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Abstract

‘The invariance of the geometric mean G with respect to the Lagrangian mean-type mapping (L, L8),
iie. the equation G o (L/, L&) = G, is considered. We show that the functions f and g must be of high
class regularity. This fact allows to reduce the problem to a differential equation and determine the second
derivatives of the generators f and g.
© 2006 Elsevier Inc. Al rights reserved.
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1. Introduction

By L/ denote the Lagrangian mean generated by a function f defined on an interval  C R
and by G, the geometric mean. The problem of invariance of the geometric mean G with respect
to the mean-type mapping (L, L8) reduces to the functional equation

Go(L/,L8)=6. m
In this paper we consider this functional equation under the natural assumption that f and g are
continuously differentiable functions.
One of the consequences of the invariance is the convergence of the sequence of iterates of
the mapping (L, L¥) satisfying this equation to the mean-type mapping (G, G) (cf. [24]).
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In Section 3 we prove that the unknown functions f and g satisfying Eq. (1) must be of
high class regularity. Applying this, in Section 4, we reduce the problem to a linear differential
equation of the second order. Solving the differential equation we prove that either

fO=ax +bix e, g =axT +hrxto (el

for some ay, a2, b, b2, ¢1, €2 € R, a1a2 #0, or

@)=
for some a, b, ¢ € R, ac #0.
Let us mention that the problem of invariance of the arithmetic mean in class of Lagrangian
‘mean-type mappings has been solved in [5]. All pairs (M, N) of Stolarsky’s means such that G
is (M, N)-invariant have been determined in [1].

explax™d +b), g"(x)=cxexp(—ax~d —b) (xel),

2. Some definitions and motivation

Let / C R be an interval. A function M : 1% — R s said to be amean on I if
min(x, y) < M(x,y) Smax(x,y), xyel

If morcover for all x, y € I, x # , these inequalities are sharp, the mean M is called strict, and
M is called symmetric, if forall x, y € I, M(x, y) = M(y, x).
Note that if M : I — R is a mean, then M is reflexive, that is,

M@,x)=x, xel,

and, consequently, for every interval J C I we have M(J?) = J; in particular, M(I*) = 1.
Let/ C Rbeaninterval and let £ : / — R be a differentiable function such that f'is injective.
Then the function L/ : 12 — I given by
Ly | TG, xy
% x=y,
is correctly defined and it is called a Lagrangian mean generated by f.

Remark 1. (CF. (3] Let f:1 — R and g1 — R be differentiable functions, such that £’ and g’
are injective. Then

=1
if, and only if, there exist a, b, ¢ € B, a # 0, such that
g(x)=af(x)+bx+c, xel
Let M:12 — I, N: 12 — I be means. A mean K : 12 — I is called invariant with respect to
the mean-type mapping (M, N): I* — 12, shortly, (M, N)-invariant, if
K(M(x,3), N »)=K(x,y), xyel.

As a motivation for this paper let us quote the following

Proposition 1. (CF. [41.) Let I C R be an interval. If (M, N): I* > I is a continuous mean-type
mapping such that at most one of the coordinate means M and N is not strict, then:
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(1) there is a continuous mean K : I* — I such that the sequence of iterates (M, NY")?2, of
the mapping (M, N) converges (pointwise) to a continuous mean-type mapping (K, K):
213

() K is (M, N)-invariant;

(3) a continuous (M, N)-invariant mean-type mapping is unique;

(4) if M and N are strict means then so is K.

Remark 2. This proposition improves a well-known result in which it is assumed that both
means M and N are strict (cf. for instance [2]). A unique continuous (M, N)-invariant mean K
is also called the Gauss composition of M and N. Moreover the sequence of iterates of the
mean-type mapping (M, N): 1% — 12 is called the Gauss-iteration (cf. [2]).

3. A regularity theorem

Throughout this paper we assume that 7 C (0, 00) is an open interval.

Theorem 1. Let f:1 — R and g:1 — R be functions of the class C', such that " and g' are
injective. If the geometric mean G is (LY, L8)-invariant, i.e.

et (&) = FODY, -1 8%) — 8Ly
74} (—ﬂ_ L

then f and g are of the class C* in I except for a nowhere dense subset of I.

x,yel, x#y, @

Proof. Assume first that for every xo € / there exists o € 1, x0 # yo, such that
x08'(%0) + Y08’ (G0)
X0+ 0 :

Let us fix xo € 7, put
_ fGo) = fGo)
ug = LV L0
X0 = Yo
and define the function @ : (1% \ 4) x R — R by

A={(x.x):xel),

D(x,y,u)

Note that the function @ is of the class C', @ (xo, yo. ttg) = 0, and

£'(0) (3o = x0) = f(30) + f (x0) ~0
(0 —30)?

Indeed, if the last relation were not true, we would have

P
2y (0 Yo, o)
v

and, by the Lagrange mean value theorem,

£60) = £00) _
X0 — Yo

1@,
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for some & # yo, whence f'(yo) = f'(¢). This is a contradiction as f” is one-to-one. By the
implicit function theorem, there exist a neighbourhood D of the point (xo. o).
D = (x0 = 8,x0+8) x (uo — 8, uo +8)
for some > 0, and a unique function ¢z D — I of the class C! in D and such that

@(x0, uo) = Yo, ®(x,¢(x,u),u) =0, (x.u)eD,

that is
@(x0. 40) = yo. f@-ro@d) _, . yep.
x—@(x, 1)
Setting y = p(x, ) in (2), we obtain
(f’r'(ung’)"(w 206u), (Cw)ED ®
EErTe)

Put

._ 8(x0) — g(e(xo, u0))

vy £ T80 0T
X0 — ¢ (xo, o)

and define the function ¥ : D x R — R by

() —8lp(x,w))
x—x,u)
Note that the function ¥ is of the class C', ¥ (xo, uo, vo) = 0, and

Y(x,u,v) = v, (x,u)eD, veR.

[8(p(xo, o)) = g(xo)I[1 = 2(xo, o)1
[x0 — ¢ (x0, uo) P
' (x0) = 8/ (p(x0, 10)) 3 (x0, )
T w—eGow)

v
Sy (X0- 0. o) =
x

Suppose first that
v
x (X0: 40, v0) = 0.
x
Then, we would get
, g %
8'(x0) = &' (¢(xo, uu))x(m- uo) |[x0 — ¢(x0, 40)]

a
= [sx0) — g(p(x0. un))][l - a—f(,m, uo)]. @
Differentiating with respect to x both sides of (3), after simple calculations, we get
a
0=p(x0, u0) + X052 (x0, o).
ax
and, consequently,

¢xo,u0) __yo

B
2 sy
ax X0 X0
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Hence, and by (4) we would have
X08'(x0) + Yog' (yo)
X0+ ’

which contradicts the assumption. Thus
8w
—— (x0, uo, vo) #0.
ax

By the implicit function theorem there exist a neighbourhood W of the point (o, vo),
W = (ug— p,uo+p) x (vo—p,vo+p).

for some p > 0, and a unique function ¥ : W — I of the class C' in W such that
Yo, vo)=x0,  Y(Yv),uv)=0, wv)eW,

that is

W w,v) — gle(W . v).w) _

Y, v) — (¥ (w, v),u)

Substituting x = ¥, v) in (3), we obtain

@@ @ =Y ey, v),u), W) eWw.

Since the right-hand side is a function of the class C! in W, we infer that (f')~" and (g/)~" are
of the class C" in the intervals (110 — p, g + p) and (vo — p. vo + p), respectively. Since the sets
{u: (Y @=0},  {u (&))@ =0}
are nowhere dense, it follows that the functions £’ and g’ are of the class C' in an open nonempty
subinterval contained in (xo — 8, %0 + 8), and consequently the functions f and g are of the
class C? in that subinterval.
To finish the proof assume that there exists xo € / such that forall y € 7,y # xo,

V¥ (1o, vo) = xo, v, (uv)eWw.

2(x0) —g(3) _ x08'(x0) +y8'()

Xo+y
Then
do= w(ﬁ + 1) — D), yel,
Y=g\ y

which implies that g is of the class C? in 1 \ {xo). From (2) we infer that so is f.
Now an obvious induction proves that functions f and g are of the class C in I except for
some nowhere dense subset of 7. 0

4. Some necessary conditions for (L/, L#)-invariance of the geometric mean

The problem to determine all continuously differentiable functions f, g7 — R such that G
is (L7, L#)-invariant reduces to the functional equation
L (x,y)LE(x,y) =xy, x,yel, x#. )

We begin this section with the following
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Theorem 2. Let f:1 — R and g:1 — R be functions of the class C", such that f' and g' are
injective. If the geometric mean G is (LY, L$)-invariant, then for every nonempty open interval
J C 1 there exist a nonempty open subinterval I C J and ¢ 0, ¢ = c(lo), such that

fg" () =

c

xelp.

!

Proof. Assume that G is (L, L#)-invariant and take an arbitrary open interval J C I. Using
Theorem 1, we first show that there exists a maximal, nonempty open subinterval Io C J such
that f and g are of the class C3 in Io and

[l #0#£8"(x), xel.

Let Jo C J be an arbitrary nonempty open interval such that f and g are of the class C3 in Jo
an

f'@#0#£8"(), xed.
Note that
int{x € Jo: f”(x) #0} 0 #int{x € Jo: g"(x) #0}.
Indeed, if
f"x)=0, xelo,
then there exists a € R such that
foy=a, xel,
which contradicts the injectivity of f”. Analogously we can show that
int{x € Jo: g"(x) #0} £0.
Suppose that
int{x € Jo: f"(x)# 0} Nintfx € Jo: g"(x) #0} =0

Since intfx € Jo: g”(x) # 0) # @ is an open subset of 7 C (0, c0), there exists a nonempty open
interval Ji C int{x € Jo: ¢"(x) #0). Then

Jinintfx € Jo: f"(x)#0} =0,
whence
ff0)=0, xelh,
and, consequently,
fl®y=a, xedh,
for some a € R, which contradicts the injectivity of f”. Thus we have shown that
int{x € Jo: f"(x) # 0} Nintfx € Jo: g"(x) # 0} £0,
and, consequently, there exists a maximal (in the sense of inclusion) interval o C J such that
) #0#g"(x), xelo.

Since f and g are of the class C3 in o, the functions L and L are two-times continuously
differentiable in Jo x Io.
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From (5) we have

(fr)-x(f(x: f(>))( ).x(g(X)—

x-y

):.\v,‘, el Y ©

Define the functions By : 13 — I and By : I3 — Io by the formulas

@=f) 9
Bry)=| wor forx#y. @
0 forx=y,
and
L) oy sy
ByGyy=] ey frxEY ®
forx=y.
‘The functions By, By are of the class C2 and Eq. (6) can be written in the form
)7 By, ) @) (Be(x, ) =xy, x.yelo, x#y.
Differentiating twice with respect to x both sides of the above equation, we get
8, LT Iy P
( e R I bl 80) A (;,,\»)Lg(x‘y)
TSy "L (x, )7
SEEY [P L@y, ,
S T ) ) e
L) 1" (LG, T
%%Lu‘ ¥ '%‘(Ax SN ©
TG ¢ LG, )
where
ﬂ(,_\) w it
@ BJ( = GV W =20 = D@ 276 = FON )

@=?
Replacing f by g in (10) and (1) we obtain, respectively, the formulas for %2¢(x, y) and
By, forall x, y e o, x # .
Since, fori = 1,2 and all x € I,
a0 G (o
fi 2Bl i T6)

L Srron i ©

0B,

i+l y=x 9x®
letting y — x in (9), we obtain

@ 8"

OREe)

whence, for some ¢ € R\ {0},

=-=, x€l,
5

Fr0g" ) = Xié xel.
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Thus we have proved that for every open nonempty interval J C / there exist an open nonempty
subinterval Io C J and ¢ #0, ¢ = c(lo), such that
c

f'We'W==, xeh. 0O

Applying this result we prove the following

Theorem 3. Let f:1 — R and g: 1 — R be functions of the class C', such that f' and g' are
injective. If the geometric mean G is (LY, L%)-invariant, then for every nonempty open interval
J C 1 there exists a nonempty open subinterval Io C J such that

@) the function wy : Io — R defined by

I
£’

satisfies the equation

wy(x)

xeh,

[3+xwy (0] [9x%w)(x) + 13vws(x) +12] =0, xelo;
(i) the function wg : Io — R defined by
'@
&'’
satisfies the equation

we(x

xel,

[3+xwg(x)][9x1m;(x) +13xwe(x) +12] =0, xelo.

Proof. Assume that G is (L, L8)-invariant and take an arbitrary nonempty open interval J C I.
By Theorem 1 there exists a nonempty open and maximal (in the sense of inclusion) subinterval
Io C J such that f and g are of the class C3 in Jo and

') #0#8 ), xel.

It follows that the functions L/ and L€ are four-times continuously differentiable in Io x Jo.
Differentiating four times with respect to x both sides of Eq. (5) and using the functions By
and B defined in the proof of Theorem 2, we get for all x, y € o, x # y,

a*Lf

L a'L8 2L 22L8
V)LE 5 WL (x,y =) bl
a2 FNLEC ) + o G YL () + 655 (0 ) 55 ()
P aLs aL/  aLs
4 i me e L DA fo Tl ot 2
HAS T NG ) HAS @ N T (0) =0 2)
where
oL/ _aB; 1

Tox  ax fU(LD)

?Lf_a*By 1 3BT )
x2 o2 fLh)  [ax | @hHP
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¥LS '8y 1 3By 9*By 3f"(LY)
P ‘WW'I o [7LOP
(o it
F"@hHy 1 ahHr
LS 8By 1 [ (a Bf)z LBy 838/} L)
axt ~ oxt f(Lh) ox2 ax ax? [[f"(LNHP
+6(ﬂ)2913/[ rang ff"(LM]
ox ) o TU@HF T @O
+(ﬂ)"[l A5 b3 SR i ) /@(Lf)}
ax @LhHi [FEZNRTHS
a’i“ Pl F® L PO @)= 10)
o = wmr e  a
[l B/ 0 e FW o, @ f0 =)
T e (vfnz“ -7 u(xf,v)‘ R

and‘LL aa“ are nw:nbyformulas(ll)) and (11), respectively.

Substituting here f by g we obtain 55¢ forall i & (1,2,3,4)
Since
a0, 700G 208,
:h«"}am == \IL"iam(X’)'

forall i €(1,2,3,4) and x € I, letting y — x in (12), we get

L))+ (E)) A )

o (EY ()] 1
i £ =& _o, 13
- (5) - () ]+ 554 ay
where

O, g0,
stand, respectively, for

Ow, 9w, ie(2.3.4.5), xel.

Since f, g € C3, by Theorem 2 we obtain

Mivy — <
&)= @ *C Io,
for some ¢ # 0, whence
iy B+ )
e
£y = 2P + 2 WP + 1257 0 f0) = V)

RV
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[ BOU@P +62 1 0OF + 36571 (0l 0
POF
4 PU@ORO0) + 12651 RS ()
O
63 £7() 1700 F O @) + 183 PSP ()
B SIOF }
for all x € Iy. Using this in Eq. (13), after some calculations, we obtain

'@ ( 1[[”’(.\)]3 2O f”’(x))
3+a 12-9; 922 +13;
( i f”(x)) Pl T e T e
for all x € Io.
Note that the function wy is of the class of C! in Iy, and

@ nay
=L m?[/ m]_ e

£¥ =~

70 L 7w
Whence, by the definition of w.,
(4)
% =l + ()’ xel

Using the definition of w s and this relation we can write Eq. (14) in the form

(34 xw () (9x2w) () + 13vws(x) +12) =0, xelo,

and the proof of (i) is completed. Since the proof of (ii) is analogous we omit it.

o

(14)

Proposition 2. Let I C (0,00) be an interval. A continuously differentiable function w: I — R

satisfies the equation
(3+xw(®) (9w () + 13xw(x) +12) =0, xe€l,

if, and only i, there exists ¢ € R, such that

Proof. Assume that the function w satisfies Eq. (15). Note that, if

34+xw(x)=0, xel,

then (16) holds true with ¢ =
Suppose that there exists xo € 7 such that

3+ xow(xo) #0.
Then
Zs

{xel: 34+ xu@) £0}

(15)

16)

is an open set such that int Z # . Let o C Z be a maximal (in the sense of inclusion) nonempty

interval. From (15) we infer that
9x%w/(x) + 13xw(x) +12=0, xelp,
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whence, after simple calculations, we get

.

3
w)=—>+cx xel,
x

for some ¢ € R\ {0).
Suppose that a := sup Io € int /. Then there exists a sequence x, € I \ Io. xu & Z, Xy — @
(xn > a), such that,

3+xw(x) =0, neN.

Letting 7 = 00, by continuity of w, we hence obtain
3
wia)=~=.
a

On the other hand,

3 B
w(a)= lim wx)=—-=+ca" 7,
x—a~ a

which cannot occur since ¢ # 0. Tt proves that the right ends of the intervals Io and I are the
same. In a similar way we can show that the left ends of Jo and I are the same and, consequently,
for some ¢ #0,

wi) = —% +ex ¥, xel
Itis easy to check that the function w given by (16) satisfies Eq. (15). O
‘The main result of this section reads as follows.
Theorem 4. Let f:1 — R and g:1 — R be functions of the class C', such that f'and g' are
injective. If the geometric mean G is (LY , L8)-imvariant, then either
f@=ax +bix+e, g =ax'+bx+e (xel), an
for some ay,az, by, by, c1.¢2 € R, aray #0, or
S0 =xexplaxS +b),  g"(x)=cxexp(—axTS —b) (xel), as)
for some a,b,c € R, ac#0.

Proof. Assume that G is (L/, L¢)-invariant. By Theorem 3 and Proposition 2 we infer that there
exist anonempty open and maximal (in the sense of inclusion) subinterval o C I and ¢ € & such
that

@ 3. e
m_—XJrc.\ 3, xel. (19)
First we assume that ¢ = 0. Then
[y =dix3, xely,

for some d; # 0. By Theorem 2 we get

') =dx3, xelp,
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for some d3 # 0, whence, after simple calculations,
f@=ax thixte, g =ax'+bxte (el

for some ay. az. by, ba. c1, c2 € R, aray £ 0.
Now consider the case ¢ # 0. By (19), after some calculations, we get

e

for some @, b € R, and by Theorem 2 we obtain

Sexplax=d +b), xel,

¢ () =cxexp(—ax~F —b), xelp,
for some ¢ 0.

Now we show that fo = /. For an indirect argument assume that xo := sup Io < sup, and
that f and g are, respectively, of the formulas (17) in Jo. In view of Remark 1, and taking into
account the continuity of f and g, we can assume that

1
fx)= =

Taking yo € Io we have

8(x), xe€lhU{xp).

L/ (xo,y0)elo and L% (xo,30) € o,

moreover, by the continuity of the Lagrangian means, there exists 8 > 0, such that, for x &
(x0.x0+80) N1,

Lf(x,yo)€lp and L2(x, o) € Io.
Thus, by (2), we obtain
(f,),.(f()«) f()n))(g,)_.(g(-\)fg(
x=)0 X=X

whence, after some calculations, we get

xyo, X €(x0,X0+80)N1,

(x=y0)?
Gof () = Do, gx) = 1)
and, consequently,

X%, xe(xo,x+d)NI,

. X €(xo,x0+8)N 1.

Y2x2g(x) — yo
Similarly, taking y1 € o, y1 # yo, we have
= 2nx + it f ()
V2 f(x) = yix?
for some §; > 0. Taking & := min(do, 81} we hence obtain

8x)= , Xx€(xo,x0+8&)NI,

Go— (P [f@] =2/ () +1)=0, xe@ox+H)NT,

and, consequently,

f@=1. veGon+HNL,
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which proves that sup fo = sup /. Similarly we can show that inf Io = inf 1. Thus we have proved
that, if the functions f and g are of the form (17) in a nonempty open subinterval of 7, then,
necessarily,  and g must be of the form (17) on 7. This fact excludes the coexistence of two
disjoint nonempty open subintervals of / such that the functions f and g are of the form (17) on
one of them, and of the form (18) on the remaining one. This completes the proof. O

Remark 3. In case when f : — R and g: 7 — R are of the form (17) then, it is easy to see, that
L (x,y)=L8(x,y) =G(x,y), x,yel.

In the remaining case the means L/ and L8 cannot be expressed by the elementary functions.
‘This fact makes impossible to verify by a direct calculations if the geometric mean G is (L, L$)-
invariant. Thus, in this case, the question if the converse of Theorem 4 holds true remains open.
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