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Abstract Some special functional equations involving
means and related to a problem of reducibility of some
classes of correlation functions are considered. We show
some characterizations of the reducibility problem under
several choices of the mean operators and different weak
regularity assumptions imposed on the involving functions.

find that mean-generated correlation functions are
completely irmeducible, in the sense that, for this broad
class of correlation functions, there does not exist a non-
rivial solution associated to the Perrin-Senoussi problem.
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1 Introduction and preliminaries

Spatial satistics i the major image

of the most challengi

s problems for those fields dealing
enor

ph

One important scienifc fild where theory and practice
of random fields are combined in a unique way is the con-
tinuum _mechanics discipline (Ostoja-Starzewski 1998,
2007). Contimuum mechanics hinges on the concept of @
Representative Volume Element playing the role of a
‘mathematical point of a continuum field approximating the.
irue material microstructure. Indeed, continuum mechanics
is naturally suited to deal primarily with media exhibiting
spatially homogeneous propertis. As theoretical models it
is first considered strict-sense and wide-sense stationary
random fields. Many models of microstructural random-
ness—e.g., Boolean models and tessellations—possess such

i isti hly desira
stochastic homogenization. Real materials. however, often
lack these nice behaviors. In this sense, we can also find &
large variety of I\x:mmn regaldmg the use and interest in
lom fields when modeli

analysis, field trials, remote sensing, and environmental
statstics. The standard methodology in spatial statistics is
essentially based on the assumption of stationary and iso-
tropic random fields. Such assumptions might not hold in
large heterogeneous fields, and thus non-stationarity is one

materials (see. for =xnmpl=. Morikawa and Kameda 2001;

A classical problem in environmental transport is deter-
mining the space~time concentration resulting from the
introduction of solate in a spatialy variable heterogeneous
flow field. If the latter has a complex spatial distribution. as
i the case in every natural flow, it can be expected that the
solute concentration lso develops a complex spatial dis-
The
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ibution,
spplcaions of quantitative to0ls in contaminant hydroge-
formalized risk assessment of one Sort or
e important difficulty that the hydrogeolo-
i in the application to basic flow and transport is
dealing with non-stationary fields and dealing with large
scale heterogeneity. This clearly limits the apphcahxluy of
stochastic methods in subsurface hydrology (Ginn 2
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Sifin 2006). Thus, the analysis of the associated non-sta-
tionary random field through the transformation into sta-
ks ety poim in this context (Kapoor and Kitanidis
1997: Kabala

Env ammnlal pellunon is another large field where
non-stationary random fields are considered for interpola-
tion methods (see. 25 an example, Rojas-Avellaneda and
Silvén-Cirdenas 2006)

A dominant part of the recent statistical literature
(Christakos and Hristopulos 1998: Christakos 2000) reck-
ons that stationarity can be an unrealistic assumption with
respet to the great majority of geostatistical applications.
‘Thus. it would be desirable to have covariance models that
o not depend exclusively on the separation vector between
two points of the spatio-temporal domain. Unfortunately.
only few models for non-stationary spatial data have been
proposed.

We thus pose the nawral question: given & non-sta-
tionary random field. is there any appealing statistical
philosophy that allows to treat it through stationary tech-
niques? This problem is well-known by the geostatistical
community, and 2 fertile literature can be found under the
nomenclature of Generalized Random Functions (Rozanov.
1989, 1998; Pugachev and Sinitsyn 2002; Ruiz-Medina
et al. 2003). These approaches are based on the fact that &
non-stationary random fild can be reduced to & stationary
one through differentiation of some order

Aliernatively we can talk abous direct redici
based on the reduction of a non-stationary covariance
function to a stationary one. For a given two-place positive
definite function (ie.  function of two arguments that is
posive definite on the product space where the arguments
are defined) find 2 characterization for the
existence of a one-place positive definite function R : R —

R such that RO) = 1, and a bijective deformation ® :
R — R such that

) = ROK) = (),

RxR

xyER m
Correlation functions satisfying Eq. | are called
stationary reducible. The problem of reducit
Stationary covariance functions has beenpersistently
emphasized by early literature, as it allows for analyzing &
non-stationary phenomenon through standard. stationary
techniques that are much more accessible from both
analytical and computational points of view.

re are two main motivations for our procedure based

posing an aliemative 1o non-stationary modeling
through reduction to stationary situations. The first moti
vation comes from the fact that many models of micro-
structural randomness, concentration and random flows,
environmental transport, local solute dispersion, water
solute transport and real-world applications of stochastic
hydrogeology are based on homogeneity characteristics,

@ spinger

and they are highly desirable in stochastic homogenization.

b atthe same ime any of these scenific discipines eed
models. Th

one. The statistical analysis of most of the random fields

arising in the nawral/environmental problems just men-

tioned, need smooth realizations and for which the
assumption of weak stationarity is highly desirable. Fur-
therr <k sionarity allows for idenifying other

it of e phenomena under study,
lerity (in terms of mean square continuity and differenti
ility) and fractality (associated Haussdorff dimension).
Finally, simulation of such materials works quite betir in
the weakly stationary case, as the tumning band method

hows.

‘The work of Sampson and Gutiorp (1992) is particularly
worth being mentioned as it represents the first approach
dedicated t0 this kind of problems. The authors introduce a
arametric approach to global estimation of the spatial

they use the spatial dispersion as a natral metric for the
spatial covariance structure and model it as a general
smooth function of the geographic coordinates of station
pairs. Then. Multidimensional Scaling (MDS) is used to
transform the problem into one for which the covariance
structure, expressed in terms of spatial dispersions, is sta-
tionary and isotropic. The Szmpson and Gurorp (1992)
approach follows the following intitive approach. Sup-
pose the covariance mmmn associated to some spatial
random field is not s ie. it does not depend on the
spatial lag vector. The pmblem can be simplified by
looking at some deformation of the geographic space into &
new space that allows for the covariance to be sttionary.
To do this, they look for & bijection that allows for modi-
fying the dispersion function into 4 stationary veriogram.

rmally. Sampson and Guttorp’s approach relates to
the more general following problem (which wil be called
hereafter as the Perrin-Senoussi. problem): let r(-,") :
& x R — R a positive definite function. Find a pair (®, R),
— R and a bijection ® such that
= R([0() - O(x)])
for all (x,y) € R x .

in and Meiring (1999) swdy the uniqueness of

(®.R) under different conditions. With this method, many
sets of environmental data have been analyzed: solar
radiation (Sampson and Guttorp 1992), acid precipitation
(Guttorp et al. 1992; Guttorp and Sampson 1994; Mardia
and Goodall 1993), air pollution (Brown et al. 1994) and
tropospheric ozone (Guttorp et al. 1994; Meiring 1995). In
the one-dimensional case, Perrin and Stl\oussl(l%g e
4 characterization of the non-stationary corelation func-
tions that can be reduced to stationarity via a dlﬂ'crcnusb!c
deformation.
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Sampson and Gutorp (1992) refer only to stationarity
and isotropic reducibility. Perin and Senou
nariy reducibility as well without restricting 10 iso-
wopic conduions (hus analyzing (1). This is the approach
we are taki

Finally, (e]lomng the work of Sampson and Guttorp on
the use of MDS as a methodological approach in mz
analysis of non-stationary spatial covariance structures
Vera et al. (2008, 2009) propose a modification consmmg
of including geographical spatial constrains as they note
that approximating dispersion by & non-metric MDS pro-
cedure offers, in general, low precision.

As a unified approach that takes into account all previ-
ously mentioned non-stationary problems and applications,
in this paper we face a problem of reducibility that can be
sketched s follows. We consider continuous non-station-
ary stochastic processes whose associated correlation
function is generated by a two-variable mean operator M.
and two continuous and non-vanishing correlation func-
tions Cy, C3 defined on the real line,

M), ) ()
Recall that @ two-variable mean operator M is @ mapping
M 20, 1] % (0, 1] = (0, 1] that satisfies the properties of
‘commutativity, idempotency, monotonicity, and self iden-
tity (Yager 1996). It is important to note that this procedure is
casily generalized o the case of rdefined on 2 x B, asthe

r(x,y)

on the smoothness assumption. In addition. the class of

is of panicular interest for statistical modeling, as they
were shown (Porcu et al. 2009) to possess some desirable
mathematical I'enmrts interms of smoothness, away fromthe
of the associated Gaussian random field

Fanction equmom have been widely used o give
answers 1o important problems related to scienific disci-
plines as diverse as mean values theory (Matkowski 1999),
group theory, ideal gas theory, conditional Cauchy equa-
tions, economy and probability distributions. We refer to
Aczél (1966) and references. therein for an_ extensive
review of functional equations applied o these disciplines.

solutions we find for correlation functions of the

type (2) are actually corollaries of results that will be
presented in a very general seting. In particular, we shall
make reference to funcional equations of the type
M(a(x),b(s)) = ROG) - O)), xyER, @
for a,b,®,R functions on which some weak regularity
conditions will be assumed. Then, these general results will
be applied to the Perrin-Senoussi problem (Perrin and
Senoussi 1999, 2000; Pemin and Meiring 1999, 2003;
Genton and Perrin 2004).

As for the mean M generating (2), we shall show several
resulls of (4 under the cases of: x) Increasing means: (0)

to this
case Permissiilty crteris, forsome lasesof means M, are
n in & recent paper by Porcu et al. (2009). Thus, the

reducibiliy of comrelation structures of the type r
In paricular, we pose the follwmg pmblem Talz a
mean M: (0, 11% (0,11 - (O 1] a R

i= 1.2, continuous and non»bams)\mg slauonxry coml
tion functions. Does then exist a positive definite function
2 — Randabijective deformation ® : R — R such that
M(Ci(x),C2()) = ROG) - O()), xyeR?  (3)
5.

pes
mean operators M can be used, (b) which regularity
conditions should be imposed over the involving functions
R and ®. We study particular classes of functional equations
tht allow o fnd some solons vithout scy socthness

means and (¢) For any choice of the mean.

‘The remainder of the paper is organized as follows. In
Sect. 2 we present some basic facts about the Perrin-
Senoussi problem and the type of means used in this paper.
In Sects. 3, 4 we show the general results for the solution
of the functional equation (4). respectively. for the cases of
incrasing and nor-increasing means. In Sect. 5, we give
an i problem prope

discussion.

‘The proofs of the theoretical resulis in Sects. 3, 4 can be
found in the Appendix.

2 Setup
This section is largely expository and reports the basic

definitions and notations about the type of means used in
is paper.

novelty with respect to the rest ef i i e
this problem. And here is one of the key points in our
o : 7

Senoussi 1999, 2000; Perrin and Meiring 1999, 2003) have
assumed smoothness on the associated random field through
the comelation function. This is not physically realistic in
‘many of the natural environmental problems we could fece.

1/ C Rbean
imterval. A function M : 2 — R is called a mean in an
interval 1 if

min(u,v) < M(,¥) < max(u,v), w,vEl.

I these inequalities are strict for all w, v & J, the mean M is
called sricr. If M is a mean, then, of course, M is reflexive .
(v, %) = x for all x & I, and M(J x J) = J for every

Qspringr
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subinterval J C I: in pamcu!xr MU x D=1 e M
in 1is symmetric it M(s, ) = M(:20) for all %,

In this paper we shal i give some eorieal reaulh
involving classes of increasing means as well as non-
increasing means.

(@) Increasing means.

Remark 1 Every function M : I — R which is reflexive
Ge. such that M(x, ) =x for all xe ) and (sricdly)
ot )

Myelw.y)

0 @) e 0

is  strict symmetric mean in 7.

‘The function My, is called a Beckenbach-Gini mean of
the generators f and g.

1, (x € 1), the My
metic mean M. Taking g(o)
obtain the e mean M- 0, 5

s Gt
for e, we
©. ).

In the sequel such a mean is called an increasing mean.

Let/ C R be an interval, ¢ : / — R be a continuous and
strctly monotonic function and p € (0, 1). Then the func-
tion M} : 12 — R defined by

MP(xy) = 07 (polx) + (1=p)ol)), xy €L (5)

s a surict mean on I
the mean MY is called weighted quasi- anmmerm the
function o s generator, and the numbers p and 1 = p its
weights. Note that M°‘ is symmetric if and nn|y ifp=14
In this case we write M) insiead of M, and call the
mean quﬂ:iwml‘mur: in which case the inequalities

)<M@

vel

minx,y )< max(x,y), x

are swict for all x. y € I, x # y. The function ¢ is called a
senerator of the quasi-arithmetic mean.

Remark 2 M is symmezric, continuous and M)
for every interval JCI.

Note that every weighted quasi-arithmetic mean is an
increasing mean,

Remark 3 Let 1C R be an interval and let o,
b, coninyous and sl monctoni. funcions. Then
MY = M if and only if

U =ao() +ar xel.

for some aj.a € R, ay # 0.

An important example of increasing mean, that is not &
quasi-arithmetic, is the logarithmic mean L (0.50)° —
(0.0). defined by the formula

()

This mean is a member of a broader class of the Lagran-
sean means which are increasing.
(®) Means which are not increasing

Let us now introduce the Beckenbach—(
means.

class of

Remark 4 Let I CR be an interval and let f.g:/ —
(0,00) be continuous functions such that £ is strictly
monotonic. Then the function My :  — X defined by

Q springer

M(xy) xy>0. ®)

bricfly, A is (H, M)-invarian herefore sometimes M is
called a A-complementary mean for H. Note that the
contrz-harmonic mean is not increasing.

We end this section with the following remark con-
ceming invariant means as explained below.

Remark 5 Consider K.L:* =1 continuous strictly
increasing means in 7 . There exists 2 unique continuous
(K, Linvariant mean M :
and the sequence (K. L)', n € N, of iterates of the mean-
type mapping (K. L) is pointwise convergent in I to
(M. M, that i

"Ii_n;(l(.u" =(M.M)inP.

In addition, M is strict if both K and L are strict (cf.
Vlalkewsh 1999, 2006).

Since the composition of increasing functions is an
increasing function, the mean M is alw increasing. Now,
the functional equation
MK(a(2) b)) Lae) b)) = RO() = 0),

x,y € [0,0),

reduces to the functional equation considered in the sub-
sequent Corollary 1. due to the (K, L)-invariance of the
mean M.

3 Theoretical results related to increasing mean-type
functional equations

In this section we shall deal with functional equations of
the type (4) assuming that M is an increasing mean. The-
orems 1 and 2 find an answer for the general case under
different regularity assumptions on the involving functions.
Corollary I and Theorem 3 treat analogously two very
important special cases giving rise to important conclu-
sions. In particular, the case of quasi-arithmetic means will
be emphasised.
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Recall that all the proofs of the theoretical resulis fol-
Towing in the subsequent sections of this paper can be
found in the Appen

Remark 6 Assume that some functions a,b: R — 1, @ :
ind a mean M satisfy Eq. 4. If ®(R), the range
of @, conains a non-empty open inerval, dien the

o= O(R) - O(R) = {u—v:uv € OR))

isa M:ghboumood of 0 and is contained in the domain of
the function R.

Theorem 1 Let I € R be an interval, and M : P~ be a
m-inly increasing mean. Let ® [0,00) — & be arbitrary
R~ R an even function. Assume that one of the
flmam": a.b: 0. %) = s monotonic. If (4) holds, then
are constant on 0. ) and so is R on the set
O(R) - O(R).
Theorem?2 Ler I C R be an inerval, and M : I' = Ibea
stricly increasing mean. Let @ : [0 E =
R be arbitrary funcions. Assume that the functions
a.b: [0, ) — I are monotonic in the same sense. If (4)
holds, then a. b are constant on 0. ) and so is R on the
ser {0(y) = 0(x) ¢

3.1 M is weighted quasi-arithmetic

us now consider Eq. 4, assuming M
weighted quasi-arithmetic mean as defined in Eq.

As a consequence of Theorem 1, we get the following
resul.

M, the

Corollary 1 Let 1€ R and et 91 = R be contiions
aml m.cm monoonic. Asaune that © is an

ry bijection and Ran even /mlmu/l Ifihe
/mmvon:d b: 10, %) ~ I satisfy the functional equation
M (a(x).b(y)) = R@() — ), xye€0,00), (9)

then , b and R are constant functions.

Tt should be stressed that in Theorem 1 and Corollary 1
we assume that the function R is even. Under this
assumption the functions a and b have to be constant.
Onmitting this assumption, under some other conditions on
the involving functions. we obtain non-trivial solutions as

shown in subsequent Theorem 3. Tn the case when M is
weighted q

juasi-arithmetic, and under some conditions, one

can describe effective formulas for all functions satisfying
Eq.4.

Theorem 3 Ler 1 C & be an interval, let ¢ 21 — R be
continuous and strictly monotonic and p € (0, 1. Assume
thar @ R — R is continuous and non-constant. Then @

continuous at least at one point function R : (9(R)
L% o s g BT g
funcionatqution () andoaly Fhére esstsome i€ R
such that

a) = o7 (~10(x) +8) b(x) = o' (1) — k),

XeR,

(10)
and

RO =9 (%) weo®

Remark 7 As a consequence of the above result we get
the invertibility of the function R. This is proved in the
Appendix.

-0®).

kmwk 8 Let/CR be an interval such that (0, 1) C 1.

let ¢:1—R be a continuous and stictly monotonic
function and €y — (0,1] be such that Ci(0) = 1.
Applying Theomm!\\'nhl and setting a := C;
we get €y = g7 o (~ w) 5 r\auom that ® =~ Cy
and, consequemly, (=0 Cy). Write
c 1o (~ woc\).'nmso ooCs Sine

R =7 (f). weom -0,
v ber get

R@0) - 060) = o~ (€00 + oc1)])
ME(E(,€:00)

forall x,y € R

3.2 Mis the logarithmic mean

L where L is the

Let us consider the special case M
logarithmic mean as defined in Eq. 6.

Theorem 4 Let L be me he logurhonic et o3 defned n
Eq. 6. Suppose that @ : non-constant and con-
imons. Then «coninons fncion & - (0(%) ~ ()
(0,00) and the functions a,b : % ~(0,1] such that

a(0) b(0)

satisfy the functional tqu(mou

L{a(x). b(y)) = R@() =
ifand only if

1L r€®R®)-OR),

(1)

@ springer
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4 Theoretical resuls related to mean-type
functional equations for means which
are not inere

We have assumed in Sect. 3 that the basic mean M is
increasing. In the case when M does not show this property.
the functional equation (4) is more difficult to consider. It
is known that some Gini means are not increasing; we
begin this section with a special case of the Beckenbach~
Gini mean.

4.1 M is the Beckenbach-Gini mean

Let My, be defined as in Eq. 7. Consider the functional
equation

Myela(x),b(y)) = R(O() - O(x)).

where a.b: R — and R: (9(R) - O(R) —
2 are unknown functions.
The means My, in general, are not increasing. and the

above functional equation is more difficult to examine. To
show this, in the next section we consider this equation in a
specil e when ) = 2 and 509

el ie

deiniion of My, and seting ¥
flalx) +f(bx)
2lal)) = 2(b(x))
for some ¢ € B

“This problem is much more difficult to weat, even if we
assume additionally that Ax) = xg(x) and g : 1 — (0,00) is
continuous. Define M, : I — R by

¢ xeR,

Myey) =2

D sy B
by el 2

learly, Beckenbach-Gini mean and, in
general, it is not increasing.

Remark 9 Note that the arithmetic mean A(x,y)
.y € L is invariant with respect to the mean-type mapping
(M. M) briely Ais (My, My-invarian, which means
that

Ao (Mg, Myyg) = A

Tn the sequel we assume that (0, 1] € 1.

Theorem 5 Ler [ C R be an interval such that (0, 1]
and ler g2 1= (0.00). Assume that is non-
constant and continuous. Then a tomimlmu at least at one
point (o measurable) funciion R : (%) ~ B(R)) — I
and the functions a,b : & — T such that

a(0) =1=5(0)

satisfy the functional equation

@ springer

My(alx), b(y) + Myyg(a(x). b(y)) = R(®() = (x)),
xy€eR,

(13)

if and only if there exists

Jfor My, My as defined in Eq. |

an I € R such that

R FEOR) - O(R),

ae) = =10(x) + 1, b(x) = 10() + 1,
In the same way we can prove the following general

result,

I+

x€R.

Theorem 6 Let I C R be an interval such that (0,1]S 1

and let MNP = I be two means in I such that the

arithnetic mean A s (MNyinarian. Assune that &

R — R is non-constant and continuous. Then a continuous

a least at one point (or measurable) function R : (®(%) —

O(R)) — I and the continuous functions a,b : R — I such

that

a(0) 5(0)

satisfy the functional equation

M(a(x)), b(y)) + N(alx), ()
XyER

R(®() - 0(x)),

if and only if there is an I € R such that
R@)=l+2, x€0R)-0O(R)
a®) = ~10(x) + 1. b(x)=10(x) +1, xR,

42 A special case: M is the contra-harmenic mean

Let I C R be an interval such thar (0,1] S 1.
Assume that ® : R — R is non-constant and continuous.
Then a continuous finction R : (®() = ®(2)) — I and
the functions a,b: & — I such that
a(0) 5(0)
satisfy the functional equation (@), for M a contra-
harmanic mean if and only if.
1 wed®) - OR)

5 Consequences for irreducible correlation functions

= Cy and b= C, for C1,C2: R — (0,1] contin-
sous . nonvanishing comelaion ancions. The theo.
retical resulis shown in the previous sections give an
answer 0 the problem in Eq. (€. 0.
2 — (0,1] & non-stationary correlation function.
The souion can b postulated as follows:
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Whenever Mo (Cy,Cs) 1R x R — (0.1] is positive
definite on B x R, then i is irreducible, in the sense that
there does not exist  non-trivial solution for the problem
in Eq. 3. wnder the settings imposed in Theorems 1 and
5-7 and Corollary 1

Let us analyse the statistical consequences of the pre-
vious conclusion by making reference to the general
results. In Theorems 1, 2, and Corollary 1. we found that
the set of solutions associated to the problem (3) is empy,
in the sense that if C;. C; and R are constant functi
then they are not positive definite. Theorem 3 gives a non-
wivial solution, but unfortunately one can easily see that,
by B, 10, Gy Cyae ity excusive, i the e it
i one of them is posi dgﬁnl(e 20
Simia remarks appy 1 Theoem

Soue Sommaris & b i 1 should be stressed that
permissibility criteria for a quasi-arithmetic correlation
function have been found by Poreu et a. (2009). We con-
clude that this broad class is imeducible. Moreover.
observe that this class of correlation functions includes as
special cases two celebrated constructions, that are the
linear combination and the tensorial produc! of comrelation
funcons.repecivey. MY =pCy =1 = p)Cy_and
M3 = ¢} €(0, 1). This construction, espe-
ical community, tms out to

cally known in the geostai
be irreducible.

Finally, observe that one can easily show that the
extension 10 higher dimensiondl spaces works mutais
nmunms It is sufficient to assume that € : Y — (0,1,
= 1.2in Eq. 3 are motion m rotation invariant, that is
isotropic, in the sense that they depend on their vector
argument through its Euctdean fsance,

6 Conelusions

Understanding when m(mnanly and isotropy are reason-
able assumptions ag -stationarity in the context of
spatial or space-time statistics is a key question in practical
analysis. It is quite evident that these assumptions might
not hold in large heterogeneous filds, which is usually the
case. Tn this paper we have motivated the case when having
 non-stationary random field we can transform or reduce it
into a stationary entity. In particular we make use of mean

We have found that mean-generated correlation func-
tions are completely ireducible, in the sense-that, for this
broad class of correlation functions, there does not exist a
non-trivial_solution associated to the Perrin-Senoussi
problem. Thus, random fields generated by mean-ty
correlation functions cannot be statistically treated with
standard reduction techniques.

In this paper we have used functional equations theary
0 give @ solution for a problem of reducibilty. under the
choice that the correlation function s generated by some
mean operator,

A point of interest for future researches could be to
inspect whether a function of the form of a quasi-arithmetic
weighted mean composed with the correlation functions is
permissible for a set of (possibly negative) weights. I this
case a non-trivial solution to the problem of reducibility
sily found. To this aspect we shall dedicate
future researches.
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Appendix: Proofs
Proof of Theorem 1

Proof Seting y
Malx),b(x)) = R(0),
Interchanging the roles of x and
assumption that R is even we have
(x),50)) = M(a(y),b(x)), .
Assume that a is increasing on [0.20). We shall show
that b must be decreasing on the same interval. For an
indirect proof, assume that it is not the case. So there
would exist X120 st x <x; and bix) < bira).
Now. applying in tum (14). the strict monotonicity of M
Wi, the second variable. formula (15). and again the
strict monotonicity of M w.ri. the second variable. we
obtain
R(0)

into Eq. 4 we get
x20.

(14)
in (@) and by the

o (1s)

Mla(x).b(x)) <Mla(x,).b(xs)
= Mlaliz), b)) <M(a(wa), b)) =

which is a contradiction.
Now, to show that a is constant, assume that there exist
some 0 < ¥, < x; such that a(x;) < a(xy). Now. applying
in wm (14), the strict monotonicity of M w.
variable, formula (15), and again the striet monoto

M w.es. the first varigble, we obtain
R(0) = M(a(x,), bix,)) < M(a(x2). b(x1))
Mla(x1), blxz)) <Malx2). b(x2))

R(0).

‘This contradiction shows that a is constant in [0, %0). From
Eq. 14, it follows that R is constant,

2 springer
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‘The ease of a decreasing is omitted as it can be shown
by the same arguments. Thus, the proof is completed. O

Proof of Theorem 2

Proof Seting y = x we obtain Eq, 14, Assume that @, b
are not-decreasing on [0.20). Thus.

a(e)<alx) and b(n)<h(n). 0<x<x.

Fm’ an indirect pmol' assume that there exist x1,%:€
0,0), %< that cither a(x) <a(x) o

o < b3, o, appl)'mg in wm (14). the st

‘monotonicity of M w... both variables we get

R(0) = M(a(x:), b ))<M(01v\: blxz) = R(0).

which is a contradiction. Since the remaining statement is

obvious, the proof is completed.

Proof of Corollary 1

Proof Settingy =
et

poa(x)) + (1 = plo(b(x)) = R(0),

Interchanging the role of the variables x and y, and taking

into account that R is even. we get

M (a(), b)) = M aly). b)), %,

in Eq. 9 and by the definition of M

x20. (16)

v20.

From the defnition of M. we can wrie this equalty in
the form

Ppola(z)) + (1 =p)o(b() = pola) + (1 = P)o(b(x),
xy20,

which implies that

Polalx) — (1 =p)o(blx)) = po(a(y) — (1 — Plo(d(y),
xy20,

which means that there exists a constant ¢ such that
9(alx) — (1 - p)o(b(x) =¢, xy20. an
Equations 16, 17 imply that ¢ oa and gob are constant in
(0. %0). Since o s one-to-one. it follows that a.b are con-
stant in (0, <0). Thus, by Eq. 9 the function R is constant
100, which completes the proof. o

Proof of Theorem 3

Proof By the definition of the quasi-arithmetic mean M)
we can write Eq. 9 in the form

Q springer

GROO) =00, (1)

polalx) +(1=p)o(bly
LY€ER.

Setting here y = x we get

polalx) + (1 =p)ob(x) = o((RO).

Serde functions ¢ and a1 + @, o 0, generate the

e quasi-arithmetic mean ark 3). we can

assume, without any Ioss of x:n:mllxy e

(R(0) =

From this equation we get
=P)ob() = —po(a(x))

xeR.

xeR
and setting
Vi=poR 19)
we can write (18) in the form
Plo(a() - o(a() = Y(O() - O¥), xy€eR.
(20)
We can also assume, without any loss of generality. that
(0) =

and sexing y = 0 in (20) we gex
Ploa(x)) = p(a(0) = Y(~0()), x€R

whence

ola) = LBk g @
where

k= pola(0)).

Now, from (20) and (21), we get
V() = ) = Y(=(x)) - (-
Since, by assumption. the function ® s continuous and
non-constan, its range B(R) is a non-tivial interval
containing 0. Thus

Yl =) =Y(=1) = (-v), u,v € DR). @2)

Setting here w=v=0. we obtain Y(0)=
setting u = 0 in (22), we obtain

vED(E).

xyeR

0. Hence,

) = =),
Tt follows that
Wl =) = (o) = ¥(w),

that is  is additive. Since R is continuous at least at one-
‘point, we infer that so is  and, consequently, ¥ s a linear
function (cf. Aczél 1966; Kuczma 1985), that is

wye ),
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Y =
for some / & &, 1 # 0. From (19) we have
R =97 (), € O(R) - O(R). (23)

\ ueOR) - OR),

From (21) we get

ax) = o7 (~10(x) + k), xE€R, (24
and from (18)
b =07 (100 - k), xeR. (25)

As it can be easily checked that the functions . b, R given
by the formulas (23). (24) and (25) satsfy Eq. 9, and thus.
the proof is complete. o

Proof of Remark 7

Proof Set, without loss of generality, p = 172 in Eq. 5.
Note that the invertibility of © would be too restrctive.
Indeed, assuming the invertbility of @, Eq. 9 could be
‘written in the form

M (a(@7 () 607 (1)) =R(v=1), v EDR) (26)
whence

o(a(®™ (1)) + o(b(

wv e O(R).

@) =206 -0), ()

Seuing
200k 23)

we can write this equation in the form

0(a(@7' (1) + oB(@' () = (v~ u), uv e O(R)
Setting v 1= u we get

(@7 () = ¢ = 0(a(@7' (W), wEOR), (29
where

7(0)-

Hence, by (29), we get

(@@ (W) + ¢ - p(a(@7'(v) =
v € OR),

v —u),
or. equivalently.

[o(a(@™ () = ] = [o(a(®~ () -
v € O(R).

Setting
ola(@ (1)) —c. ueBR);
—0) e, wed(®)-

we can write this equation in the form

o) = a(s) = Blu=v), uv € OR).

It follows that

olu+v) = au) + ), ue D),
vEOR) - OR).

Assume that @ is continuous. Then () s an interval and
(R) ~ B(R) a symmetric interval with respect 10 0.

Assume that the function a is continuous. Now one can
prove that

wd ) = aye

) =awia truc o),
for u € O(R) - O(R),

for some aj,ax
obtain

@ # 0. From (30) and (29) we

0(a(® (1) = +ay+ ¢ forue BR)
R =7 (-Fu+c) forue OR) - OR).
whence

ax)= ¢ (@®(x) +ay +¢) forxeR,
o) =R l('"‘f ") for 1 € B(R) - O(R).

which shows that a is invertible. Here a stands for C;
‘which, by assumption, is not a one-to-one function. 0

Proof of Theorem 4
Proof Assume that some functions R,®,a and b satisfy
Eq. 11. For y = x we have

L(a(x).b(x)) = R(0), x& (0,00).

Since a(0) (0), we hence get R(0) = 1, whence
La(x).b(x)) =1, x€(0,%).

Assume that there is an x € R such that a(x) # b(x).
Then

a(y) ~ bx)
Togalx) —logb(x)

that s

loga(x) - a(x) = log b(x) — b(x).

Since the function u~logu — u s strctly increasi
(0. 1). we would get a(x) = b(x). which is a contradiction.

Proof of Theorem §

Proof By the definition of contra-harmonic mean M in
Eq. §, and setting y = x in (9), we get

Q springer
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a(x)

Since, by assumption, a(0) =
R(O)=1.

= b(0), we hence get

Thus, if R # 1 then gy = — 1. Assuming (without
any loss of generality) that Ky = 1 and & , = — 1, we get
from (34)

(R=9() + K(-0() + R@()) - K@)

R(=0(x)) + K(=0(x)) + R(O()) - K(O()

= 2R(0() - O).

¥) we hence get

=2R(v—u).

=2R@+v),

Consequently, i
X
a bl 5
R xeR. G puting here u -
. —o.  (RG-w)+K(-w)
in (8) give R(=20) = K(=u) + R) = K(v)
il PREYEN
R(-0(), x€R Replacing — u by u we see that ® satisfies the functional
equation
whence 3
1 (R(u) + K()” + (R(v) - K(v).
ale) = 5(R(=0(x) + KaK(=0(), (2)  R@<K@=RY) —K()
wyve O().
where Since R((u+v) +w) = R(u+ (v-+w)), we hence get
T
K(u) o= \/ RGP +4R() = 4 (R +v) + K(u+v)) + (R(w) = K(w)
and = lorn,= = 1

Similarly, setting 3
gives

b +1
e = R(®(x)),

in (8) and then replacing y by x

xeR,
whence

He) = SRO) + KK(OG), )

where K = lork, = — L.
Making use of relation
(R(-0(x) + KaK(-0(x)))* +
R(=000) = kK (=00) =
=2R(®(y) - ®(x)), xyeR.

2). we obtain from Eq. 8

(34)
Substituting the right-hand sides of (32) and (33) into

Eq. 31 we get, after obvious simplification,

[R(=0()J + R(=0(x)) + [ROE)] + RO
X€R. (35)

Assume that x, = ;. Interchanging x and y in (34) we see
that the left-hand side does not change. It follows that the
function is even on its range. whence. by (35).

RO +R@E) =2, xeR

Since Ro® is continuous and Ro ®(0) = 1. it follows that
Ris a constant function equal o 1.

@ springer

here

for all
w=w=0 and wking into account that R(O) = I, we
hence get

v, v,v 4w € O(R).  Setting

+ (R() - KW
() = K()

whence, for all v €
(R(Y) + K(¥))(2 + R(v +w) = K(v))
+(RO) - K(u+v)),

which reduces to the equation

(R() + 1y [RM +4R(v) — 4 = [RM)]? + 3R(v) = 2,
vEOR).

Taking the power two of both sides we get

RO =1, veEOR).

Now from (8) we get

xyeR,

which implies that a(x) = b(x) = 1 for all x € R. This
completes the proof. o
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Proof of Theorem 6

Proof By Remark 9, the arithmetic mean is (MoMyg)-
invariant, Therefore Eq. 13 s equivalent to the equation

a(x) +b(y) = R@() - ®(x)), xyeR. (36)

Puting here y = x we get
) +b(x) =R(0), x€R,

50 the lefi-hand side is a constant function. Since, by
assumption, a(0) + b(0) = 2, we hence get

RO

and, consequenty,

bx)=2-alx), xR @7
Now from (36) we get
alx) +2 - aly) = RO() - (), xyeR

Without any loss of generalty we can assume that &(0) =
0as, in the opposite case, we could replaec Dby ®— ®(0).

g in this equation separately ¥ 0. we
(~0(), xeR (38)

and

3-aly) =R(®()), yeR,

whence, by (37),

R(=0(x)) -2+ R(®() = RO() - O(x)), xy€R

“Thus the function R — 2 s additive on the set ®(R)~®(R)
which contains a neighbourhood of 0. It follows that there:
exists an ] € R such that

R =l +2, x€OR) - OR).
From (38) and (37) we get

) = ~I0(x) + 1, b(x) = 10() + |

xER,

Proof of Theorem 7

Omitted.
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