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Iterations of the mean-type mappings
Janusz Matkowski
Abstract

N. p > 2. be fixed. Assuming that the
.p. are such that

Let an interval I C R and p €
continuous means M; : [P — I.i=

)+ max(My (1. ceip) « oo My (1. o))

) My (a1

min(z;,

1p)) = Max (21 ...

< min(My (1.t

if ot all of a1,...2, € I are equal, we prove that the sequence of iterates
of the mean-type mapping (Mi. ... Al,) : I? = I? converges to a mean-type
mapping (K. ... k). where K : I? — I is a continuous mean. Moreover
K is uniquely determined by the condition of (M, .... Mp)-invariance. This
improves an earlier result of 6] where it is assumed that at most one of the
wmeans M. ... M, is not strict. As an application. for some families of mean-
type mappings (M. .... Mp). the effective form of real continuous solutions F
of the functional equation F o (M.....M,) = F is given. An appllmnon to

the theory of iterative functional equation of the form p(t) = g(t), ( is
presented.

1 Introduction

Let an interval / C R and p € N, p > 2. be fixed. Assume that A, : [¥ — I.

i = 1,....p, arc continuous means. In [8] (cf. also [10]) it was proved that if at
most one of these means is not strict. then the sequence of iterates of the mean-
type mapping (M. .... M) : I’ — I? converges to a mean-type mapping (A'..... k).
where K : I? — I is a continuous and (M), ..., M;)-invariant mean, i.e.

Ko (M, ... M,) = K.
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Tterations of means 159

The continuity and the (M. ..., M,)-invariance of A imply its uniqueness. Moreover,
if My, ..., M, are strict, then so is K.

Tn the present paper we generalize this result. In Section 3 we show (Theorem
1) that the conclusions of the above result remain true on replacing the assumption
that at most one of these means Mj..... M, is not strict with the following weaker
and more symmetric condition: if not all z;.....x, € I are equal. then

min(2;. . + max(M, (a

) e

A
Zp)) + max (21, ..., Tp) .

5
M, 2y

< min(M (ay

Taking I = (0.¢). p = 2 and M,
1.1:u) = /Y. we obtain the classical |e\u1r of Gauss
arithmetic-geometric mean iteration in connection with elliptic integrals. In this
case the (Ap. Gpy)-invariant mean K has the form

(e y) = E2,
] who considered the

. dt
K(e.y)= e —— x.y > 0.
Va¥(cost)? + y?(sint
is denoted by Ay © G For some other applications see [1]. [2]. Chapter VI; [3],

Chapter 4. [4], where iterations of two-dimensional continuous and strict mean-type
mappings are considered. The invariant mean is also called the Gauss composition
of means, the Gaussian product of means or the compound mean.

Let us note that the proportion x : 3% "’y y. the base of the theory of
harmony made by Pythagorean school. can be written in the form

Vo aey

22U the harmonic mean, we hence get Gy o (A, Hy) = G
Ap, Hy )-nnmmnt. Thus the notion of
its roots in ancient times.

of continuous mean-type mappings
vs to

Hy (.
\E t)mr whe ueomemc mean Gy
nee of a mean-type mapping ha:
In Section 4 we present some general cl
for which the invariant mean can be casily established. Then Theorem 1 allo
determine effectively the limits of respectiv@ sequences of their iterates. We apply
this fact to obtain all functions F : I” — R. which are continuous on the diagonal

invari

A(P) = {1, wp) € TP iy =2

of the cube I”, and satisfy the functional equation

Fo(M,....Al,)=F.
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In Section 5 we observe close relation of means and functional equations of iter-
ative type. An application to the theory of the functional equation

4(t) = g(t)e (%) . tso

where the given functions f,¢ and the unknown function ¢ belong to a family of
functions the class S; = SY(I) (cf. [6], p. 20) or containing this class, is presented.
2 Preliminaries

Let I C R be an interval and p € N, p > 2, fixed. A function M : I" = & is said to
be a mean on [ if, for all .

€
M (2, 000 2,) € M (2100,2,) < Max (27,0, 2,) z

A mean Al in [ is called strict if these inequalities are strict whenever

o

If I = (0,50) we say that a mean M in I is positively homogeneous if

M (t2y, o tey) = tM (21, 0y) 0 sy > 0.

min (1, ) < max (a

Note the following easy to verify

Remark 1 Let M : I — R be an arbitrary function. Then the following conditions
are equivalent

1. M is a mean:

2. M(JP) C J for every subinterval J C I.
3. M(JP) = J for every subinterval J C I.
Hence we have

Remark 2 If M : IP — R is a mean then M maps I onto I and. moreover. M is
reflexive. that is. for all x € I,

Let us also note the following

Remark 3 If a function M : I? = R is reflexive and (strictly) increasing with
respect to each variable. then M is a (strict) mean I.
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3 TIterations of mean-type mappings and invariant
means

.\ nmp]wing M : [* — [? is referred to as mean-type if there are some means
2P oI d = ..p, such that M = (M,.....M,). We say that the mean-
ty] pe mex]:p»nu M is strict (positively homoge. nums} if P'\(h of its coordinate means
My, . , is strict (positively homogeneous).
Put m =NU{0}.
If M : I? — I” is a mean-type mapping then, clearly. the sequence (M");2, of
the iterates of M.

:=Td|p: M™':=Mo M" for n€ Ny

is well defined.
We have the following obvious

Remark 4 Suppose that M : I — [?, M. = (M., M,) . is a mean-type mapping
of I". Then, for each n € No.

M" = (Moo M)

where. for alli =1, ....p, (21, ....7,) € I,

Mg (21...

and. for all n € Ny v (oo ) € 17,

Moy @1y eoiip) = My My (810001 25) 5 ooy Mo (110, 2p)) -

Given a mean-type mapping M : [P — [? and a mean K : I? — I we say that
K is invariant with respect to the mean-type mapping M. briefly, M-invariant, if

KoM=K

Remark 5 Note that a mean K : I = I is Meinvariant iff the mean-type mapping
K:I" = I? defined by K = (K, .... K) is M-invariant. that is. iff K =Ko

The main result of this section reads as follows:
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Theorem 1 Let I C R be an interval and p € N, p > 2. be fined. Suppose that
M: 17 = I, M = (Mi....M,), is a continuous mean-type mapping of I* such
that, for all (xy,...,x,) € [P\A(IP),

(M (21,00 8p) 1 voes My (12 00y ) = DI (1, e 85) oo M (100 23))

< max (g, ..., &) — min (1, ..., Tp) .

Then
1. for every n € N, the n-th iterate M" = (M, ;. ..., M, ,) . is a mean-type map-
ping of IP:
2. there is a continuous mean K : I" — I such that the sequence of ilerafes

(M7, converges, Mufulmly on compact subsets of 7. to the mean-type mup-
ping K : I — I, K = (K., K,) such that

Ki=..=K,=K;
3. K :IP = I is M-invariant, that is.
K=KoM

or. equivalently. the mean K is M-invariant;

>~

a continuous M-invariant mean (mean-type mapping) is unique;

@

if ML is strict then so is K (and K):

>

if My..... M, are (strictly) increasing with respect to each variable then so is

R

if I = (0.5c) and M is positively homogencous, then cvery iterate of M and
K are positively homogeneous.

Proof. From the definition of the mean we infer that the basic assumption of our
result can be formulated as follows: for all r;. ..., € I. the inequality

min (2y. ..., xp) < mMaX (1, ..., )
implies that

MIN(1, e p) € MM (X1, 000y 8p) s oees My (120000 23))
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xp)) < max (7

max(My (21, Tp) sy My (T2 Zp) .

To avoid writing too long mprossion we assume that p = 2. It is easy to see that
the same idea works in general c:

Part 1 is an immediate consequence of the definition of a mean.

Assume that M. 2 — I are continuous means satisfyving the above condition.
Thus. for all x,y € 1.

min(z, y) < max(r.y)
then
min(x. y) < min(M(2.y), N(2.y)). (1)
or
max(M(x,y). N(2.y)) < max(z,y). (2)

Consider the sequence (M, N)". n € N, of the iterates of the mean-type mapping
(M.N): I?— I,
Putting (cf. Remark 4)

My(a.y) .
and
(M, Ny) = (M. N)", n € Ny,

we have

Moy = Mo (M, Ny). Nus1 = No (M, Ny), n € No. (3)
Define

= min(M,. N,,), 3, 1= max(M,, N,,), neN,.
Taking into account the definition of the mean, we have
n < @nst € Bnst < B,y n € Ny,
whence
ac=supla,: n€No} = lim a,.  B:=inf{3,: n€No}= lim 3,
[ fraey
and
a<f.

We shall show that a = 3. Assume, for an indirect argument, that

alro,yo) < 3(xo.40).
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for some . yo € I. Then, by (1) and (2), we would have
a0, y0) < min[M (a(xo. %), B(2o. %)) . N (a(x0. %0). B(w0, 10))] < B0, y0)
or

a(xo. yo) < max[M (a(xo.y0). 3(x0.0)) . N (a(wo. yo). Hxo. yo))] < Hxo. o).

Since min(r. y) = min(y.r) and max(r, y) = max(y.r). we also have
(0. v) < min[M (3(zo. o) (0. v0)) » N (B(xo, v0)s (o, Yo))] < (0. o)
or
a(@o, yo) < max[M (8(xo. yo). (0. %)) . N (B(xo, yo). (0. yo)) < B(xo. Yo)-
By the continuity of M and N there is > 0 such that. for all (u.v) € I?, the
following implication holds true

a(xo. %) =0 < u < B(zo,90) and  alxe.yo) < v < 3(xe.yo) + 4

¥ )

{a(xo.yo) < min(M (u.v), N(u.v)) < B(xo.y0) + &
or
a0, Yo) — § < max(M (u,v), N(u,v)) < B(xo.%0)}-

By the definitions of a and 3 there is ng € N such that, for all n € N, n > ng.
a(g. yo) = & < an(wo. yo) < alwo. yo)

and
3(wo. o) < Bu(wo. yo) < 3(wo. yo) +9.

For all n € N,
an(@o. Yo) = min(M (e (To, Yo)s Na(To, ¥0))

and
Bn(o. y0) = max(Mn(o. o). Nn(20. 0))-

By implication (4). we would have

a(@o, Yo) < M(Myn(0. 0). No(0.%0)) < B(x0.%0). 1> ng.
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or
a(zo,y0) < N(My (0. y0). Na(0.30)) < B(xo,30). 1 > no,

that is, for all n > no.
a(x0.40) < Mr1(%o.30) < B(xo.%0).

or
a(o. yo) < Npe1 (o, Yo) < 3(wo. w0)

whence. by the definition of the sequences a,, and 3,. for all n > nq.
alro. yo) < ans(o. yo) < Bwo. Yo).

or
a(xg, Yo) < Bna1(o. Yo) < (o, %0)-

165

This contradicts to the definition of a(xo.yo) and B(xg.yy) and proves that a = 3.

Since. for every n € N, the functions a, and 3, are continuous, the sequence (a
ing. the function a is lower semicontinuous

increasing and the sequence (3, ) is decr
and 3 is upper semicontinuous. It follows that the function

K{v.y) :==ale.y). xyel

n) is

is continuous. By Dini's Theorem, the convergence of the monotonic sequences of
continuous functions to a continuous function is uniform on compact sets. It is
obvious that K is a mean in 1. From the definition of the sequences (av,) and (3,)

we have
o SM< B, o SN, <P n € Np.

It follows that
lim M, = K = lim N,
ey e

and. obviously. this convergence is uniform on compact sets. Consequently.
lim (M.N)" = lim (M,.N,) = (K.K),
e nox
uniformly on compact subsets of I2. This completes the proof of part 2.
Put K := (K, K). From (5) and (3) we have
K = (K, K) = lim (My+1, Nazy) = lim (M, o (M, N), N, o (M, N))
n—o fs
= (um M, o (M,N), lim N, o (M, N
o nox
=Ko (M,N),

) = (K o (M.N), K o (M, N))

c
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which proves conclusion 3
Assume that L = (L.L) : I* — I? is a continuous and (A, N)-invariant mean-
type mapping, that is L = Lo (M, V). Hence. by induction.

L =Lo(M.N)", neN.
Letting n — oc, and applying the reflexivity of the means, we obtain
L= ”lill;L o(M,N)"=Lo (My.M_,)=LoK=(Lo(K,K),Lo(K.K))
=K K)=K

which completes the proof of conclusion 4.
Since the remaining pars are obvious. the proof is completed. o

Theorem 1 improves the main result of [§]. Theorem 1 (cf. also [10] ) where
much stronger condition, that at most one of its coordinate means M. .... M, is not
strict. is assumed. In the case when p = 2 and the coordinate means are strict the
suitable result is well known and frequently applied (cf. [1]. [2]. Chapter VI, [3],
Chapter 4, [4]: and [9]).

Remark 6 The condition assumed in Theorem 1 is indispensable.
To show it consider three examples.
Example 1 Let M : I? — I?. M = (M;..... M,,). be a mean-type mapping such that
My (ay

5 2p)5 M(Ty i

= max(xy. ..., xp).

Then, for all 2y, ..oty € 1.

M1, o ) + max(My (21, o 2y), oo My(an,
= My(21, e ty) + My, e
= min(M, (4

Zp)) + max(a

so the assumption of Theorem 1 is not fulfilled. Since the means K = M, and
K = M, are M-invariant. the uniqueness of the continuous M-invariant mean is
failed.

Example 2 Takep=3.1=
i Mol
max(x;

A—,-—A is M-invariant.
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Example 3 Takep I =R, and M := (M. M), where M; (@, x2) = min(x,
and Ma(ry.23) = max(ry.22). Then each of the means My. My and As(ry,23)
2 is M-invariant.

In each of these examples the mean-type mapping M does not fulfill the basic
assumption of Theorem 1 and the M-invariant mean is not unique.

4 Some special mean-type mappings and applica-
tions to functional equations of several variables

In this section we consider some general classes of mean-type mappings for which
the invariant means can be effectively determined and we present some applications
of Theorem 1 in the theory of functional equations.

We begin with the case when the arithmetic mean is invariant

Remark 7 Let M : I? — I be an arbitrary mean in an interval I. Then
M(w,y) = M.yl + (1= MNa.y)ly, wyel c#y,
where
Me,y) —
r—y
Tt follows that every mean can be written in the form

AMz.y) =

Mr.y) = Aay)e+ (1= Na.y)y. ryel.

where X2 17 = [0.1].
If A2 I = [0.1] is a continuous function then the function My : I* — I defined
by
My(z.y) == Ma.y)z + (1= Mz.y))y. zyel

is a continuous mean in I. If, moreover , X : I* = (0.1) then My and M,_y are
strict. In particular. the mean-type mapping (My,My_y) : I* — I? satisfies the
assumptions of Theorem 1. Since the arithmetic mean Ay is (M. M,_y)-invariant,
in view of Theorem 1. the sequence of iterates ((My. My_\)") converges (uniformly

on compact subsets of I) and

lim (My. Mi2y)" = (Apy.
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Applying Theorem 1 we prove the following

Proposition 1 Let I C R be an interval and let A(I?) := {(x.2) : & € T} be the
diagonal of I*. Suppose that a function F : I* = R is continuous on A(I?). Then
F satisfies the functional equation

F(My(e.y). My_x(x.y)) = F(z,y). wy€el (5)

if, and only if, there is a single variable continuous function f : I — R such that

Fley)=f ("“”) . zyel (6)

2
Proof. Assume that F satisfies equation (5). Hence, by induction,
F(a.y) = Fo[(My, Miy)" (2,y), neN zyel

By Remark 7 and the continuity of F on A(I?), letting n — ¢, we get
Y ) g &

Fle.)=F ("'* Y

Setting f(x) := F(a.2) for @ € I we get (6). The converse implication is easy to

verify. =]

The above remark and proposition can be casily gencralized.

Remark 8 Let I C R be an interval andp € N, p > 2. Assume that \; : I" — (0.1).
i=1,..,p. are continuous and such that

»
Y Eyendy=l; | Eiesgyeds
P

Then the function My, __x, - IP — I defined by

W2p)e Bendp €L

is a continuous and strict mean in 1. It is casy to sec that the mean-type mapping

M= (My,, Mg, dodi: Mg,

D ibaedp) S IR
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satisfies the assumptions of Theorem 1. Since the arithmetic mean

e

Ay

is M-invariant, in view of Theorem 1. the sequence of iterates (M), converges

and

lim M = (A, oo Ay).

Similarly as Proposition 1, we can prove

Proposition 2 Let I C R be an interval and let A(I?) := {(21....x,) € [P : 0y =
7,}. Suppose that a function F : I' — R is continuous on A(I?). Then F
es the functional equation

Fo (M., M,

Mapardaidpr) = F

if. and only if. there is a continuous single variable function f: I — R such that

ElEyente) = Ji(Ap (@ i53))s Ty eI

Now we consider some mean-type mappings for which the geometric mean is
invariant.
Remark 9 Let I C (0.2¢) be an interval and p € N, p > 2 be fived. Assume
that 2; : I' = (0.50). i = 1.....p. are continuous. Then. for each i = 1.....p. the
function M, : I" — (0.c) defined by

5 fizt
3 (H‘z-k_,_,q) (T4, eons Zp)

k=1 \Ji

M@y =220 L
> (H) _
where 2,., = 2, for j = 1,2,.... is a continuous and strict mean. Note that the
geometric mean
G(T1,.nTp) = YT Tp
is (My..... M,,)-invariant. Thus. in view of Theorem 1.

lim (My. M) = (Gis - Gi)

The invariance identity
G0 (M. My) = Gy

generalizes the harmony proportion.
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Taking here I = (0.5¢). »
N = Hyy. Hence we get

v.y) = v(w.y) = 1 for 2.y € (0.50). we have M = Ay,

G oAy, Hy) = Gp. (@)
the invariance mentioned in the Introduction, equivalent to the Pythagorean har-

mony proportion, and, moreover

lim (Ap;. Hop)"

nesa

In the case p = 3. setting M := M;. N :

we have

Taking T = (0,0), p(a.
have

M(x.

where A is the arithmetic mean and Hy) the harmonic mean Applving the last
remark we obtain
Giyo (A, N, Hy) = Gy (®)
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and

lim (Ag. N Hy)" =G
nevte V8 Bl

The identity (8) can be seen as a three-dimensional counterpart of two-dimensional
harmony relation (7).

Taking I = (0,5¢), ¢; = 1for j = 1..... p. in Remark 9. we obtain a p-dimensional
counterpart of harmony relation (7) (see also [10]).

Applying Theorem 1 and Remark 9 we obtain the following

Proposition 3 A function F : I" = R, continuous on A(I?), satisfies the func-
tional equation

Fo(M,..M,)=F

if. and only if. there is a continuous function f : I = R such that

Flminty) =1 (Cultn=@))s  Suas €L

In connection with invariance of the mean-type mappings defined in Remark 9,
the following problem arises. What are neces and sufficient conditions for the
(M;. ... M;,)-invariance of the geometric mean Gy if. for some pi; @ 17 — (0,2¢),
7 cesD):

{1

g e
=1 Lj¥i

Mi(215,2p) = .
DY RN

zp€ I?

In the case p = 2 the answer gives the following

Proposition 4 Let M. N : I* — I be given by

y) +yd(xy)
)+ (ay)

M(x.y) =

for some a. 3. 2.0 IP = (0.5c). Then the following conditions are equivalent:

1. the geometric mean Gy is (M. N)-invariant;

2 forallu,yel,
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3. the means M and N have the forms

ra(r.y)+ydey) .. yra (x.y) + 2yd (2. y)
= . N(z.y)= "
a(r.y)+3(ry) ra(r.y)+ys3(r.y)

vyel;

1y and N

M, where My and M, are defined in Proposition 9 with

Proof. Writing the equality Gy o (M.N) = Gy in the explicit form. after simple
calculations. we obtain

(y — ) [yBla. y)v(r.y) — ralr.y)e
which is equivalent to the equality v/(x, y) = 230254 for all 2.y € 1. The remain-
ing equivalences are easy to verify. a

We end up this section with the following simple

Remark 10 Let o, v : 1 — (0.0c). A mean M : I* = I,

M(z,y) =

is symmetric iff the function £ is symmetric. that is iff

_vly.x)

zyel
y.x)

5 Application in the theory of iterative functional
equations
In the theory of functional cquation in a single variable:

F(z, (). £l£(:

function f is taken, play

Let I C R be an interval, § € cl . In its original form, S7(I) was defined (cf
[6], p. 20) as the class of functions f : I — R which are n-times continuously
differentiable in I and fulfill the conditions:

N(E—2)>0 for €l x#E,
) (€ -

) <0 for wel c#¢
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It was observed (cf. [7]) that these two inequalitics are cquivalent to the simpler
condition:
for zel. x#¢

The next remarks show that there are close relations between the class S¢(I)
and the family of means.

Remark 11 A function f & SUI) if. and only. if f : T — R is continuous and
min(z.€) < f(z) < max(e.€) for zel, t#E
Remark 12 Let M : I* — I be a strict and continuous mean in an interval I.

Then, for every € € cl1. the function f(x) := M(x.€). for x € I. belongs to SYT).

Applying Theorem 1. we get
Remark 13 (¢f [6]. p. 20) If f € SUT) then
lim f(t) =€ t€(0.00),
i
where f" denotes the nth iterate of f.
Proof. Assume that € € R is the left end-point of J and define

fle+a—y) —E+y for€

- ) = sy<da
'“("'”)“{ fle+y—a)—E+r forf<r<y

%
Y

It can be easily verified that A is well defined in I°. The assumption f € S¢(I)
implies that A/ is a strict and continuous mean in I. Moreover, since £ < x for all
v € I. we hence get

M(x,€)=f(z), =€l
Put N(a.y) :=y for all 2,y € I. Clea is a continuous (not strict) mean in I.
Consider the mean-type mapping (M. N) : I* = I2. Note that

(M, N"(z.€) = (f"(2).§), neNzxel (9)

Indeed. by the definitions of M. N and f. for n = 1 we have

(M. N)Y(z.€) = (M(2.8),€) = (f(a).§) = (f(2).6), =xel,
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50 (9) holds true for n = 1. Assume that (9) is true for some n € N. Then
(M, N)*Y(z,€) = (M(M, N)"(x.€)), N(M,N)"(x.£)))
= (M(f"(2),€)). N (f"(2). ) = (f""}().€) -

and the induction proves (9). Since M is strict, the mean-type mapping (M, N)
satisfies the conditions of Theorem 1 with p = 2. M = M. My = N. Thus

lim (M.N)" = (K, K)
n—x

where K is a unique mean continuous mean. Consequently,
lim (f"(x).€) = lim (M, N)"(2,€) = (K((r.€). K(r.€)).
== n—x

It follows that A'(x.§) = § and lim,~ f"(x) = §.

In the case when € is the right end-point of I we can argue siuilaly. o

Definition 1 For f : (0.oc)? = (0.2c) the function f*: (0.2¢)* = (0.5) given by
1
ft)y=tf (7) £0;
is called a conjugate of f.

Remark 14 Note that (f*)" = f and f € S3((0.2)) if and only if f* € S3((0.c)).

In the sequel we denote S9((0.c)) by Si.
Let us note the following easy to verify.

Remark 15 If f € S, then the function M : (0.5c)2 = (0.5c) defined by
Mr.y) = yf (j) . ny€(0,%).
is a continuous, strict and homogeneous mean. Moreover
y
Mz.y) = af* ({) . @y e(0,%).

Conversely, if a two-variable function M : (0.5)* = (0.2¢) is a continuous,
strict and homogeneous mean, then f(t) := M(t.1) for all t > 0 belongs to S;.

Ma.y) = yf (%) . aye(0.0)
and, moreover,

flty=M(t.1),  f(t)=M(.t), foralt>0
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Now we prove
Theorem 2 Let f.g € Sy. Then

1. the linear homogeneous functional equation

(;’é—:;) t e (0.0).

#it) = g(t)e
has a unique solution ¢ € S and
o(t) = lim ga(t).  t€(0.00),

where 3y = f and

ensi(t) = g(8)en (M) t€(0.¢). neN; -
g(t)

©

the functional equation

U(t) = f(t) t € (0.2¢),

has a unique solution v € S, and
Ot) = lim v(t), € (0.5),
g

where vy = g and

Ut (1) = f(D)0 (”“’) te(0,x) neN;

3. the functions ¢ and v are equal.

Proof. Take f.g € S;. In view of Remark 14, the functions M. N : (0.50)? = (0.c),
z : r

M(r.y) = yf (-) . Ny =yg (;) . 2.y € (0.%¢),

Yy !’

are continuous. strict and homogeneous means in (0,2c).

Applying the main result of 8] (or Theorem 1) we conclude that there exists a
unique continuous (M, N)-invariant mean K. i.e..

K(x.y) = K (M(r.y).N(z,y)), ».y>0.
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Moreover K is strict and | By the h ity of I and the definition
of M and N, this equality can be written in the form

P z
YK (7.1) =g (7> K 1. Ty € (0.%).
v Y, ug (i,)

which, after setting (/)

= K(11). £ > 0. and  := £, reduces 1o the equality

£t
o(t) = glt)y (‘— . t€(0,00).
. "\l
By Remark 14, ¢ € Si. Moreover the uniqueness of K implies the uniqueness of .
By Theorem 1, for every n € N, we have (M, N)" = (M, N,,) where M, and N,
are strict continuous and homogeneous means. Setting ¢, (t) := M, (t.1). n € N.
we get

M, (2. y) = yon (i) 5 z,y € (0,00),n €N
It follows that the equality
Myoy(e.y) = My(M(e.y). N(x.y)). @y € (0.50).

can be written in the form
~ (v(3) )
YPne1 5 =yg 7 #n 2 2,y €(0.%), n €N,

which is equivalent to the equality

ne1 (8) =g (t) on <y(¢))' te(0.x). n€N
By Theorem 1. the sequence of iterates (AL, N)". n € N. converges to the mean-type
mapping (A K). The above formulas imply that this convergence is equivalent to
the convergence of the (,),ey to the function . This completes the proof of the
first result.

‘We omit an analogous argument for part 2. The third part is obvious. o

Applying Theorem 1 we prove the following
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Theorem 3 Let f.g € Sy. Suppose that the functions f.g : (0.00) — (0.00) are
continuous.
min (¢,1) < f(t) < max(t. 1), min (#,1) < g(t) < max(t,1), t>0, (10)
and
min(#.1) + max(f (t).g(#)) < min(f (t).g(t)) + max(t.1). >0, t# 1. (11)
Then
1. the functional equation

o(t) = g(t)y (%) v t€(0;00);

has a unique continuous solution ¢ : (0,00) = (0,00) such that

min (¢,1) < ¢(t) < max(t, 1), t>0.

Moreover

() = lim u(t).  t€(0.).
ety

+
;,,v;m=g{tl;,,(i(-—)>‘ t€(0.). neN:
g(t)

123

the functional equation

U(t) = f(t)e (%) . t € (0.20),

has a unique solution 1> : (0.5c) — (0.oc) such that
min (£.1) < ¢(f) <max(f.1). >0,

Moreover
w(t) = lif“,“““' t € (0.00),
where vy = g and
)
U (t) = f(t)n (%) . te(0.oc), neN:
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3. the functions ¢ and ¢ are equal.
Proof. By assumption, min (f,1) < f(f) < max(#,1) for all # > 0, whence
< max(r.y). r.y>0.

min(z,y) < yf (

Thus the function M(z.y) i= yf () for all .y > 0 is a mean in (0.5). In the

same way we can show that N|

y) = yg(i) is & mean in (0.0).
Take arbitrary @,y > 0. x # y. Setting ¢ := £ in the assumed incquality and

then multiplying both sides by y we obtain !
min(z, y) + max(M(z. y), N(a.y)) < min(M(z.y). N(z.y))) + max (r.y) .

Since the mean-type mapping (M. N) satisfies the assumptions of Theorem 1, we
can argue as in the proof Theorem 2. o
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