Janusz Matkowski

EXTENSIONS OF SOLUTIONS OF A FUNCTIONAL EQUATION IN TWO VARIABLES

Abstract. An extension theorem for the functional equation of several variables

$$f(M(x, y)) = N(f(x), f(y)),$$

where the given functions M and N are left-side autodistributive, is presented.

Keywords: functional equation, autodistributivity, strict mean, extension theorem.

Mathematics Subject Classification: Primary 39B22.

1. AN EXTENSION THEOREM

Recently Zs. Páles [2] considered the extension problem for the functional equation of the form

$$f(x) = M(f(m_1(x,y)), \ldots, f(m_k(x,y)))$$

where M is a k-variable bisymmetric operation and m_1,\dots,m_k some binary commuting operations.

In this note we deal with the extension problem for the functional equation

$$f\left(M(x,y)\right) = N(f(x),f(y))$$

where the given functions M and N are left-side autodistributive and M is a strict mean. The functions satisfying this functional equation are called (M,N)-affine (cf. [1] where the case when both M and N are means is considered).

We prove the following

Theorem 1.1. Let $I,J\subset\mathbb{R}$ be open intervals. Suppose that $M:I^2\to I,\ N:J^2\to J$ are continuous strictly increasing with respect to the first variable and such that

$$M(M(x,y),z))=M(M(x,z),M(y,z)),\quad x,y,z\in I,$$

$$N(N(x, y), z)) = N(N(x, z), N(y, z)), x, y, z \in J.$$
 (1.2)

We also assume that M is a strict mean, that is

$$min(x, y) < M(x, y) < max(x, y), x, y \in I, x \neq y.$$

If $f: I_0 \rightarrow J$ satisfies the functional equation

$$f(M(x, y)) = N(f(x), f(y)), x, y \in I_0,$$
 (1.3)

for a nontrivial interval $I_0 \subset I$, then there exists a unique function $F: I \to J$ such that $F|_{L_0} = f$ and

$$F(M(x, y)) = N(F(x), F(y)), x, y \in I.$$

Proof. Assume that $I_0 \subset I$ is a maximal subinterval of I on which the function f can be extended to satisfy equation (1.3). Suppose first that

$$b := \sup I_0 < \sup I$$
.

Take an arbitrary $a \in I_0$, a < b. Then

$$f(M(x, y)) = N(f(x), f(y)), x, y \in [a, b],$$
 (1.4)

Since M is a continuous and strict mean, there is a $c \in I$, c > b such that M(a, c) < b. Hence, as M is strictly increasing with respect to the first variable.

$$M(x, c) < b$$
, $x \in [a, c]$.

Setting y := a in (1.4) we have

$$f(M(x, a)) = N(f(x), f(a)), x \in [a, c],$$

Let $N_{f(a)}^{-1}$ denote the inverse function of $N(\cdot, f(a))$. Define $F_a: [a, c] \to J$ by

$$F_a(x) := N_{f(a)}^{-1} (f(M(x, a))), x \in [a, c].$$

Note that by (1.4) the function F_a is correctly defined,

$$F_a(x) = f(x), x \in [a, b],$$

and

$$f(M(x, a)) = N(F_a(x), f(a)), x \in [a, c].$$
 (1.5)

Now making use respectively of the definition of F_a , the property (1.1) of M, equation (1.4), equation (1.5), property (1.2) of N, for all $x, y \in [a, c]$ we have

$$\begin{split} F_a\left(M(x,y)\right) &:= N_{1(a)}^{-1}\left(f(M(M(x,y),a))\right) = N_{1(a)}^{-1}\left(f(M(M(x,a),M(y,a))\right) = \\ &= N_{1(a)}^{-1}\left(N\left(f(M(x,a)\right),f(M(y,a))\right) = \\ &= N_{1(a)}^{-1}\left(N\left(N\left(F_a(x),f(a)\right),N\left(F_a(y),f(a)\right)\right) = \\ &= N_{1(a)}^{-1}\left(N\left(N\left(F_a(x),F_a(y)\right),f(a)\right) = N\left(F_a(x),F_a(y)\right), \end{split}$$

that is

$$F_a(M(x, y)) = N(F_a(x), F_a(y)), \quad x, y \in [a, c].$$
 (1.6)

In the case when $\inf I_0 \in I_0$ we can take $a = \inf I_0$. Putting $F := F_a$ we get

$$F(M(x, y)) = N(F(x), F(y)), x, y \in [a, c]$$

Since $F\mid_{I_0}=f$ and $I_0\subseteq[a,c]$, this contradicts the maximality of the interval I_0 . In the case when $\inf I_0\not\in I$, we take a decreasing sequence $(a_n:n\in\mathbb{N})$ such that $\inf I_0=\lim_{n\to\infty}a_n$ and define $F:\inf I_0c_n|-J$ by

$$F(x) := F_{a_n}(x), x \in [a_n, c], n \in \mathbb{N}.$$

This definition is correct because, by (1.3).

$$m < n \Longrightarrow F_{a_m} = F_{a_n} \mid_{[a_m,c]}$$
.

In view of (1.6) we have

$$F(M(x, y)) = N(F(x), F(y)), x, y \in (\inf I_0, c].$$

Since $F|_{I_0} = f$ and $I_0 \subsetneq (\inf I_0, c]$, this contradicts the maximality of the interval I_0 . The obtained contradiction proves that $\sup I_0 = \sup I$. In a similar way we can show that inf $f_0 = \inf I$. This completes the proof.

DEFEDENCE

- J. Matkowski, Convex functions with respect to a mean and a characterization a quasiarithmetic mean. Real Anal. Exchange 29 (2003/2004) 1, 220-246.
- [2] Zs. Páles, Extension theorems for functional equations with bisymmetric operations, Aequationes Math. 63 (2002), 266–291.

Janusz Matkowski

j.matkowski@wmie.im.zgora.pl

University of Zielona Góra

Institute of Mathematics, Computer Science and Econometry, ul. Podgórna 50, 65-246 Zielona Góra, Poland

Silesian University

Institute of Mathematics 40-007 Katowice, Poland

Received: August 11, 2009.

Revised: August 18, 2009. Accepted: August 21, 2009.