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Abstract
We determine the class of all pairs of the Lagrangian means forming mean-type mappings which
i respect (o the arithmetic mean.
r Inc. All rights reserved.
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1. Introduction

Let I C R be an interval. A function M : /2 — I such that
min(x,y) < M(x.y) <max(x,y), x.yel

is called a mean. Every mean is reflexive, that is M(x,x) = x for all x € L. If for all
x.y €1, x#y, these inequalities are sirict, M is said to be a strict mean. A mean M
is called symmetric if M(x.y) = M(y.x). for all x. y € I. (For more information about
means cf., for instance, [2.3].)
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Amean M : I? — [ is called Lagrangian if there is a il and strictly
function £ : 1 — R, a generator of the mean, such that M = L 7, where

{f"( LY fyde) forx #
for x

x

Ly(x,y)

Let M, N : I? — I be means. A mean K : 12 — [ is called (M, N)-invariant if
K(M(x, ), N(x,y)=K@,y), x.yel

If the means M and N are continuous and strict, then there exists a unique continuous
(M, N)-invariant mean K, called also the Gauss composition of M and N and, moreover,
K is strict and the sequence of iterates of the mean-type mapping (M, N) : I> — 12,
called the Gauss-iteration, converges to the mean-type mapping (K., K) (cf. .M. Borwein
and P.B. Borwein [2, Chapter Eight], also [5,7]).

Let f,g: 1 — R be strictly monotonic continuous. In Section 3 we prove that the
arithmetic mean A is (Ly, Ly)-invariant iff there is a p € R such that Ly = Ly, and
Lg = Li—p) where, for p 0,

1
Lipix, )= {z

and

x+y
-

Lioy(x, y) == lim Lypy(x, y) =
p0

Let us mention that all twice differentiable pairs (M, N) of quasi-arithmetic means such
that A is (M, N)-invariant have been determined in [6]. Then Z. Daréczy and Gy. Maksa
[4] substantially weakened the regularity conditions. Finally, Z. Dar6ezy and Zs. Péles in
their important paper [5] indicated the strict connections of some questions concerning the
Gauss composition with the fifth of Hilbert’s problems and gave a complete solution.

2. A necessary condition for (L 7, Lg)-invariance of the arithmetic mean

Let A(x, y) == 55 for x, y € I. The problem to determine all continuous and strictly
monotonic functions £, g : I — R such that A is (L 7, Lg)-invariant reduces to the func-
tional equation

L))+ Le(x.y) =x+y. x.yel x#y. )

‘We begin this section with the following proposition.

Proposition 1. If f, g : I — R are strictly ic, twice conti ifferentiable in
an open interval I, f'#0+ ¢/, and A is (Ly, Ly)-invariant, then
fg=c

for some constant C € R\{0}.
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Proof. Let F, G : I — R denote some primitive functions of f and g, respectively. Then

L/(x_).)=,—\(w), LN«J‘>=K"(M)
x—y x—y
forall x,y € I, x #y. Since

3%L; 1 F)x =3 = 2f W) —y) = F&) + F(y)]

a2 D= Lo G-
_ Ly [f(A')(x —;-)—F(xHF(,v)]Z
[F(Lp(x. y)P (x—y)?

forall x,y € I, y # x, and

F@@ =3 = 20Af®@ =) - F@) + F)] _ f'@)
==

lim
y—x

(x—y3
o FEE= F)+FQy) _ f'x)
lim - ==
yox —-y»? 2,
we obtain
e, 1w
dmar SN S ey 2El
Obviously, we also have
. Ly 1 g"(x)
Jm S N =

Since (1) is equivalent to the functional equation

f—I(F(X F()’))+g7|(G<—T)—§()') @
X x—y
we hence get
Al xel, @

fl - g'x)
which implies the existence of a constant C € R such that f'(x)g’(x) = C for all x € I.
Obviously C # 0. This completes the proof. 0

3. A regularity theorem

Theorem 1. Let f, g : I — R be continuous and strictly monotonic in an open interval I,
and F, G be the primitives of f and g, respectively. If the arithmetic mean A is (L 7, Lg)-
invariant, then f and g are of the class of C* in I except for a nowhere dense subset
of I
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Proof. Assume first that for every xo € / there is a yg € I, xg # yo. such that

G(x0) =G (o) , g(x0) +2(v0)

e S

X0 — Yo 2
Let us fix an xg € I, put
F(x0) — F(y0)
x-y

and define the function @ : (/2\4) x R — R by

up: A

{G.x): xe1},

Note that the function @ is of the class C',
@ (xo. yo. o) =0,
and
£ (30) (30 = X0) = F(y0) + F (x0)
(3o = x0)?
If the last relation was not true, we would have
F(x0) = F(30)
X0 — Yo
and, by the Lagrange mean value theorem,
E(x0) = F(30)
X0 — Yo
for some & # yo, whence f(yo) = f(&). This is a contradiction, as f, being strictly
monotonic, is one-to-one. By the implicit function theorem, there exist a neighbourhood
D = (x0—8,%+8) x (ito — 8. ug+8) of the point (xo, up) for some & > 0, and a unique
function ¢ : D — I of the class C! in D and such that

0.

.6 (xo. )=
X0, Yo,
Ty 70 Y0, 40

= (o),

=f®,

@(x0. 110) = Yo, D(x, @(x,u),u) =0, (x,u)eD,
that is
F@) = FleGxw) _

u, (x.u)eD.
x—g(x.u)

@ (x0, u0) = yo,
Moreover, since 52 0 and 42 = —1, we have 3 #0, 22 £ 0in D. Setting y = p(x, u)
in (2), we obtain
G(x) = Glp(x,u)

—1 ~1
fTw+e ( )

):x+¢(x,u), x,ueD. “)

Put
v G(x0) — Glp(xo, up) _ Gxo) = Gyo)
v X0 = ¢(x0, 10) -y




J. Matkowski / J. Math. Anal. Appl. 309 (2005) 15-24 19

and define ¥ : D x R — R by the formula
G(x) = Glp(x.u))

P =Ee =

v, (x,u)eD, veR. 5)

The function ¥ is of the class C'.
Suppose first that

8 (x0.10.10) %0
— (x0, 10, v ¥
75 (X0 40, Vo

By the implicit function theorem there exist a neighbourhood W of the point (g, vo).
W= (uo — p,uo+p) x (vo— p,v0+p),

for some p > 0, and a unique function ¥ : W — I of the class C' in W such that
Yuo,vo) =x0. ¥ (Y. v),u,v)=0, (uv)eW,

that is

oy, 0 =G v.w)
. - Y(u,v) — (¥ (i, v), 1) 4

Substituting x = ¥ (u, v) in (4), we obtain

Flw+e ' W =y v+ v).u), wv)eW.

(u,v)eW.

Since the right-hand side is a function of the class C' in W, we infer that ! and g~! are

of the class C! in the intervals (g — p. 1+ p) and (vo — p, vo + p), respectively. Since
the sets

{u: (Y =0},  fur (&) w =0}
are nowhere dense, it follows that the functions f and g are of the class C! in an open
nonempty subinterval contained in (xo — 8. xo + §).
Suppose that
v
— (xo, 1o, vo) = 0.
ax
Then, by the definition of ¥,
v
——(x0, 0, v) =0.
ax
If there is a point (xj, ) € D such that
v
o FLsLV)£O,
x
then, choosing a §; > 0 such that
Dy:=(x; =81, x1+8) x (uy —81,u1 +8)CD.
v
B—(x. u)#0, (x,u)€D,
x
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we could repeat the above reasoning with (xo, ) and D replaced by (x1,u1) and Dy,
respectively.
If there were no a point (x1, 1) € D such that 3% (x1,u1, v) #0, then

X e u =0, (D, veR.
ax
Hence, differentiating with respect to x both sides of (5), we would get
3
(6 = Glotx.w) = g(ptx.0)[x = pr. 1]} 52 x. )
=G(x) - G(p(x,u)) — g()[x — p(x, )]

for all (x,u) € D. As in this case the function on right-hand side of (4) does not depend
onx,

whence

—{Gx) = Gox, w) — g(e(x, w)[x — p(x,w)]}
=G(x) - Glpwx,w) —gx)[x —g(x,u)].
Consequently, setting y
[e) +2]x = » =2[G(x) - G(»)]
forall x € (xo — 8, x0 + ). ¥ € (yo — &, Yo + &), for some & > 0. In particular,
G(x0) = G(y0) _ g(x0) +28(y0)
x0-y 2 !
which contradicts to the assumption.
Now, an obvious induction proves that £ and g are of the class C* in an open nonempty

subinterval contained in (xo — 8, %0 + ).
To finish the proof assume that there exists an xo €  such that for all y € 1, y # xo,

@(x, u), we would get

G(x0) —G(y) _ 8(x0) +8(¥)
x-y 2 .
Then
G(») -G
g = 20)—_()‘0) —8xo), yel,
Yy —-xp

which implies that g is of the class of C* in I\{xo}. From (2) we infer that sois . O

4. Main result
‘The main result of this paper reads as follows.

Theorem 2. Let I C R be an open interval. Suppose that f, g : I — R are continuous and
strictly monotonic. Then the following conditions are equivalent:
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(i) the arithmetic mean A is (L 7, L)-invariant;
(ii) there are a,c, p € R \{0}, b, d € R, such that either
f(x)=aeP*+b,  gx)=ce P +d, xel,
or
f(x)=ax+b, gx)=cx+d, xel;
(iii) there is a p € R such that

Ly(x,y)=Lipx.y), Le(x,y)=Li-p)(x,y), x,y€l

Proof. Suppose that A is (L, Lg)-invariant. Then the functions f and g satisty Eq. (1).
By Theorem 1, there exists a nonempty open and maximal subinterval /; C I such that f
and g are four times continuously differentiable and
F@#0#£g' (). xel.
It follows that the functions Ly and Ly are four-times continuously differentiable in
Iixn.
Denote by F a primitive function of f and put, for short, L := L s (x, y). Making some
calculations, we obtain, for all x, y € Iy, x # y,
3Ly W@ =3P, 0\2ge N
= [’ + +4
prere DT [+ (o) 6" +4ocer™n)
_ W) -4 L) (")
[F/(Lyne
2f'”(L)f”(L)f @ -si"@pP ()26
7@y

)
P

" 2 L)
[BB" + 20y +20"y" + 27 ]+f'(L)'
where
ale, )= LDQDFNTFCD - oy vy,
(=2
—i nEN .
Ble s F' @& =3’ - 2Af@G - F(X)+F())]
(x—y)?
B (x.y) =By, x),
6IF () — F(0)] =20 = NS () + f() = (& = »*f @1
=y

y(x,y) =

Y@ ) =y,

8(x,y) _7(\ZIF('\)—F(VH*S((*“)I/(fH/(\}H(r—r)ll/’(\’)*/’(\'7”
Aol =) N

[f &)+ FOI& =) +2[F(y) — Fx)]
(=3 ’

nx,y) =
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fim Ber. ) = lim *Ce, ) = L,
o - 3
R )l e =)
o Lt 2
)(x "
(,\)‘ ‘!L'"‘U(X«.\')= f (‘),

ln_rpla(x._\‘)— 30

and, obviously, lim,_. , L(x, y) = x, we hence get

QGG I C0) N EF Al C))

T 144 /()P 48 f'(x)

for all x € I;. In the same way we obtain

'L, o lgfme@ 1 [P  13g9)
TR WP WP 48 g

forall x € 1. From (1) we have

6

'L
fim el
T a\’“

lim
yox 9x2

x,yel,

(f’”(.v)/”(X) PROYR (x;) s ([f”(x)]»‘ [g”(x)l-‘)
FOF | E@E PP T goF
13( 19 g("m)
— =0,/” xeh.
(f’(X) e et
In view of Proposition 1, f’g is constant in 7). It follows that (3) holds. Thus
@ | P
P T P
and, consequently,
JAOTHE '”(x)g”m) 13( FOm) gw(.v))
S e e =0, L. 6
4( ror T wer ) T3\ Fw T em e

=0, xel,

Since
, 1
g(x):m. xel,

we have
) PO VAC) i SOV C3Y
B ="Tampr- £ @)= 7P

6" f'() f/(x) = 6L )P = FOD 0

[f o1 i

g9y =

xel.
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Setting these functions into Eq. (6), we obtain the differential equation

@@ - @ =0, xeh.
Solving this differential equation, we infer that either

f)=ax+b, xel. )
for some a,b € R, a #0, or

fx)=ae’* +b, xel, @®)
for some a, b, p € R, p #0 # a. The relation f'g’ = C € R implies that if f is of the
form (7) then, for some ¢.d € R, ¢ #0,

fo)=cx+d, xel;
and if f is given by (8) then, for some ¢, d € R, ¢ #0,

gx)=ce P +d, xel.

Since f, g are of the class C* in R and " # 0 and g’ # 0 in R, we infer that /; = 1.

Thus we have proved the implication (i) = (ii).
Since the remaining implications are obvious, the proof is completed. O

5. Final remarks

Remark 1. Let an interval / C R and a p € R be arbitrarily fixed. Then
. x+y x+y 2
Jim (Lip), Li-p)" () = (TT) .y el

where (L,,,,,L[ p1)" denotes the nth iterate of the mean-type mapping (Lip}, Li—p))
1% = I (cf. 2, Chapter Eight]).

Remark 2. Assume that f, g : I — R are strictly monotonic, three-times continuously
differentiable, f’f” # 0+ g’¢" in an open interval 7, and A is (L 7, Lg)-invariant. Since,
forallxe 1,

L [(fr/(x))Z o fm(x)}
e a) 2 &) T

i Bl 5 ( ”(x)) gmm]

¥ ar“a) g gm) gw ]
Eq. (4) implies that

", 2 ", I 2 1,
(f (x>) _ " +(g (x)) i
f'x) F'x 2'(x) &'

Simple calculations show that if £, g are such that f’g’ is a nonzero constant, then this
differential equation is satisfied. This explains why in the proof of the above theorem the
fourth derivative is used.
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Remark 3. If the arithmetic mean A is (L 7, L,)-invariant then, for all x, y € I,

FF - Ly B )+f(

Lieyy=7r" (
that is

Ly=Qro (Mg, M;).
where Q r is a quasi-arithmetic mean of a generator f that is

1(/(X)+f()')
)

Qr(x,y):=f" yel,

and My, M; are means defined by

3x+y
-

Mq(x,y

M(x, ) = Mq(y

In fact, if A is (L ¢, Lg)-invariant, then
FX)=F()+(x =) f(x+5—Lg(x,5)), x.,s€l,
where F denotes a primitive function of F. Replacing here x by y, we get
F(y)

Subtracting these two equations with s := *3¥ gives the desired formula (cf. L.R. Berrone
and J. Moro [1]).

Fs)+@—s)f(y+s— L‘,(,\-.:)). xsel.
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