ITERATION THEORY (ECIT '08) A.N. Sharkovsky, I.M. Sushko (Eds.) Grazer Math. Ber., ISSN 1016-7692 Bericht Nr. 354 (2009), 158-179

Iterations of the mean-type mappings

Janusz Matkowski

Abstract

Let an interval $I\subset\mathbb{R}$ and $p\in\mathbb{N},\ p\geq 2$, be fixed. Assuming that the continuous means $M_i:I^p\to I,\ i=1,...,p$, are such that

$$\min(x_1, ...x_p) + \max(M_1(x_1, ...x_p), ..., M_p(x_1, ...x_p))$$

 $< \min(M_1(x_1, ...x_p), ..., M_p(x_1, ...x_p)) + \max(x_1, ...x_p)$

if not all of $x_1,...x_p \in I$ are equal, we prove that the sequence of iterates of the mean-type mapping $(M_1,...M_p): I^p \to I^p$ converges to a mean-type mapping $(K_1,...K_p)$, where $K: I^p \to I$ is a continuous mean. Moreover K is uniquely determined by the condition of $(M_1,...M_p)$ -invariance. This improves an earlier result of [6] where it is assumed that at most one of the means $M_1,...M_p$ is not strict. As an application, for some families of mean-type mappings $(M_1,...M_p)$ to effective form of real continuous solutions F of the functional equation $F \circ (M_1,...M_p) = F$ is given. An application to the theory of iterative functional equation of the form $\varphi(t) = g(t) \sqrt{\frac{t(t)}{g(t)}}$ is presented.

1 Introduction

Let an interval $I \subset \mathbb{R}$ and $p \in \mathbb{N}$, $p \geq 2$, be fixed. Assume that $M_i : I^p \to I$, i = 1, ..., p, are continuous means. In [8] (cf. also [10]) it was proved that if at most one of these means is not strict, then the sequence of iterates of the mean-type mapping $(M_1, ..., M_p) : I^p \to I^p$ converges to a mean-type mapping (K, ..., K), where $K : I^p \to I$ is a continuous and $(M_1, ..., M_p)$ -invariant mean, i.e.

$$K \circ (M_1, ..., M_p) = K.$$

Mathematics Subject Classification 2000: Primary 20A18: Secondary, 39B22.

Keywords and phruses: iteration, mean, mean-type mapping, invariant mean, functional equation.

The continuity and the $(M_1, ..., M_p)$ -invariance of K imply its uniqueness. Moreover, if $M_1, ..., M_p$ are strict, then so is K.

In the present paper we generalize this result. In Section 3 we show (Theorem 1) that the conclusions of the above result remain true on replacing the assumption that at most one of these means M_1, \dots, M_p is not strict with the following weaker and more symmetric condition: if not all $x_1, \dots, x_p \in I$ are equal, then

$$\min(x_1, ..., x_p) + \max(M_1(x_1, ..., x_p), ..., M_p(x_1, ..., x_p))$$
 $< \min(M_1(x_1, ..., x_p), ..., M_p(x_1, ..., x_p)) + \max(x_1, ..., x_p).$

Taking $I=(0,\infty)$, p=2 and $M_1=A_{[2]}$, $M_2=G_{[2]}$, where $A_{[2]}(x,y)=\frac{x-y}{2}$, $G_{[2]}(x,y)=\sqrt{xy}$, we obtain the classical result of Gauss [5] who considered the arithmetic-geometric mean iteration in connection with elliptic integrals. In this case the (A_{2},G_{2}) -invariant mean K has the form

$$K(x,y) = \left(\frac{2}{\pi} \int_0^{\pi/2} \frac{dt}{\sqrt{x^2(\cos t)^2 + y^2(\sin t)^2}}\right)^{-1}, \quad x,y > 0,$$

is denoted by $A_{[2]} \otimes G_{[2]}$. For some other applications see [1], [2], Chapter VI; [3], Chapter 4, [4], where iterations of two-dimensional continuous and strict mean-type mappings are considered. The invariant mean is also called the Gauss composition of means, the Gaussian product of means or the compound mean.

Let us note that the proportion $x: \frac{x+y}{2} = \frac{2xy}{x-y}: y$, the base of the theory of harmony made by Pythagorean school, can be written in the form

$$\sqrt{\frac{x+y}{2} \cdot \frac{2xy}{x+y}} = \sqrt{xy}.$$

Setting $H_{[2]}(x,y) = \frac{2xy}{x-y}$ the harmonic mean, we hence get $G_{[2]} \circ (A_{[2]},H_{[2]}) = G_{[2]}$ which says that the geometric mean $G_{[2]}$ is $(A_{[2]},H_{[2]})$ -invariant. Thus the notion of invariance of a mean-type mapping has its roots in ancient times.

In Section 4 we present some general classes of continuous mean-type mappings for which the invariant mean can be easily established. Then Theorem 1 allows to determine effectively the limits of respective sequences of their iterates. We apply this fact to obtain all functions $F: P \to \mathbb{R}$, which are continuous on the diagonal

$$\Delta(I^p) := \{(x_1, ..., x_p) \in I^p : x_1 = ... = x_p\}$$

of the cube I^p , and satisfy the functional equation

$$F \circ (M_1, ..., M_p) = F.$$

In Section 5 we observe close relation of means and functional equations of iterative type. An application to the theory of the functional equation

$$\varphi(t) = g(t)\varphi\left(\frac{f(t)}{g(t)}\right), \quad t > 0,$$

where the given functions f,g and the unknown function φ belong to a family of functions the class $S_1=S_1^0(I)$ (cf. [6], p. 20) or containing this class, is presented.

2 Preliminaries

Let $I \subset \mathbb{R}$ be an interval and $p \in \mathbb{N}$, $p \geq 2$, fixed. A function $M : I^p \to \mathbb{R}$ is said to be a mean on I if, for all $x_1, ..., x_n \in I$.

$$\min(r, r) \leq M(r, r) \leq \max(r, r)$$

A mean M in I is called strict if these inequalities are strict whenever

$$\min (x_1, ..., x_n) < \max (x_1, ..., x_n)$$
,

If $I = (0, \infty)$ we say that a mean M in I is positively homogeneous if

$$M(tx_1, ..., tx_p) = tM(x_1, ..., x_p), \quad t, x_1, ..., x_p > 0.$$

Note the following easy to verif

Remark 1 Let $M : I^p \to \mathbb{R}$ be an arbitrary function. Then the following conditions are equivalent

- 1. M is a mean
- 2. $M(J^p) \subset J$ for every subinterval $J \subset I$,
- 3. $M(J^p) = J$ for every subinterval $J \subset I$.

Hence we have

Remark 2 If $M: I^p \to \mathbb{R}$ is a mean then M maps I^p onto I and, moreover, M is reflexive, that is, for all $x \in I$,

$$M(x, ..., x) = x$$
.

Let us also note the following

Remark 3 If a function $M: I^p \to \mathbb{R}$ is reflexive and (strictly) increasing with respect to each variable, then M is a (strict) mean I.

3 Iterations of mean-type mappings and invariant means

A mapping $\mathbf{M}: I^p \to I^p$ is referred to as mean-type if there are some means $M_i: I^p \to I$, i=1,...,p, such that $\mathbf{M}=(M_1,...M_p)$. We say that the mean-type mapping \mathbf{M} is strict (positively homogeneous) if each of its coordinate means $M_1,...,M_p$ is strict (positively homogeneous).

Put $N_0 := N \cup \{0\}.$

If $M: I^p \to I^p$ is a mean-type mapping then, clearly, the sequence $(M^n)_{n=0}^{\infty}$ of the iterates of M.

$$M^0 := Id \mid_{I^p} : M^{n+1} := M \circ M^n \text{ for } n \in \mathbb{N}_0.$$

is well defined

We have the following obvious

Remark 4 Suppose that $M: I^p \to I^p$, $M = (M_1, ..., M_p)$, is a mean-type mapping of I^p . Then, for each $n \in \mathbb{N}_0$.

$$\mathbf{M}^{n} = (M_{n,1}, ..., M_{n,p})$$

where, for all $i = 1, ..., p, (x_1, ..., x_p) \in I^p$,

$$M_{i,0}(x_1, ..., x_p) = x_i,$$

and, for all $n \in \mathbb{N}_0$, i = 1, ..., p, $(x_1, ..., x_p) \in I^p$,

$$M_{i,n+1}\left(x_{1},...,x_{p}\right)=M_{i}\left(M_{1,n}\left(x_{1},...,x_{p}\right),...,M_{p,n}\left(x_{1},...,x_{p}\right)\right).$$

Given a mean-type mapping $M: I^p \to I^p$ and a mean $K: I^p \to I$ we say that K is invariant with respect to the mean-type mapping M, briefly, M-invariant, if

$$K \circ \mathbf{M} = K$$
.

Remark 5 Note that a mean $K : I^p \to I$ is M-invariant iff the mean-type mapping $K : I^p \to I^p$ defined by K = (K, ..., K) is M-invariant, that is, iff $K = K \circ M$.

The main result of this section reads as follows:

Theorem 1 Let $I \subset \mathbb{R}$ be an interval and $p \in \mathbb{N}$, $p \geq 2$, be fixed. Suppose that $M : I^p \to I^p$, $M = (M_1, ..., M_p)$, is a continuous mean-type mapping of I^p such that, for all $(x_1, ..., x_p) \in I^p \setminus \Delta(I^p)$,

$$\max(M_1(x_1, ..., x_p), ..., M_p(x_1, ..., x_p)) - \min(M_1(x_1, ..., x_p), ..., M_p(x_1, ..., x_p))$$

 $< \max(x_1, ..., x_p) - \min(x_1, ..., x_p).$

TL ...

- for every n ∈ N, the n-th iterate Mⁿ = (M_{n,1}, ..., M_{n,p}), is a mean-type mapping of I^p;
- there is a continuous mean K: I^p → I such that the sequence of iterates
 (Mⁿ)[∞]_{n=0} converges, uniformly on compact subsets of I^p, to the mean-type mapping K: I^p → P, K = (K₁,..., K_p) such that

$$K_1 = \dots = K_p = K;$$

K: I^p → I^p is M-invariant, that is,

$K = K \circ M$

or, equivalently, the mean K is M-invariant;

- 4. a continuous M-invariant mean (mean-type mapping) is unique;
- if M is strict then so is K (and K);
- if M₁,..., M_p are (strictly) increasing with respect to each variable then so is K;
- 7. if $I=(0,\infty)$ and M is positively homogeneous, then every iterate of M and K are positively homogeneous.

Proof. From the definition of the mean we infer that the basic assumption of our result can be formulated as follows: for all $x_1, ..., x_n \in I$, the inequality

$$\min\left(x_1,...,x_p\right)<\max\left(x_1,...,x_p\right)$$

implies that

$$\min(x_1,...,x_p) \leq \min(M_1(x_1,...,x_p),...,M_p(x_1,...,x_p))$$

or

$$\max(M_1\left(x_1,...,x_p\right),...,M_p\left(x_1,...,x_p\right)) < \max\left(x_1,...,x_p\right).$$

To avoid writing too long expression we assume that p=2. It is easy to see that the same idea works in general case.

Part 1 is an immediate consequence of the definition of a mean.

Assume that $M,N:I^2\to I$ are continuous means satisfying the above condition. Thus, for all $x,y\in I$, if

$$\min(r, u) < \max(r, u)$$

ther

$$\min(x, y) < \min(M(x, y), N(x, y)).$$
 (1)

Consider the sequence $(M, N)^n$, $n \in \mathbb{N}$, of the iterates of the mean-type mapping

 $(M, N): I^2 \rightarrow I^2$. Putting (cf. Remark 4)

$$M_0(x, y) := x$$
, $N_0(x, y) := y$. $x, y \in I$.

0200

$$(M_n, N_n) := (M, N)^n, \quad n \in \mathbb{N}_0,$$

$$M_{n+1} = M \circ (M_n, N_n), \qquad N_{n+1} = N \circ (M_n, N_n), \qquad n \in \mathbb{N}_0.$$
 (3)

Define

$$\alpha_- := \min(M, N_-), \quad \beta_- := \max(M_-, N_-), \quad n \in \mathbb{N}_0.$$

Taking into account the definition of the mean, we have

$$\alpha_n \le \alpha_{n+1} \le \beta_{n+1} \le \beta_n, \quad n \in \mathbb{N}_0,$$

whence

$$\alpha := \sup\{\alpha_n : n \in \mathbb{N}_0\} = \lim_{n \to \infty} \alpha_n, \quad \beta := \inf\{\beta_n : n \in \mathbb{N}_0\} = \lim_{n \to \infty} \beta_n$$

and

$$\alpha \leq \beta$$
.

We shall show that $\alpha = \beta$. Assume, for an indirect argument, that

$$\alpha(x_0, y_0) < \beta(x_0, y_0),$$

for some $x_0, y_0 \in I$. Then, by (1) and (2), we would have

$$\alpha(x_0,y_0)<\min[M\left(\alpha(x_0,y_0),\beta(x_0,y_0)\right),N\left(\alpha(x_0,y_0),\beta(x_0,y_0)\right)]\leq\beta(x_0,y_0)$$

.

$$\alpha(x_0,y_0) \leq \max[M\left(\alpha(x_0,y_0),\beta(x_0,y_0)\right),N\left(\alpha(x_0,y_0),\beta(x_0,y_0)\right)] < \beta(x_0,y_0).$$

Since min(x, y) = min(y, x) and max(x, y) = max(y, x), we also have

$$\alpha(x_0,y_0)<\min[M\left(\beta(x_0,y_0),\alpha(x_0,y_0)\right),N\left(\beta(x_0,y_0),\alpha(x_0,y_0)\right)]\leq\beta(x_0,y_0)$$

0

$$\alpha(x_0, y_0) \le \max[M(\beta(x_0, y_0), \alpha(x_0, y_0)), N(\beta(x_0, y_0), \alpha(x_0, y_0)) < \beta(x_0, y_0).$$

By the continuity of M and N there is $\delta > 0$ such that, for all $(u, v) \in I^2$, the following implication holds true

$$\alpha(x_0, y_0) - \delta < u < \beta(x_0, y_0)$$
 and $\alpha(x_0, y_0) < v < \beta(x_0, y_0) + \delta$
 ψ
(4)

$$\{\alpha(x_0, y_0) < \min(M(u, v), N(u, v)) < \beta(x_0, y_0) + \delta \}$$
or
 $\alpha(x_0, y_0) - \delta < \max(M(u, v), N(u, v)) < \beta(x_0, y_0)\}.$

By the definitions of α and β there is $n_0 \in N$ such that, for all $n \in \mathbb{N}$, $n \ge n_0$.

$$\alpha(x_0, y_0) - \delta < \alpha_n(x_0, y_0) < \alpha(x_0, y_0)$$

and

$$\beta(x_0, y_0) < \beta_n(x_0, y_0) < \beta(x_0, y_0) + \delta.$$

For all $n \in \mathbb{N}_0$,

$$\alpha_n(x_0, y_0) = \min(M(\alpha_n(x_0, y_0), N_n(x_0, y_0)))$$

and

$$\beta_n(x_0, y_0) = \max(M_n(x_0, y_0), N_n(x_0, y_0)).$$

By implication (4), we would have

$$\alpha(x_0, y_0) < M(M_n(x_0, y_0), N_n(x_0, y_0)) < \beta(x_0, y_0), \quad n \ge n_0$$

$$\alpha(x_0, y_0) < N(M_n(x_0, y_0), N_n(x_0, y_0)) < \beta(x_0, y_0), \quad n \ge n_0,$$
that is, for all $n \ge n_0$.

$$\alpha(x_0, y_0) \le M_{n+1}(x_0, y_0) \le \beta(x_0, y_0)$$

0

$$\alpha(x_0, y_0) < N_{n+1}(x_0, y_0) < \beta(x_0, y_0)$$

whence, by the definition of the sequences α_n and β_n , for all $n \geq n_0$.

$$\alpha(x_0, y_0) < \alpha_{n+1}(x_0, y_0) < \beta(x_0, y_0).$$

O

$$\alpha(x_0, y_0) < \beta_{n+1}(x_0, y_0) < \beta(x_0, y_0).$$

This contradicts to the definition of $\alpha(x_0, y_0)$ and $\beta(x_0, y_0)$ and proves that $\alpha = \beta$. Since, for every $n \in \mathbb{N}$, the functions α_n and β_n are continuous, the sequence (α_n) is increasing and the sequence (β_n) is decreasing, the function α is lower semicontinuous and β is upper semicontinuous. It follows that the function

$$K(x, y) := \alpha(x, y), \quad x, y \in X$$

is continuous. By Dini's Theorem, the convergence of the monotonic sequences of continuous functions to a continuous function is uniform on compact sets. It is obvious that K is a mean in I. From the definition of the sequences (α_n) and (β_n) we have

$$\alpha_n \le M_n \le \beta_n$$
, $\alpha_n \le N_n \le \beta_n$, $n \in \mathbb{N}_0$.

It follows th

$$\lim_{n\to\infty} M_n = K = \lim_{n\to\infty} N_n,$$

and, obviously, this convergence is uniform on compact sets. Consequently,

$$\lim_{n\to\infty} (M, N)^n = \lim_{n\to\infty} (M_n, N_n) = (K, K), \quad (5)$$

uniformly on compact subsets of I^2 . This completes the proof of part 2. Put K := (K, K). From (5) and (3) we have

$$\begin{split} \mathbf{K} &= (K, K) = \lim_{n \to \infty} (M_{n-1}, N_{n-1}) = \lim_{n \to \infty} (M_n \circ (M, N), N_n \circ (M, N)) \\ &= \left(\lim_{n \to \infty} M_n \circ (M, N), \lim_{n \to \infty} N_n \circ (M, N)\right) = (K \circ (M, N), K \circ (M, N)) \\ &= \mathbf{K} \circ (M, N), \end{split}$$

which proves conclusion 2

Assume that $\mathbf{L}=(L,L):I^2\to I^2$ is a continuous and (M,N)-invariant meantype mapping, that is $\mathbf{L}=\mathbf{L}\circ (M,N)$. Hence, by induction.

$$L = L \circ (M, N)^n$$
, $n \in \mathbb{N}$,

Letting $n \to \infty$, and applying the reflexivity of the means, we obtain

$$\begin{aligned} \mathbf{L} &= \lim_{n \to \infty} \mathbf{L} \circ (M, N)^n = \mathbf{L} \circ (M_{\lambda}, M_{1-\lambda}) = \mathbf{L} \circ \mathbf{K} = & (L \circ (K, K), L \circ (K, K)) \\ &= & (K, K) = \mathbf{K}. \end{aligned}$$

which completes the proof of conclusion 4.

Since the remaining pars are obvious, the proof is completed

Theorem 1 improves the main result of [8]. Theorem 1 (cf. also [10]) where n is strict, is assumed. In the case when p = 2 and the coordinate means M_1, \dots, M_p is not strict, is assumed. In the case when p = 2 and the coordinate means are strict the suitable result is well known and frequently applied (cf. [1], [2], Chapter VI, [3], Chapter 4, [4], and [9]),

Remark 6 The condition assumed in Theorem 1 is indispensable.

To show it consider three examples.

Example 1 Let $M: I^p \to I^p$, $M = (M_1, ..., M_p)$, be a mean-type mapping such that

$$M_1(x_1,...,x_p) = \min(x_1,...,x_p), \qquad M_p(x_1,...,x_p) = \max(x_1,...,x_p).$$

Then, for all $x_1, ..., x_p \in I$,

$$\begin{split} & \min(x_1, ..., x_p) + \max(M_1(x_1, ..., x_p), ..., M_p(x_1, ..., x_p)) \\ &= M_1(x_1, ..., x_p) + M_p(x_1, ..., x_p) \\ &= \min(M_1(x_1, ..., x_p), ..., M_p(x_1, ..., x_p)) + \max(x_1, ..., x_p). \end{split}$$

so the assumption of Theorem 1 is not fulfilled. Since the means $K=M_1$ and $K=M_p$ are M-invariant, the uniqueness of the continuous M-invariant mean is failed.

Example 2 Take p = 3, $I = \mathbb{R}$, and $\mathbf{M} := (M_1, M_2, M_3)$ where $M_1(x_1, x_2, x_3) := \min(x_1, x_2, x_3)$, $M_2(x_1, x_2, x_3) := x_1 + x_2 + x_3 - \min(x_1, x_2, x_3) - \max(x_1, x_2, x_3)$, $M_3(x_1, x_2, x_3) := \max(x_1, x_2, x_3)$. Then each of the means M_1, M_3 and $A_{[3]}(x_1, x_2, x_3) := \frac{x_1 + x_2 + x_3}{2}$ is \mathbf{M} -invariant.

Example 3 Take p = 2, $I = \mathbb{R}$, and $M := (M_1, M_2)$, where $M_1(x_1, x_2) = \min(x_1, x_2)$, and $M_2(x_1, x_2) = \max(x_1, x_2)$. Then each of the means M_1, M_2 and $A_2(x_1, x_2) := \underbrace{3 + \frac{1}{2} x_1}_{i=1} : M_i - invariant$.

In each of these examples the mean-type mapping M does not fulfill the basic assumption of Theorem 1 and the M-invariant mean is not unique.

4 Some special mean-type mappings and applications to functional equations of several variables

In this section we consider some general classes of mean-type mappings for which the invariant means can be effectively determined and we present some applications of Theorem 1 in the theory of functional countions.

We begin with the case when the arithmetic mean is invariant

Remark 7 Let $M: I^2 \to I$ be an arbitrary mean in an interval I. Then

$$M(x, y) = \lambda(x, y)x + (1 - \lambda(x, y))y$$
, $x, y \in I$, $x \neq y$.

where

$$\lambda(x, y) := \frac{M(x, y) - y}{x - y} \in [0, 1], \quad x, y \in I, x \neq y.$$

It follows that every mean can be written in the form

$$M(x, y) = \lambda(x, y)x + (1 - \lambda(x, y))y, \quad x, y \in I,$$

where $\lambda : I^2 \rightarrow [0, 1]$

If $\lambda: I^2 \to [0,1]'$ is a continuous function then the function $M_{\lambda}: I^2 \to I$ defined by

$$M_{\lambda}(x,y):=\lambda(x,y)x+(1-\lambda(x,y))y, \qquad x,y\in I,$$

is a continuous mean in I. If, moreover , λ : $I^2 \rightarrow (0,1)$ then M_1 , and $M_{1-\lambda}$ are strict. In particular, the mean-type mapping $(M_{\lambda}, M_{1-\lambda})$: $I^2 \rightarrow I^2$ satisfies the assumptions of Theorem 1. Since the arithmetic mean A_{2j} is $(M_{\lambda}, M_{1-\lambda})$ -morainnt, in view of Theorem 1, the sequence of iterates $((M_{\lambda}, M_{1-\lambda})^n)$ converges (uniformly on compact subsets of I) and

$$\lim_{n\to\infty} (M_{\lambda}, M_{1-\lambda})^n = (A_{[2]}, A_{[2]}).$$

Applying Theorem 1 we prove the following

Proposition 1 Let $I \subset \mathbb{R}$ be an interval and let $\Delta(I^2) := \{(x, x) : x \in I\}$ be the diagonal of I^2 , Suppose that a function $F : I^2 \to \mathbb{R}$ is continuous on $\Delta(I^2)$. Then F satisfies the functional equation

$$F(M_{\lambda}(x, y), M_{1-\lambda}(x, y)) = F(x, y), \quad x, y \in I,$$
 (5)

if, and only if, there is a single variable continuous function $f:I\to\mathbb{R}$ such that

$$F(x, y) = f\left(\frac{x + y}{2}\right), \quad x, y \in I.$$
 (6)

Proof. Assume that F satisfies equation (5). Hence, by induction,

$$F(x, y) = F \circ [(M_{\lambda}, M_{1-\lambda})^n](x, y), \quad n \in \mathbb{N}, x, y \in I.$$

By Remark 7 and the continuity of F on $\Delta(I^2)$, letting $n \to \infty$, we get

$$F(x, y) = F\left(\frac{x+y}{2}, \frac{x+y}{2}\right), \quad x, y \in I.$$

Setting f(x) := F(x, x) for $x \in I$ we get (6). The converse implication is easy to verify.

The above remark and proposition can be easily generalized.

Remark 8 Let $I \subset \mathbb{R}$ be an interval and $p \in \mathbb{N}$, $p \geq 2$. Assume that $\lambda_i : I^p \to (0, 1)$, i = 1, ..., p, are continuous and such that

$$\sum_{i=1}^{p} \lambda_i(x_1, ..., x_p) = 1, \quad x_1, ..., x_p \in I.$$

Then the function $M_{\lambda_1,...,\lambda_p}: I^p \to I$ defined by

$$M_{\lambda_1,...,\lambda_p} := \sum_{i=1}^{p} x_i \lambda_i(x_1,...,x_p), \quad x_1,...,x_p \in I,$$

is a continuous and strict mean in I. It is easy to see that the mean-type mapping

$$\mathbf{M} := (M_{\lambda_1,...,\lambda_p}, M_{\lambda_2,...,\lambda_p,\lambda_1}, M_{\lambda_3,...,\lambda_p,\lambda_1,\lambda_2}, ..., M_{\lambda_p,\lambda_1,\lambda_2,...,\lambda_{p-1}}) : I^p \rightarrow I^p$$

satisfies the assumptions of Theorem 1. Since the arithmetic mean

$$A_{[p]}(x_1, ..., x_p) = \frac{x_1, ..., x_p}{n}$$

is M-invariant, in view of Theorem 1, the sequence of iterates $(M^n)_{n=0}^{\infty}$ converges and

$$\lim_{n\to\infty} \mathbf{M}^n = (A_{[p]}, ..., A_{[p]}).$$

Similarly as Proposition 1, we can prove

Proposition 2 Let $I \subset \mathbb{R}$ be an interval and let $\Delta(I^p) := \{(x_1,...x_p) \in I^p : x_1 = ... = x_p\}$. Suppose that a function $F : I^p \to \mathbb{R}$ is continuous on $\Delta(I^p)$. Then F satisfies the functional equation

$$F \circ (M_{\lambda_1,...,\lambda_n}, M_{\lambda_2,...,\lambda_n,\lambda_1}, ..., M_{\lambda_n,\lambda_1,\lambda_2,...,\lambda_{n-1}}) = F$$

if, and only if, there is a continuous single variable function $f:I\to\mathbb{R}$ such that

$$F(x_1,...,x_p) = f\left(A_{[p]}(x_1,...,x_p)\right), \qquad x_1,...,x_p \in I.$$

Now we consider some mean-type mappings for which the geometric mean is invariant.

Remark 9 Let $I \subset (0, \infty)$ be an interval and $p \in \mathbb{N}$, $p \geq 2$ be fixed. Assume that $\varphi_i : P \to (0, \infty)$, i = 1, ..., p, are continuous. Then, for each i = 1, ..., p, the function $M_i : P \to (0, \infty)$ defined by

$$M_i(x_1, ..., x_p) := \frac{\sum_{k=1}^{p} \left(\prod_{j=0}^{i-1} x_{k+i+j-1} \right) \varphi_k(x_1, ..., x_p)}{\sum_{k=1}^{p} \left(\prod_{i=0}^{i-2} x_{k+i+j-1} \right) \varphi_k(x_1, ..., x_p)}$$

where $x_{p+j}=x_j$ for j=1,2,..., is a continuous and strict mean. Note that the geometric mean

$$G_{[p]}(x_1, ..., x_p) = \sqrt[p]{x_1 \cdot ... \cdot x_p}$$

is
$$(M_1, ..., M_p)$$
-invariant. Thus, in view of Theorem 1.

$$\lim (M_1, ..., M_p)^n = (G_{[p]}, ..., G_{[p]}).$$

The invariance identity

$$G_{[n]} \circ (M_1, ..., M_n) = G_{[n]}$$

generalizes the harmony proportion.

In the case p=2, setting $M:=M_1,\ N:=M_2,\ \varphi:=\varphi_1,\ \psi:=\varphi_2,\ x:=x_1,\ y:=x_2,$ we have

$$M(x,y) = \frac{x\varphi\left(x,y\right) + y\psi\left(x,y\right)}{\varphi\left(x,y\right) + \psi\left(x,y\right)}, \qquad N(x,y) = \frac{yx\varphi\left(x,y\right) + xy\psi\left(x,y\right)}{x\varphi\left(x,y\right) + y\psi\left(x,y\right)}.$$

Taking here $I=(0,\infty),$ $\varphi(x,y)=\psi(x,y)=1$ for $x,y\in(0,\infty),$ we have $M=A_{[2]},$ $N=H_{[2]}.$ Hence we get

$$G_{[2]} \circ (A_{[2]}, H_{[2]}) = G_{[2]},$$
 (7)

the invariance mentioned in the Introduction, equivalent to the Pythagorean harmony proportion, and, moreover

 $\lim (A_{[2]}, H_{[2]})^n = G_{[2]}$

$$\lim_{n\to\infty} (A_{[2]}, H_{[2]})^n = G_{[2]}$$

In the case p=3, setting $M:=M_1,\,N:=M_2,\,P:=M_3,\,\,\varphi:=\varphi_1,\,\,\psi:=\varphi_2,\,\,\gamma:=\varphi_3,\,\,x:=x_1,\,\,y:=x_2,\,z:=x_3,$ we have

$$\begin{split} M(x,y,z) &= \frac{x\varphi\left(x,y,z\right) + y\psi\left(x,y,z\right) + z\gamma\left(x,y,z\right)}{\varphi\left(x,y,z\right) + \psi\left(y,y,z\right) + \gamma\left(x,y,z\right)},\\ N(x,y,z) &= \frac{yx\varphi\left(x,y,z\right) + y\psi\left(x,y,z\right) + xz\gamma\left(x,y,z\right)}{x\varphi\left(x,y,z\right) + y\psi\left(x,y,z\right) + z\gamma\left(x,y,z\right)},\\ P(x,y,z) &= \frac{zy\varphi\phi\left(x,y,z\right) + xz\psi\left(x,y,z\right) + yzx\gamma\left(x,y,z\right)}{yx\varphi\left(x,y,z\right) + zz\psi\left(x,y,z\right) + yzx\gamma\left(x,y,z\right)} \end{split}$$

Taking $I=(0,\infty),$ $\varphi(x,y,z)=\psi(x,y,z)=\gamma(x,y,z)=1$ for $x,y,z\in(0,\infty),$ we have

$$\begin{split} &M(x,y,z) = A_{|\mathcal{S}|}(x,y,z) := \frac{x+y+z}{3}, \\ &N(x,y,z) = \frac{yx+zy+xz}{x+y+z} \\ &P(x,y,z) = H_{|\mathcal{S}|}(x,y,z) := \frac{zyx+xzy+yxz}{yx+zy+xz} = \frac{3}{\frac{1}{z} + \frac{1}{y} + \frac{1}{z}}. \end{split}$$

where $A_{[3]}$ is the arithmetic mean and $H_{[3]}$ the harmonic mean. Applying the last remark we obtain

$$G_{[3]} \circ (A_{[3]}, N, H_{[3]}) = G_{[3]}$$
 (8)

and

$$\lim_{n \to \infty} (A_{[3]}, N, H_{[3]})^n = G_{[3]}.$$

The identity (8) can be seen as a three-dimensional counterpart of two-dimensional harmony relation (7).

Taking $I = (0, \infty)$, $\varphi_j = 1$ for j = 1, ..., p, in Remark 9, we obtain a p-dimensional counterpart of harmony relation (7) (see also [10]).

Applying Theorem 1 and Remark 9 we obtain the following

Proposition 3 A function $F: I^p \to \mathbb{R}$, continuous on $\Delta(I^p)$, satisfies the func-

$$F \circ (M_1, \dots, M_n) = F$$

if, and only if, there is a continuous function $f: I \to \mathbb{R}$ such that

$$F(x_1, ..., x_n) = f(G_{[n]}(x_1, ..., x_n)), x_1, ..., x_n \in I.$$

In connection with invariance of the mean-type mappings defined in Remark 9, the following problem arises. What are necessary and sufficient conditions for the (M_1, \dots, M_p) -invariance of the geometric mean $G_{[p]}$ if, for some $\varphi_{i,j}: I^p \to (0, \infty)$, $i, j \in \{1, \dots, p\}$.

$$M_i(x_1,...,x_p) = \frac{\sum_{j=1}^p x_j \varphi_{i,j}(x_1,...,x_p)}{\sum_{j=1}^p \varphi_{i,j}(x_1,...,x_p)}, \qquad x_1,...,x_p \in I?$$

In the case p = 2 the answer gives the following

Proposition 4 Let $M, N : I^2 \rightarrow I$ be given by

$$M(x, y) = \frac{x\alpha(x, y) + y\beta(x, y)}{\alpha(x, y) + \beta(x, y)}, \quad N(x, y) = \frac{x\varphi(x, y) + y\psi(x, y)}{\varphi(x, y) + \psi(x, y)},$$

for some $\alpha, \beta, \varphi, \psi : I^2 \to (0, \infty)$. Then the following conditions are equivalent:

- the geometric mean G_[2] is (M, N)-invariant;
- 2. for all $x, y \in I$,

$$\psi(x, y) = \frac{x\alpha(x, y)\varphi(x, y)}{y\beta(x, y)}, \quad x, y \in I;$$

3. the means M and N have the forms

$$M(x,y) = \frac{x\alpha\left(x,y\right) + y\beta\left(x,y\right)}{\alpha\left(x,y\right) + \beta\left(x,y\right)}, \quad N(x,y) = \frac{yx\alpha\left(x,y\right) + xy\beta\left(x,y\right)}{x\alpha\left(x,y\right) + y\beta\left(x,y\right)}, \quad x,y \in I;$$

4. $M=M_1$ and $N=M_2$ where M_1 and M_2 are defined in Proposition 9 with p=2.

Proof. Writing the equality $G_{[2]} \circ (M, N) = G_{[2]}$ in the explicit form, after simple calculations, we obtain

$$(y - x)[y\beta(x, y)\psi(x, y) - x\alpha(x, y)\varphi(x, y)] = 0,$$
 $x, y \in I$

which is equivalent to the equality $\psi(x,y)=\frac{x\alpha(x,y)x(x,y)}{y\beta(x,y)}$ for all $x,y\in I$. The remaining equivalences are easy to verify.

We end up this section with the following simple

Remark 10 Let $\varphi, \psi : I \to (0, \infty)$, A mean $M : I^2 \to I$

$$M(x, y) = \frac{x\varphi(x, y) + y\psi(x, y)}{\varphi(x, y) + \psi(x, y)}, \quad x, y \in I,$$

is symmetric iff the function \(\subseteq \) is symmetric, that is iff

$$\frac{\psi(x, y)}{\varphi(x, y)} = \frac{\psi(y, x)}{\varphi(y, x)}, \quad x, y \in I.$$

5 Application in the theory of iterative functional equations

In the theory of functional equation in a single variable:

$$F(x, \varphi(x), \varphi[f(x)]) = 0,$$

where φ is an unknown function, the class $S_{\xi}^{n}(I)$ of functions, from which the given function f is taken, plays important role (cf. [6]).

Let $I \subset \mathbb{R}$ be an interval, $\xi \in \operatorname{cl} I$. In its original form, $\mathbf{S}^{n}_{\xi}(I)$ was defined (cf. [6], p. 20) as the class of functions $f: I \to \mathbb{R}$ which are n-times continuously differentiable in I and fulfill the conditions:

$$(f(x) - x)(\xi - x) > 0$$
 for $x \in I$, $x \neq \xi$,
 $(f(x) - \xi)(\xi - x) < 0$ for $x \in I$, $x \neq \xi$.

It was observed (cf. [7]) that these two inequalities are equivalent to the simpler condition:

$$0 < \frac{f(x) - \xi}{x - \xi} < 1$$
 for $x \in I$, $x \neq \xi$.

The next remarks show that there are close relations between the class $S^0_{\xi}(I)$ and the family of means.

Remark 11 A function $f \in S^0_{\varepsilon}(I)$ if, and only, if $f: I \to \mathbb{R}$ is continuous and

$$\min(x, \xi) < f(x) < \max(x, \xi)$$
 for $x \in I$, $x \neq \xi$.

Remark 12 Let $M: I^2 \to I$ be a strict and continuous mean in an interval I. Then, for every $\xi \in \operatorname{cl} I$, the function $f(x) := M(x, \xi)$, for $x \in I$, belongs to $S_c^0(I)$.

Applying Theorem 1, we get

Remark 13 (cf. [6], p. 20) If $f \in S_s^0(I)$ then

$$\lim_{n\to\infty} f^n(t) = \xi, \qquad t \in (0, \infty),$$

where f^n denotes the nth iterate of f.

Proof. Assume that $\xi \in \mathbb{R}$ is the left end-point of I and define

$$M(x,y) := \left\{ \begin{array}{ll} f(\xi+x-y) - \xi + y & \text{for } \xi \leq y \leq x \\ f(\xi+y-x) - \xi + x & \text{for } \xi \leq x \leq y \end{array} \right.$$

It can be easily verified that M is well defined in I^2 . The assumption $f \in \mathbf{S}^0_{\mathbb{Z}}(I)$ implies that M is a strict and continuous mean in I. Moreover, since $\xi \leq x$ for all $x \in I$, we hence get

$$M(x,\xi)=f(x), \qquad x\in I.$$

Put N(x,y) := y for all $x,y \in I$. Clearly, N is a continuous (not strict) mean in I. Consider the mean-type mapping $(M,N): I^2 \to I^2$. Note that

$$(M, N)^{n}(x, \xi) = (f^{n}(x), \xi), \quad n \in \mathbb{N}, x \in I.$$
 (9)

Indeed, by the definitions of M, N and f, for n = 1 we have

$$=(M, N)^{1}(x, \xi) = (M(x, \xi), \xi) = (f(x), \xi) = (f^{1}(x), \xi), \quad x \in I,$$

so (9) holds true for n = 1. Assume that (9) is true for some $n \in \mathbb{N}$. Then

$$(M, N)^{n+1}(x, \xi) = (M(M, N)^n(x, \xi)), N(M, N)^n(x, \xi)))$$

= $(M (f^n(x), \xi)), N (f^n(x), \xi)) = (f^{n+1}(x), \xi),$

and the induction proves (9). Since M is strict, the mean-type mapping (M,N) satisfies the conditions of Theorem 1 with p=2. $M_1=M$, $M_2=N$. Thus

$$\lim (M, N)^n = (K, K)$$

where K is a unique mean continuous mean. Consequently,

$$\lim (f^n(x), \xi) = \lim (M, N)^n(x, \xi) = (K((x, \xi), K(x, \xi)).$$

It follows that $K(x, \xi) = \xi$ and $\lim_{n\to\infty} f^n(x) = \xi$.

In the case when ξ is the right end-point of I we can argue similarly.

Definition 1 For $f:(0,\infty)^2 \to (0,\infty)$ the function $f^*:(0,\infty)^2 \to (0,\infty)$ given by

$$f^*(t) = tf\left(\frac{1}{t}\right), \quad t > 0,$$

is called a conjugate of f.

Remark 14 Note that $(f^*)^* = f$ and $f \in S_1^0((0, \infty))$ if and only if $f^* \in S_1^0((0, \infty))$.

In the sequel we denote $S_1^0((0, \infty))$ by S_1 .

Remark 15 If $f \in S_1$ then the function $M : (0, \infty)^2 \to (0, \infty)$ defined by

$$M(x, y) := yf\left(\frac{x}{y}\right), \quad x, y \in (0, \infty),$$

is a continuous, strict and homogeneous mean. Moreover

$$M(x, y) = xf^*\left(\frac{y}{x}\right), \quad x, y \in (0, \infty).$$

Conversely, if a two-variable function $M:(0,\infty)^2\to (0,\infty)$ is a continuous, strict and homogeneous mean, then f(t):=M(t,1) for all t>0 belongs to \mathbf{S}_1 ,

$$M(x, y) = yf\left(\frac{x}{y}\right), \quad x, y \in (0, \infty);$$

and, moreover,

$$f(t)=M(t,1), \qquad f^*(t)=M(1,t), \qquad \textit{for all } t>0.$$

You we prove

Theorem 2 Let $f, g \in S_1$. Then

1, the linear homogeneous functional equation

$$\varphi(t) = g(t)\varphi\left(\frac{f(t)}{g(t)}\right), \quad t \in (0, \infty).$$

has a unique solution $\varphi \in S_1$ and

$$\varphi(t) = \lim_{n \to \infty} \varphi_n(t), \quad t \in (0, \infty),$$

where $\phi_1 = f$ an

$$\varphi_{n+1}(t) = g(t)\varphi_n\left(\frac{f(t)}{g(t)}\right), \quad t \in (0, \infty), n \in \mathbb{N};$$

2. the functional equation

$$\psi(t) = f(t)\psi\left(\frac{g(t)}{f(t)}\right), \quad t \in (0, \infty),$$

has a unique solution $\psi \in S_1$ and

$$\psi(t) = \lim_{n \to \infty} \psi_n(t), \quad t \in (0, \infty),$$

where $\psi_1 = g$ and

$$\psi_{n+1}(t)=f(t)\psi_n\left(\frac{g(t)}{f(t)}\right), \qquad t\in(0,\infty),\ n\in\mathbb{N};$$

3. the functions φ and ψ are equal.

Proof. Take $f, g \in S_1$. In view of Remark 14, the functions $M, N : (0, \infty)^2 \rightarrow (0, \infty)$,

$$M(x,y) := yf\left(\frac{x}{y}\right), \quad N(x,y) := yg\left(\frac{x}{y}\right), \quad x,y \in (0,\infty),$$

are continuous, strict and homogeneous means in $(0, \infty)$.

Applying the main result of [8] (or Theorem 1) we conclude that there exists a unique continuous (M, N)-invariant mean K, i.e.,

$$K(x, y) = K(M(x, y), N(x, y)), x, y > 0.$$

Moreover K is strict and homogeneous. By the homogeneity of K and the definition of M and N, this equality can be written in the form

$$yK\left(\frac{x}{y},1\right)=yg\left(\frac{x}{y}\right)K\left(\frac{yf\left(\frac{x}{y}\right)}{yg\left(\frac{x}{y}\right)},1\right), \hspace{1cm} x,y\in(0,\infty),$$

which, after setting $\varphi(t) := K(t,1), t > 0$, and $t := \frac{\pi}{t}$, reduces to the equality

$$\varphi(t) = g(t)\varphi\left(\frac{f(t)}{g(t)}\right), \quad t \in (0, \infty).$$

By Remark 14, $\varphi \in S_1$. Moreover the uniqueness of K implies the uniqueness of φ . By Theorem 1, for every $n \in \mathbb{N}$, we have $(M, N)^n = (M_n, N_n)$ where M_n and N_n are strict continuous and homogeneous means. Setting $\varphi_n(t) := M_n(t, 1), \ n \in \mathbb{N}$, we get

$$M_n(x, y) = y\varphi_n\left(\frac{x}{y}\right), \quad x, y \in (0, \infty), n \in \mathbb{N}.$$

It follows that the equality

$$M_{n+1}(x, y) = M_n(M(x, y), N(x, y)), \quad x, y \in (0, \infty),$$

can be written in the form

$$y\varphi_{n+1}\left(\frac{x}{y}\right)=yg\left(\frac{x}{y}\right)\varphi_{n}\left(\frac{yf\left(\frac{x}{y}\right)}{yg\left(\frac{x}{y}\right)}\right), \qquad x,y\in(0,\infty),\ n\in\mathbb{N},$$

which is equivalent to the equality

$$\varphi_{n+1}\left(t\right)=g\left(t\right)\varphi_{n}\left(\frac{f\left(t\right)}{g\left(t\right)}\right),\qquad t\in\left(0,\infty\right),\ n\in\mathbb{N}.$$

By Theorem 1, the sequence of iterates $(M,N)^n$, $n \in \mathbb{N}$, converges to the mean-type mapping (K,K). The above formulas imply that this convergence is equivalent to the convergence of the $(\varphi_n)_{n\in\mathbb{N}}$ to the function φ . This completes the proof of the first result.

We omit an analogous argument for part 2. The third part is obvious.

Applying Theorem 1 we prove the following

Theorem 3 Let $f, g \in S_1$. Suppose that the functions $f, g : (0, \infty) \to (0, \infty)$ are continuous.

$$\min\left(t,1\right) \leq f(t) \leq \max(t,1), \qquad \min\left(t,1\right) \leq g(t) \leq \max(t,1), \qquad t > 0, \quad (10)$$

an.

$$\min(t,1) + \max(f\left(t\right),g\left(t\right)) < \min(f\left(t\right),g\left(t\right)) + \max\left(t,1\right), \qquad t > 0, \ t \neq 1. \ (11)$$

Then

1 the functional equation

$$\varphi(t) = g(t)\varphi\left(\frac{f(t)}{\sigma(t)}\right), \quad t \in (0, \infty),$$

has a unique continuous solution $\varphi:(0,\infty)\to(0,\infty)$ such that

$$\min(t, 1) \le \varphi(t) \le \max(t, 1), \quad t > 0.$$

Moreover

$$\varphi(t) = \lim_{n \to \infty} \varphi_n(t), \quad t \in (0, \infty).$$

where $\varphi_1 = f$ and

$$\varphi_{n+1}(t)=g(t)\varphi_n\left(\frac{f(t)}{g(t)}\right), \qquad t\in (0,\infty),\ n\in \mathbb{N};$$

2. the functional equation

$$\psi(t) = f(t)\psi\left(\frac{g(t)}{f(t)}\right), \quad t \in (0, \infty),$$

has a unique solution $\psi:(0,\infty)\to(0,\infty)$ such that

$$\min(t, 1) \le \psi(t) \le \max(t, 1), \quad t > 0.$$

Moreover

$$\psi(t) = \lim \psi_n(t), \quad t \in (0, \infty),$$

where $\psi_1 = g$ and

$$\psi_{n+1}(t) = f(t)\psi_n\left(\frac{g(t)}{f(t)}\right), \quad t \in (0, \infty), n \in \mathbb{N};$$

3. the functions of and vi are equal.

Proof. By assumption, $\min(t, 1) \le f(t) \le \max(t, 1)$ for all t > 0, whence

$$\min(x, y) \le yf\left(\frac{x}{y}\right) \le \max(x, y), \quad x, y > 0.$$

Thus the function $M(x,y):=yf\left(\frac{\varepsilon}{y}\right)$ for all x,y>0 is a mean in $(0,\infty)$. In the same way we can show that $N(x,y):=yg\left(\frac{\varepsilon}{y}\right)$ is a mean in $(0,\infty)$.

Take arbitrary x, y > 0, $x \neq y$. Setting $t := \frac{x}{y}$ in the assumed inequality and then multiplying both sides by y we obtain

$$\min(x, y) + \max(M(x, y), N(x, y)) < \min(M(x, y), N(x, y))) + \max(x, y)$$
.

Since the mean-type mapping (M, N) satisfies the assumptions of Theorem 1, we can argue as in the proof Theorem 2.

References

- Borwein, J.M., Borwein, P.B., Pi and the AGM, A Wiley-Interscience Publication, New York/ Chichester/ Brisbane/ Toronto/ Singapore 1987.
- [2] Bullen, P.S., Handbook of Means and Their Inequalities, Mathematics and Its Applications, Vol. 560, Kluwer Academic Publishers, Dordrecht/ Boston/London 2003.
- [3] Daróczy, Z., and Páles, Zs., Functional Equations Results and Advances. Kluwer Academic Publishers, Dordrecht/Boston/London 2002.
- [4] Daróczy, Z., and Páles, Zs., Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157–218.
- [5] Gauss, C.F., Bestimmung der Anziehung eines elliptischen Ringen Nach lass zur Theorie des arithmetisch-geometrischen Mittles und der Modul-funktion, Akad. Verlag, M.B.H. Leipzig, New York 1927.
- [6] Kuczma, M., Functional equations in a single variable, Monografie Matematyczne 46, PWN - Polish Scientific Publishers, Warszawa 1968.

- [7] Matkowski, J., On Lipschitzian solutions of a functional equation, Ann. Polon. Math. 28 (1973), 135–139.
- [8] Matkowski, J., Iterations of mean-type mappings and invariant means, Ann. Math. Silesianae 13 (1999), 211–226.
- [9] Matkowski, J., Invariant and complementary means, Acquationes Math. 57 (1999), 87-107.
- [10] Matkowski, J.. On iterations of means and functional equations, Iteration Theory, (ECIT'04), Grazer Math. Ber. 350 (2006), 184-197.

Tanana Mashamala

Faculty of Mathematics, Informatics and Econometry University of Zielona Góra Podgórna 50

Institute of Mathematics Silesian University Bankowa 14 PL-40007 Katowice, Poland

e-mail: J.Matkowski@wmie.uz.zgora.pl