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A functional equation with two unknown functions

Janusz Matkowski and Peter Volkmann

1. Introduction. Throughout this paper I denotes a non-degenerate in-
terval in IR, i.e., I is a convex subset of R with non-empty interior. We
determine all continuous, strictly increasing ¢,¢ : I — IR such that

(11) (2 +9) (@) + ) + (¢ +¥) 7 (e) + ¥(2))
=z+y (z,y€);

this will be done in the next paragraph. The third paragraph contains some
background information concerning equation (1.1). For the moment we on-
ly like to mention that a more general equation (with four unknown func-
tions) had been solved by Bajak and Péles [2], but under stronger regularity
conditions. In the last paragraph we give an application to the functional
equation

(1.2) F(Agp(2,y), Appl2,y) = Flz,y)  (zyel),
) = (¢ +9)7 (e(2) + ¥(y)).

where (generally) A,,

2. Solution of (1.1).

Theorem 1. Let ¢, : I — IR be continuous and strictly increasing. Then
(1.1) holds if and only if there are a,b € R, a >0, such that

(2.1) (zel).

Proof. Let (1.1) be true. We consider zo,yo € I and we like to show

) (prw (TpR) - etV o)

We assume 2o < yo and define recursively
(2.3) 2o = min{(p + ) (@(@a-1) + P(¥n-1)),s
(0 +9) 7 (@(yn-1) + P(za-1))}
(2.4) Yn mu{(,, +0)7(@(@n1) + Y(¥n-1)),
¥) (e (Yn- :) ( 1))}
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(n=1,2,3,...). We get
[@0,v0] 2 [z1,01] 2 [22, 9] 2.,
hence

T 12 4 ly 2T

When adding (2.3), (2.4), then (1.1) implies €, +yn = Zn_; +Yn_1. Therefore
we have T, +yn =To+ Yo (n=1,2,3,...), in the limit

(2.5) Z+§=20+%0-
(2.3), (2.4) also can be written as
(26)  @(@n) + Y(zn) = min{p(zn1) + Y(Un-1), @(¥n-1) + Y(@n-1)}s
(27) @(ya) +(ya) = max{p(n-1) + Y(Yn-1), (¥n-1) + Y(@n-1)}-
Adding them we get

(P +9)(2n) + (2 + V) (1) = (¢ + ¥)(2n1) + (¢ + V) (¥n1),
hence
(28)  (p+¥)(@n) + (¢ +¥)(¥n) = (¢ +¥)(0) + (¢ +¥)(v0)
(n=1,2,3,...). Now n — co in (2.6), (2.7) gives

#(Z) + (@) = @(z) + ¥(&) or ¢(F)+¥(F) = (@) +v(@)-

In both cases we get Z = 7, and because of (2.5) we have

Zo + Yo
7=

Then n — oo in (2.8) leads to (2.2).

Equation (2.2) is true for arbitrary o, o € I, and this means that ¢ +
¥ : I — R is a solution of the Jensen functional equation. Furthermore
@+ is continuous and strictly increasing, therefore we get (2.1) with some
a>0, b€ R;cf., e.g., Aczél [1] or Kuczma [6].

On the other hand, if continuous, strictly increasing functions @, : I —
R satisfy (2.1), then (1.1) can easily be verified.

Remark. Consider ag, by € I, and replace (2.3), (2.4) by the formulas

(2.9) @ = (p+ )7 (P(an-1) + Y(bn-1))s

(2.10) bp = (¢ + %) (@(ba-1) + Y(an-1))
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(n=1,2,3,...). Then

ag+bo
5

(2.11) lim a, = lim b, =
Proof. For 2o = min{ag, b}, Yo = max{ag, b} the z,, y, from (2.3), (2.4)
are just
T = min{an, bu},  yn = max{an, bu}.
This, together with z,, T 3(zo + %0), ¥n | (%0 + %0), and zo + yo = ao + bo
leads to (2.11).

Using Theorem 1 we are able to describe our solutions of equation (1.1)
more precisely.

Theorem 2. The continuous, strictly increasing ,v : I — R solving
(1.1) can be obtained in the following way:

1) We start with an arbitrary Lipschit strictly i func-
tion ¢ : I — R; let A, denote its smallest Lipschitz-constant.

1I) We determine ¥ : I — R by means of (2.1), where b€ R, a > A, are
arbitrary, but where the last inequality has to be replaced by a > Xy, if on a
non-degencrate sub-interval of I the function ¢ is linear with slope A,.

Proof. Let us begin with continuous, strictly increasing ¢,% : I — R

solving (1.1). By Theorem 1 we have (2.1), and for z,y € I,z < y we get
#y) = ¢z) = aly — ) = ¥(y) + ¥(z) < aly — 2).
So a is a Lipschitz-constant for ¢, hence A, < a.

Let us suppose ¢ to be linear with slope A, on some interval [p,q) C I
(where p < q). Then we have (q) — ¢(p) = An(g — p) and taking (2.1) for
x = q, ¢ = p and subtracting we get

Asla —p) +¥(g) — ¥(p) = alg - p)-
Because of ¥/(p) < ¥(g), this implies A, < a.

These considerations show that ¢, ¥ are included in the procedure given
by 1), 11). Conversely it is easy to see that all functions o, ¥ obtained by I),
1I) are continuous and strictly increasing on I (in fact, it only remains to
show that ¥ : I — IR is strictly increasing). According to the construction
they fulfil (2.1) with some a,b € IR, hence they solve (1.1).

3. Background. The functional equation (1.1) is related to the question

of invariance of a quasi-arithmetic mean with respect to a mean-type mapping
defined by two quasi-arithmetic means. This question leads to

@1) o (M) gt (M) —s+y  (myel),



where the unknown functions ¢,% : I — IR are continuous and strictly
increasing. Sutd [9] determined the analytic solutions of (3.1). The same
solutions then had been found in [7] under the assumption of twice continuous
differentiability and after this by Dardezy and Péles [3] in the general case.

Jarczyk and Matkowski [5], motivated by a more general invariance pro-
blem for weighted quasi-arithmetic means, considered the functional equation
(32) P (gp(@) + (1 - Q)e() + (1= )Y~ (rv(e) + (1 - 1)¥(y))

=pe+(1-py (wyel),
where p, g, €]0, 1[ are arbitrarily given and the unknown ¢, % : I — IR again
are continuous and strictly increasing. They determined the twice continuous-

ly differentiable solutions of (3.2). Then Jarczyk [4] got the same solutions
in the general case.

The means
(33)  Apu(my)=(0+9) @) +¥W)  (zyel)

had been introduced in [8]; we also can write them as

At = (252)7 (£2£20) e,

For ¢ = 1 we get the quasi-arithmetic mean generated by ¢, and because
of this we call A, a quasi-arithmetic mean with two generators ( and ).
Let us observe that weighted quasi-arithmetic means are special cases of the
means (3.3).

Using (3.3) we can write a functional equation considered by Bajik and
Péles [2] as

(34) Apn(@ V) + Apn(@y) =z+y  (@yel).

They determine all four times continuously differentiable solutions @1, ¥, @2,
Gy I — R such that ¢)(z), ¥} (x), ¢)(x), ¥4(z) > 0 (z € I). Our functional
equation (1.1) is a special case of (3.4), namely it can be written as

(3.5) App(@, ) + App(z,y) =z+y  (By€D).

It should be mentioned that all the solutions of (1.1) which are given by our
Theorem 1 already were known to Bajék and Péles [2].

Let us finally observe that, when dividing (3.5) by two, this equation
can be interpreted as invariance of the arithmetic mean with respect to the
mean-type mapping (A, Ayg) : 12 = I%.



4. An ication. Suppose the i , strictly i ing functions
@, : I — R solve (1.1), and let f : I — R be arbitrary. Writing (3.5)
instead of (1.1), we then get

Hvelan) + Aup@ =1 (55Y)  @yeD.
This means that F : I> — IR defined by
(4.1) F(;m:f(%g) (wyel)
fulfils the functional equation

12) F(Apu(,9), App(z,9)) = Fzy) (g €l).

Now we shall see that under some continuity assumptions the solutions F :
12 — R of (1.2) have the form (4.1).

Theorem 3. Let ¢, 6 : [ — R be continuous, strictly increasing functions
solving (1.1). Suppose F : I* — R to be continuous in the points of the
diagonal {(2,) | = € I}. Then F solves the functional equation (1.2) if and
only if there is a continuous f : I — R such that (4.1) holds.

Proof. So let F : I — R be a solution of (1.2) which is continuous in
the points (z,z) from I%. We consider (z,y) € I2, and for ap = @, by = y
we define @y, by (n = 1,2,3,...) as in the Remark after Theorem 1. Observe
that (2.9), (2.10) can be written as

@n = App(@not,bnr), bn = App(anot, baot) (n=1,2,3,...).
Therefore we get from (1.2)
F(an,bn) = Flan-1, bo1) (n=1,2,3,...),
and this implies
(4.2) F(an,bn) = F(ao,bo) = F(z,y)  (n=1,2,3...).
Because of (2.11) we have lim a, = lim by = (a0 +bo) = }(@ +3), and
n — co in (4.2) leads to

(4.3) F(%L‘;y) = Flz,y).

Let us define f : I — R by f(z)
and (4.1) follows from (4.3).

F(z,z) (z € I), then f is continuous,
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