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Generalized weighted quasi-arithmetic means

JANUSZ MATKOWSKI

Abstract. Under some natural assumptions on real functions f and g defined on a real
interval I, we show that a two variable function My , : I> — I defined by

My o(z,y) = (f +9) ' (f(z) + 9(¥)

is a generalization of the quasi-arithmetic mean. Necessary and sufficient conditions for:
symmetry, quasi-arithmeticity, weighted quasi-arithmeticity, homogeneity of My, as well
as equality of two such means are presented.
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1. Introduction

Let I C R be an interval. A function M : I — R is called a mean in I? if
min(z,y) < M(z,y) < max(z,y), z,y€l.
If, for all z,y € I,z # y. these inequalities are strict, M is called strict; and
symmetric, if M(z,y) = M(y,z). If M is a mean in I? then M(J?) = J for
every subinterval .J C I; moreover M is reflezive, i.e.
M(z, )

Every reflexive function M : I? — I which is increasing with respect to
each variable is a mean.

Recall that for every continuous and strictly monotonic function h: I — R
and p € (0.1) the function M : 2 — I,

M (z,y) = h~! (ph(z) + (1 —p)h(y)), =.yel,

xz, wel
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is a mean, and it is called a quasi-arithmetic weighted mean. The function h is
called a generator of the mean and p its weight. Of course, every quasi-arithme-
tic weighted mean is increasing with respect to each variable and continuous.
If p = 4 we write M1 := 1,[7'2 that is

MW(z,y) == b~ (w) . BYel

and M!" is called a quasi-arithmetic mean. The family of quasi-arithmetic
weighted means is one of the most important classes of means (cf. [1, Chap. 17],
2)-

In Sect. 2 of the present paper we show that under some simple and natural
assumptions on the functions f,g : I — R, the function My, : 12 — I defined
by

My g(z.y) = (f +9)7(f(2) + 9(y)

is a mean or a strict mean, and it is a generalization of the weighted quasi-
arithmetic mean. Mor: T Some n ary and sufficient ditions for My , to
be symmetric, quasi- arlthmenc or weighted quasi-arithmetic, are given (Theo-
rem 1). In Sect. 3 we consider the equality problem My , = Mp. (Theorem 2).
The equation

plu+v) =v(u) +v(v), uevek,

where ¢:J —R,v: K — Rand ¢: (J + K) — R are the unknown functions
and J,K C R are some intervals, appears in the proofs. It is nonstandard
Pexider functional equation, as the domains of the unknown functions are
not the same. In section 4, applying the Pexider version of Cauchy functional
equation, we determine all homogeneous My, means (Theorem 3). In the last
section we remark that the definition M, can be easily extended to the case
of k-variable means My, s, : I* — I.

2. Basic results and definitions

Lemma 1. Let I C R be an interval. Suppose that the functions f,g: I — R
satisfy the following conditions: the function f+g is continuous, strictly mono-
tonic and

FI) +9(I) S (f +9)D). 1)
Then the function Myg: I x I — R,
Myg(2,9) = (f +9)7 () + 9(v)). &)

is correctly defined: moreover the jallowing conditions are equivalent:
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(1) My, is a strict mean;
(2) the functions f and g are continuous and strictly monotonic of the same
type monotonicity as the function f + g.
Proof. Inclusion (1) guarantees that the definition of My 4 is correctly stated.
Assume that f + g is strictly increasing.
If My, is a strict mean then, for all 2,y € I, <y,
< Myg(z,y) <y,
which, by (2) and the increasing monotonicity of f + g, can be written in the
form
f(@) +9(x) < f(z) + 9(v) < f(y) + 9 (),
and, consequently,

9(x) <g(y) and f(z)<f(y)
which proves that the functions f and g are strictly increasing. The continuity
of f and g follows from the assumed continuity of f + g.
‘We omit the similar argument in the case when f + g is decreasing.
If f and g are continuous and either both strictly increasing or both strictly
decreasing, then it easy to verify that Mj,, defined by (2) is a strict mean. [
In a similar way one can prove the following
Lemma 2. Let I C R be an interval. Suppose that the functions f,g : I — R sat-
isfy the following conditions: the function f+g is continuous, strictly increasing
(respectively, strictly decreasing) and
F(D) +9(I) € (f +9)(I).
Then the function Myq:1x I —R
Myy(@,y) = (f +9)7'(f(@) + 9(v)).
is correctly defined; moreover the following conditions are equivalent:
(1) My, is a mean;
(2) the functions f and g are conti and nonds ing ( ly,
nonincreasing).
Remark 1. Note that condition (1) implies that f(I) +g(I) = (f +¢)(I), and
there is no a non-trivial subinterval of I on which both f and g are constant.
Corollary 1. Let I C R be an interval. Suppose that the functions f,g: I — R
are continuous and monotonic.
(1) If f and g are both strictly increasing or both strictly decreasing then the
function My, defined by (2) is a strict mean.
(2) If f and g are both increasing or both decreasing, and there is no a non-
trivial subinterval of a common constancy for f and g, then the function
Mg defined by (2) is @ mean.
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Definition 1. (1) If the functions f and g satisfy the conditions of Corol-
lary 1.(1), then Mj,, is called a generalized weighted strict quasi-arith-
metic mean in I.

(2) If f the functions and g satisfy the conditions of Corollary 1.(2), then
My, is called a generalized weighted quasi-arithmetic mean in I.

The functions f and g are called generators of the mean Mj,,.

Theorem 1. Let I C R be an interval and let f,g: I — R. Suppose that My,
is a generalized weighted quasi-arithmetic mean in I. Then
(1) Mj, is symmetric if. and only if, there is ¢ € R such that

g(x) = f(z)+¢, z€l;

(2) M;, is quasi-arithmetic if, and only if, there is c € R such that
g(x)=f(z)+ec, z€l;
(3) My, is equal to a weighted quasi-arithmetic MY with a strictly mono-

tonic and continuous generator h : I — R and a weight p € (0,1), that
is,
Myg(z,y) = M)z.y), wzyel,
if, and only if.
f@) = aph(x) +b, g(z) =a(l —p)h(z) +¢. x€l,

for some a,b,c€R, a #0.

Proof. By (2), Mj,, is symmetric iff
9(x) - f(@) =9(v) - f). wyel

that is iff the function g — f is constant. This proves part 1.

To prove part 2 assume that My, is quasi-arithmetic. Since any quasi-
arithmetic mean is symmetric, in view of part 1, there is a constant ¢ such
that g(z +c for all z € I. Conversely, if g(z) = f(z) +cforallz €I,
then (f + g)(x) = 2f(x) + ¢ for @ € I. Hence (f +g)~*(u) = f~(%52) for all
w e (f +g)(I), whence, for all z,y € I,

Myq(x,y) = (f +9)7'(f(2) + 9(v))
s T)+ +o)-—c
—f .(f( ) (f(zy) ) )=M/(I)y),

50 My 4 is a quasi-arithmetic mean of a generator f.

To prove part 3, suppose that My, is a weighted quasi-arithmetic mean.
Thus there is a continuous and strictly monotonic function h : I — R and a
number p € (0,1) such that

Myg(z.y) = h™" (ph(z) + (1 = p)h(y)). =y el
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that is,
(f +9)7 (f(@) + 9(v)) = k™" (ph(z) + 1 - (). =z.yel.
Setting a := (f + g) o h~" and u = h(z),v = h(y) we can write this equation
in the form
a(pu+(1-pv) = f(h7 (W) +g(h™'(v), w.v € h(I).
Take an arbitrary ug € int h(I) and define 3 : (h(I) —uo) — R by
B(u) == a(u+uo) — a(uo), u < (h(I)—uo).
Hence, for all u,v € (h(I) — uo), we have
B(pu+ (1 —p)v) = a(pu+ (1= p)v+uo) — alu)
= a(p(u +uo) + (1 = p)(v + uo)) — a(uo)
= f(h" (u+ o)) + g(h™} (v + uo)) — a(uo),
that is, for all u,v € (h(I) — ug),
Bpu+(1—p)) = F(h~(u+ug)) + g(h~" (v + uo)) — a(uo), (3)
Since 0 € (h(I) — o), and B(0) = 0, taking here first v = 0 and then u = 0,
we obtain
F(h™ (u +u0)) = B(pu) — g((h™ o)) + a(uo), & (h(I) —uo),  (4)
and
9(h™ (v +uo)) = B((1 = p)) — f(h™ (u0)) + alwo). v € (A(]) = wo). (5)
Setting these functions into (3), and taking into account that 5(0) = 0
implies the equality
a(uo) — f(h™"(u0)) — g(h™!(u0)) = 0, (6)
we get
B(pu+ (1 —p)) = B(pu) +B((1 = p)v), u.v & (A(I) - u),
or, equivalently,
Blu+v) =B +Bw), uephl)=up). ve(1-p)(h(I)=uo)
Since 0 € [p(h(I) — uo)] N [(1 — p)(h(I) — uo)], the function 3 has a unique
extension to an additive function on R. Denote this extension by 3. By the

assumptions of f, g, h. the function a is strictly monotonic, and consequently,
so is 3. It follows that, for some (1) # 0, we have

B(u) = B(1)u, ue (h(I) = uo).
Obviously, the form of 3 does not depend on choice of ug. Now, from (4), (5)
and (6), we obtain
F(h™ (@) = B)pu+ f((h~ uo)), u € h(I),
g(h™ () = B1)(1 = p)u+g(h~" (o)), u € h(I).
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Consequently,
f(z) = aph(z) + b, g(z) =a(l —p)h(z)+c. zET,
which completes the “only if” part of the proof.
Since the reverse implication is easy to verify, the proof is complete. m]

3. Equality of generalized weighted quasi-arithmetic means

Theorem 2. Let I C R be an interval and let f,g,F,G : I — R. Suppose
that My, and Mg are generalized strict quasi-arithmetic means in I. Then
Mp = My, if. and only if, there exist a,b,c € R, a # 0, such that

F(z) =af(z)+b, G(z)=ag(z)+c, ze€l
Proof. Note that without any loss of generality we can assume that 0 € int(7).
To show it choose a point zo € int(I) and define the functions f,§, F,G :
(I —20) = R by

f(@) = f(z+20), ()

F(z) := F(z +x0), G(z):=

Now equality Mr, = My in I x I implies that Mp ¢ = Mj ; in (I - zo) x
(I — xg) and, obviously 0 € I — xq.

Suppose that Mg = Mj,, in I x I, that is

(F+G) M (F(2)+GW) = (f +9)'(f(@) +9W). z.yel (M)

It is easy to verify that the functions f+k, g+1, F+m, G+n, where k, I, m, n are

arbitrary fixed real numbers, also satisfy this equation. Taking k = — £(0),1 =

—g(0),m = —F(0),n := —G(0) we can replace f,g,F,G by the functions

which satisfy the considered equality and all have value 0 at 0. Thus, in the

sequel, we may assume that

£(0) = 9(0) = F(0) = G(0) =0.

Putting

ei=(f+9)o(F+0)7, ¢=Fof, yi=Gog™ (8)
we can write Eq. (7) in the form

elu+v) =y +v(@), ue f(I),vegl),
where (0) = 1(0) = 7(0) and 0 € Int £(I) N g(I). Setting here v = 0, we get
@(u) = (u) for all u € f(I) and, setting v = 0, we get p(v) = y(v) for all
v € g(I). It follows that
plu+v) =) + o), uef(I), vegl).

Since ¢ is additive in a neighborhood of 0, it has a unique additive extension
on R. We can denote this extension by ¢. The continuity of ¢ (at least at 0)
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implies that there is an a € R, a # 0, (cf. [1, p.15, Corollary 5], 3, p. 121])
such that ¢(u) = au for all u € R. It follows that
ou)=au, uef(I)+g(I); vw=au, uef(l); ~yw=au, ueg(l).
Hence, taking into account the above i of the g lized
quasi-arithmetic mean with respect to additive constants of their generators,
and the second and third definitions of (8), we infer that

F(z) = af(z) +b, G(z)=ag(z)+c, zel,

for some b, c € R. This completes the “only if” part of the proof. The converse
implication is obvious. o

4. Homogeneity

Theorem 3. Let f.g: (0,00) — R be such that My, is a generalized weighted
quasi-arithmetic mean in (0,00). Then Myq is homogencous if, and only if,
either, for some a.b,c,d € R, ac >0,

f(z) = alog(x) +b, g(x) = clog() +d. z>0;
or, for some p,a,b,c € R, p#0, ac >0,
f(z)=a2?+b, gz)=ca?+d, z>0;

Moreover, in the first case,

My g(z,y) = z77y™=, z,y>0;

and, in the second case,

' 1/p
My g(z,y) = (mz a+cy") D iy >0y
thus My,q is a weighted Holder or power mean.
Proof. Suppose that Mj,, is homogeneous. Thus
(f +9)7"(f(tx) + g(ty)) = t(f +9) 7 (f(2) +9(3)), t.2.y>0.

Putting, for every t > 0,

eoi=(FHg)o[tf+9)7" ], W= FoltfT), wmi=golts™). (9
we can write this equation in the form

Pelutv) =v(w) + %), we f((0,0)), veg((0,00)), t>0.

A similar reasoning as that applied in the proof of previous result shows that
for every t > 0 there are real numbers k(¢), m(t). n(t) such that

Yo(u)=k(t)u+m(t), uef((0.00)) 7(v)=k(t)v+n(t), v e g((0,00)).
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For every t > 0 the functions ¢(f + g)~', tf~" and tg~" are, respectively, of
the same type monotonicity as (f +g)~%, f~! and g~ Since the composition
of two strictly monotonic functions of the same type monotonicity is strictly
increasing, for every t > 0, the functions v; and 7; are strictly increasing, we
have

k(t) >0, t>0,
and, by (9).
f(tx) = k(t)f(z) + m(t), g(ta) = k(t)g(z) +n(t), t.z>0.

Applying a multiplicative version of Corollary 2 in [1], p. 242, we infer that
either

k(t)=1, t>0,
and
f(z) = alog(z) +b, g(z)=clog(x)+d, z>0,
or there is a p € R, p # 0, such that
k() =17, t>0,
and
f@) =az? +b, gx)=ca’+d, z>0.
As the generators of the generalized weighted quasi-arithmetic mean must be
of the same type of monotonicity, we have
ac > 0.
This completes the proof of the “only if” part of the theorem. The remaining
m]

statements are easy to verify.

ighted quasi-:

5. Remarks on d k-variable

means My, ... s,

Let us note that the k-dimensional counterparts of Lemmas 1 and 2 are valid.

Lemma 3. Let I C R be an interval and k € N, k > 2, fired. Suppose that
the functions fi,..., fx : I — R satisfy the following conditions: the function
fi+ -+ fi is continuous, strictly monotonic and
HI) 4+ filD) S (Fr 4+ fi)(D- (10)

Then the function My, ..z, : I — R,

Mpyop(@neeak) = (fu 4o+ f) T (@) + o+ filew), (1)
is correctly defined; moreover the following conditions are equivalent:
(1) My, ...y, is a strict mean;
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(2) the functions fi,..., fi are continuous, strictly monotonic and of the
same type monotonicity as the function fy +---+ fi.

Proof. Inclusion (10) implies the correctness of the definition of My, . f,.
Assume that fy +--- + fi is strictly increasing.

Suppose that My, . j, is a strict mean. Take i € {L,..., k} and z,y €
I,z <y, and put a; = z for all j € {1,...,k},j # i, and 2; = y. From the
definition of the mean we have

z=min(z1,...,2k) < My, 5 (1500 @)y
whence, by (11) and the increasing monotonicity of fi + -+ + fi,
fi(@) < fiy):

which proves that, for each i € {1,...,k}, the function f; is strictly increasing.
The continuity of each f; follows from the assumed continuity of fy +--- + fx.

We omit similar argument in the case when f) + - -+ + fi is decreasing.

If fi.....fx are continuous and all either strictly increasing or strictly
decreasing, then it easy to verify that My, s defined by (11) is a strict
mean. m]

In a similar way as Lemma 2 we can prove the following

Lemma 4. Let I C R be an interval and k € N, k > 2, fized. Suppose that
the functions fi,..., fx : I — R satisfy the following conditions: the function
fr++--+ fi is continuous, strictly i ing ( ively, strictly ing)
and

A+ + fild) S (Fr 4o+ fi)(D)-
Then the function Mj, ...
My (@1, os2i) = (fr oo+ fi) T () + 0+ filz),
is correctly defined; moreover the following conditions are equivalent:
(1) My, 5 is a mean;
(2) the functions fy..... fr are continuous, of the same type (weak) monoto-
nicity as the function fi + -+ + fi.
Remark 2. Note that condition (10) implies that
A+ felD) = (oo f)DD,
and there is no a non-trivial subinterval of I on which all functions fi, ..., fi
are constant.

Corollary 2. Let I C R be an interval. Suppose that the functions fi,.

I — R are continuous and monotonic.

(1) If fuo.... fr are strictly increasing (strictly decreasing) then My, .. j,
defined by (11) is a strict mean.

2



212 J. MATKOWSKI AEM

(2) If fis.... fi are increasing (decreasing) and there is no a nontrivial sub-
interval of I on which all functions fy , fi are constant, then My, . j,
defined by (11) is a mean.

Definition 2. (1) If the functions f1, fr : I — R satisfy the conditions of
Corollary 2.(1), then My, . s defined by (11) is called a generalized strict
weighted quasi-arithmetic mean in I.

(2) If the functions fy,..., fr : I — R satisfy the conditions of Corol-
lary 2.(2), then My, s, defined by (11) is called a generalized weighted quasi-
arithmetic mean, in I.

The functions fi,..., fi are called generators of the mean My, 7, .
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