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Abstract

In this note we introduce a one-parameter family of homogeneous means strictly
related to ellipses. Each member of the family is a weighted power mean, and
only one of them is both symmetric and quasi-arithmetic. Geometric interpreta-
tions are given, and higher-dimensional counterparts of these means are defined.
Tterations of some mean-type mappings and some functional equations are
considered.
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1. Introduction

Let IC R be an interval and k€N, k>2, fixed. A function
M: I — R is said to be a mean if

min(xy,..., x) <M(xp,..., x¢) < max(xy,... X), Xi,--., X €L
A mean M is called strict if min(xi,..., X¢) < max(xp,...,x)
implies that the above inequalities are strict, and M is called
symmetric if, for every permutation o: {1,..., k} —{1,....k},

M(x1,...x0) = M(xoq), -

For any continuous and strictly monotonic function ¢:/ — R
and a sequence w = (wp,...,wz), w;>0,..., wi>0, wp+---

®))s Xiyeons x €l
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+w = 1, the function Mf : I¥ — R,
ML (%1 i) = 07 (wip() + - +wip(3))y Xiveen X €1

is a strict mean, and it is called a weighted quasi-arithmetic mean.
The function ¢ is referred to as a generator of the mean My,
numbers wy, ..., Wy as its weights. M{, is symmetric iff M,
where

MY (xy, ... x%) ::¢’l(w>, S T xe €1,

and MY is called a qzzaxz -arithmetic mean.
A mean M: (0,00)" — (0,00) is called homogeneous if

M(txy, ..., ) = tM(xy, ... Xe), txi,...,x>0.

Itis well known (cf. B. JESSEN [4], also G. H. HARDY, J. E. LITTLEWOOD
and G. POLYA [2], p. 68) that a weighted quasi-arithmetic mean is
homogeneous iff it is a weighted power mean, that is, there is an r € R
such that MH Mk \ Where

Ur g 0
M e o) = (wix] + -+ wixp) or r#0,
w15+ 2) x‘,“~~~A“ for r=0
Note that M[0] = Gy where Gy denotes the geometric mean.

In this note we show that the means M"“’] are strictly related to an
ellipse, M; 7 1o an ellipsoid, and M,\ ‘7 to a k-dimensional ellipsoid.
In the first four sections we distinguish them by suitable symbols and
formulate some of their properties as Propositions. In Section 5
we apply these Propositions to find all continuous solutions of a
functional equation involving these means, closely related to the
iteration of mean-type mappings.

2. Elliptic Means
We begin this section with the following quickly verifiable
Remark 1. Let p>0 be fixed. Then the function E,: (0,o<:)Z —

(0, 00),
. pPr+1
E,(a,b) := ab IR

is a mean.
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We call the means E, elliptic which is justified by the
following

Geometric Interpretation. Consider an ellipse given by the
equation

2

a
where a.b>0, and take an arbitrary p>0. It may be shown that the
length |OP|, where O is the center of the ellipse and P is the
intersection point of the ellipse and the half-line

y=px, x>0,
is given by |OP| = Ep(a,b).
Proposition 1.

’ y -2 . :
1. For every p>0, E, is a weighted power mean Mi_“z * with weights

1 P
w= T e el
(p2+1p2+1)

in particular, it is homogeneous, and the function (1) =172 (1>0)
is a generator of this mean.

2. E, is symmetric iff p =
3 E is quasi-arithmetic lffp = 1; moreover,
Ey =M,
4. For every p>0, E, is Gy-conji 10 the weighted sq,

mean M‘f{‘* with weights
" P 1
w=|—=—=—]
pPr+1Up 41

Gy 0 (Ep, M.

2w

that is

=Gy,

where G, denotes the geometric mean. G, is the unique continuous

mean which is invariant with respect to the mean-type mapping
2 2 2. s

(Ep, M ] )1 (0,00)" — (0,00)"; moreover, the sequence of iter-

=) converges to the mean-

ates of lhe mean-type mapping (E M
type mapping (G, Gs) in (0,0)*.
5. 1limy_o Ep(x,y) = x and lim,_.oc E,(x,y) = y for all x,y>0.

2%
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Proof. Parts 1-3 and 5 are not hard to verify. Part 4 is a consequence
of some more general facts (the conjugate and invariant means were
considered in [5] and [6], cf. also [1]).

Remark 2. It can be readily shown that the following commutation
relation (involving a parameter transformation) holds:

Ey(a,b) = Eyjp(b,a), p,a,b>0.

3. Ellipsoidal Means
Let p,g>0 be fixed. Then the function E, ,: (0, oo)3 — (0,00),

E,q4(a,b,c) := abc

is a mean. E,, can be called an ellipsoidal mean because of the
following

Geometric Interpretation. Consider an ellipsoid given by the
equation

VI S

xt y 7

Zrpta=l

where a,b,c>0, and take the half-line determined by the equations

y=px, z=¢gx, x>0,
for some arbitrary p, ¢>0. Calculations show that E, 4(a,b,c) is the
length |OP| where O is the center of the ellipsoid and P is the point of

intersection of the ellipsoid and the half-line.

Proposition 2.

|

1. Forall p,q>0, E, 4 is a weighted power mean Mjf with weights

1 » 7
w= . 5
P+ 1P+ + 1+ @+ 1
in particular, it is homogeneous, and the function o(t) =172
(t>0) is a generator of this mean.
2. E, 4 is symmetric iff p=q = 1;
3. E,, is quasi-arithmetic iff p = q = 1; moreover,

Eny =M
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4. Gj is the unique continuous mean which is invariant with respect

to the mean-type mapping QE qu,M” ): (0,00)” — (0,00)
where the mean Ky 4: (0,00)” — (0,00) is "defined by

Kpqla.b,c) =

wh = ql Pz L
P+@+1pP+@+1'p+¢+1
that is

G30 (Epg.Kpg, M3“ )=Gs:
the sequence of iterates of the mean-type mappmg( par Kp.gs Mfil*)
converges to the mean-type mapping (Gs, G, G3) in (0, 06)3 ’

Moreover, K,
. limg_o Epg(x,y
x,y,2>0.

is symmetric iff p=q =1
= Ep(x,y) and limy_.c Ep 4(x,y

v

Remark 3. The following commutation relations (involving some
parameter transformations) can be readily verified:

Epqa,b,c) = Eqpla,c,b) = Eyjpgjp(b,a,c) = Egjpp(bic,a)
= Ep/q1/q(¢;5,@) = Ei/gp/q(c, a,b)
forall a,b.c.p.q>0.

4. The General k-Dimensional Case

Let k&N, k>2, and py....,pi-1>0 be fixed. Then the function
Epy...pisi (0,00)" = (0,00) defined by

Ep,,..pia(@1yeia8)
= Pt +pt
=ar a5 - i .
Pra; it P 6y ai g
X | Epyopy (@1 @) ==

is a mean. This mean may be referred to as k-dimensional ellipsoidal
mean by an analogous geometric interpretation as in the previous cases.
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Proposition 3.

. Forallp,..., Pi-1>0,Ep, . is a weighted power mean Mk: W

with weights

2
w= ( A—lla ’ k-—lplﬂ
YRR DYEy A
in particular, it is homogeneous, and the function o(t) =172
(1>0) is a generator of this mean.
2. Ep,...p, Is Symmetric iff py = --- =pr_y =

3. Ep,..p., is quasi-arithmetic iff p Pr—1 = 1: moreover,
E\..1=M;
4. Gy is the unique continuous mean which is invariant with respect to

the mean-type mapping (Ey__1.Ki. ... . Ki_1): (0,00)" — (0. 00)"

where the means Kp: (0,00)" — (0,00), [ = =1, are
defined by
)
Kia e \/ ;=D i ig iy @
..... 3 31
(1+1) Z/.< <ja H:s Ui}
that is
Gyo (Ei,..1. K150 04 Kio1) = Gis
moreover, K;_| = Mf], and the sequence of iterates of the mean-
type mapping (Ey_.1.Kj...., K2, M) converges to the mean-

type mapping (Gy, . ... Gy) in (0,0)".

5. An Application to a Functional Equation
HARUKI and RASsIAS [3] (cf. also [8]) posed the following

Problem 1. Is it true that every continuous function f: (0,oc)x
(0,0¢0) — R satisfying the functional equation

xX+y

f(x-;_\-‘ 2 >:f(x»)')» x.y>0,

fxy) =F), xy>0,

where F: (0,00) — R is a continuous function of a single variable?

is of the form
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The affirmative answer has been given by the second author
(cf. [7]). Functional equations of the form
FM(x,3),N(x,y)) =f(x.y), x.yel,
where M,N: I* — [ are means in an interval /, play an essential role
in some problems connected with iterations of means. For

and N(x,y):= Ay,

this equation appears in connection with the AGM iteration of Gauss
and elliptic integrals (cf. for instance [1]).
Applying our Proposition 1 we can prove the following

x+y

M(x,y):=

Theorem 1. Let p>0 be arbitrarily fixed. Suppose that
f: (0,00)* = R is continuous on the diagonal A:={(x,x): x>0}.
Then f satisfies the functional equation

) 2.2
e S sl WP,
f(-",\ prorene p3—¢1) =f(xy), xy>0, (1)

if, and only if,
Fly) = F(), xy>0,
where F: (0,00) — R is a continuous function of a single variable.

Proof. Suppose that f:(0,00)x (0,o0c) — R is continuous and
satisfies equation (1). Since

[P
Ep(x,y) =xy m

we can write equation (1) in the form
£ol(Ep ML) = F.
Hence, by induction, we get
fol(Ep M3 =f. neN,

.)" denotes the n-th iteration of the mean-type

where (E,, M,

mapping (E,, M;,.). By Proposition 1, letting here n — oo and
making use of the' continuity of f on A, we obtain

fo[(G2,Go)] =f,
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that is
Fe) = IV V). xy>0.
Setting
=f(Vu,Vu), u>0,
we have

f(x,y) = F(xy), x,y>0.

Since the converse implication requires only simple calculations, the
proof is complete. (]

Similarly, applying Proposition 2, we can prove

Theorem 2. Let p.g>0 be ﬁ.red Suppose that f: (0,00)° — R is
continuous on the diagonal A:= {(x.x,x): x>0}. Then f satisfies
the functional equation

fo(Epq(x.y.2). Kpg(x.y.2
if. and only if,

x,y.2>0,

flxy.z) = F(xyz),

where F: (0,00) — R is a continuous function of a single variable.

Remark 4. A k-dimensional counterpart of the above results is also
true. Its version for the symmetric means results from Proposition 3.
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