / —  is an invariant curve under the
wansform T = (. g). if the function  satisfies the composite functional equation

Pf(x.0() = glr.g(x). ¥ el
Let us note the following easy to verify assertion.

Remark 2.3, Let . € R be fixed. Fora given continuous function G : (0.20) >
(0. 00) define the functions f. g : (0.00)* — (0.oc) by

16 P D[G())P.

‘Then the graph of the function ¢ : (0.50) — (0, 00) is an invariant curve under
the mapping T = (/. g) iff ¢ satisfies functional equation (6).

Hence, applying Theorems 1 and 2 of the previous section we obtain the fol-
lowing:

Corollary 24. Let p.r € R, p > 0.7 > 1. be fixed. Suppose that a function
(0.00) = (0.00) is continuous and strictly increasing. Then the graph

AUTHOR'S COPY | AUTORENEXEMPLAR



AUTHOR'S COPY | AUTORENEXEMPLAR

A composite functional equation and invariant curves 131

of a continuous function ¢ : (0.90) = (0.05) is an invariant curve under the
transform T : (0.20)> = (0.00)? given by

Tx.y) = ("GP DGIP). xy >0, @n

. and only if, there exist a.b € [0.00).a < banda # bifa = 0orb = .
such that o

E xP. 0<x=a
Gl ). a<xsh

WD s,

where G=" denotes the inverse function of G.

o)

Corollary 2.5. Let p.r € R, p > 0.7 € (0.1). be fixed. Suppose that a function
G 2 (0.00) = (0..00) is continuous, strictly increasing and such that

G . L[ 6w
inf {7 X > o} sup{ o x> 0)
Then vlvegraphalnvmumu(m\'_/mlnmna (0,00) = (0. 00) is an invarica curve
under the transform T : (0. 2 — (0.00)* given by (21) if. and only if, there

el
r K = N. and a family of pairwise dis
i = by.k € K} such that

<.} for somen € N
oint open intervals {(ag. by) € (0.00) :

G, _ 6T
2 I gy R O

@(x; =
i k

XP. ap<x<bkeK.

and
o)

=671, xe(0.00)\ | (@ br).
kex

Applying Remark 5 and the main result of [10] where the case p = r =
considered we obtain:

Corollary 2.6. Suppose that a function G : (0.00) = (0.00) is contintous,

strictly increasing and such that 1 € G((0.00)). Then the graph of a continu-

ous function ¢ : (0.00) > (0.00) is an invariant curve under the transform
(0.00)* = (0.00)? given by

T(x.y)

6.6, x.y>0.
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i and only if, there exist a.b € [0.0c].a < banda # bifa = 0orb = o0
such that

where G™1 denotes the inverse function of G.

Recall that, under some additional regularity assumptions. the existence and
uniqueness of a local invariant curve in a neighbourhood of a fixed point of & map
was proved by Hadamard [2], Laugs [9]. Montel [11] (cf. also Kuczma [8] for
some other references).

‘The continuous solutions of the functional equation ¢(x + ¢(x)) = P(g(x)).
coming from @ global-type problem of invariant curves. were considered by
Jarczyk [3).
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