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CONVEX FUNCTIONS WITH RESPECT TO
A MEAN AND A CHARACTERIZATION OF
QUASI-ARITHMETIC MEANS

Abstract

Let M : (0.5)* — (0.5¢) be a homogeneous strict mean such that
the function h := M(-1) is twice differentiable and 0 # 1'(1) #

It is shown that if there exists an M-affinc function, continuous at a
point which is neither constant nor linear, then M must be a weighted
power mean. Moreover the homogeneity condition of M can be replaced
by M-convexity chosen linear functions. With the aid
of iteration groups, some gencralizations characterizing the weighied
quasi-arithmeric means are given. A geometrical aspect of these results

1 Introduction

A real funcrion M defined on the Cartesian product J x J of an interval J © &
is said 10 be a mean if it is internal: that is. if min < ) wax. A fumetion
2 mapping a subinterval I of J imo J is called. M-affine, M-convex. and
M-concave, if, respectively.

S{M{x.y)) € M
S (M(x.y)) FM{s(). 2

forall,y € I (cf. G. Aumann [3] where even two different means ave involved:
also J. Aczél [1], and [12], [13]). For M = A where A is the arithmeric mean,
we obrain the classical notions of Jensen convexity, concavity and affinity. Tt
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is well known that every measurable, or one-sided bounded at a point, Jensen
affine function is of the form (x) = ax + b for some real a.b. The family of
| A-affine funcrions is rich in the following sense. For any two distinet points
from the domain of /1 there exists exactly one A-affine function the graph
of which passes through these points. This fact allows the acquisition of the
epigraph of an A-convex function as the intersection of all the epigraphs of irs
supporting A-affine functions. This property is also shared by funcrions convex
with respect to the weighed quasi-arithmeric means. (In this connection. in
the last section. we introduce a notion of *M-affinely convex function™) In
[11] it is shown that the logarithmic mean L does not have this property,
because every L-affine function is either constant or linear (that is. of the
form (]
The main result of Section 3 says that if a mean M is homogeneous. the
function M(-. 1) is twice differentiable, and there is an M/-affine function, con-
tinuous at least at one point, which is neither linear nor constant, then A/
must be a power mean. In Section 4 we generalize this result replacing the
homogeneity of M by the assumption that two suitably chosen linear func-
tions are M-convex. A mean M on (0. 5c) is homogencous iff for every a > 0
the linear function ¢(x) = ax is M-affine and. moreover, the family of these
functions forms a (multiplicative) iteration group. In Section 3, replacing the
homogeneity condition of A/ in the main result of Section 3 by the assumption
that there is a family of M-affine functions which form an iteration group.
we prove thar M must be a weighted quasi-arithmetic mean, which is a new
characterization of this kind of means. In the last section, to discuss some con-
sequences of these results in relation to classically convex functions we define
a function to be “M-affinely convex”. Finally we mention 2 recent result by J.
Aczél and R. Duncan Luce [3]. motivated by some problems in urility theor
and psychophysics. in which the functional equation H[K (s.t)] = LI(s). h(t)]
is considered. and we formulate an open problem.
Note that some questions related to a characterization of L7-norm [9] and
the Fuler gamma function [6]. [7] in a narural way lead to the A-convexity
with A # A.

=az).

2 Preliminaries

Let J C R be an interval. A function M : J* — R is said to be a mean on J if
min(z,y) < M(e.y) < max(z.y). z.y € J. Moreover, if for all z,y € J. z # y,
these inequalities are strict, M is called a strict mean and if M (z.y
for all 2.y € 1. M is called symmetric,

If Al : J? — R is a mean. then M is reflezive:

hat is, M(z.z)
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Tt is easy to see that every reflexive function A : J )
increasing with respect to cach variable is a (strict) mean. The reflexiviry of
a mean M implies that M(12) = I for every interval I C J. and M|s.;
& mean on 1. This property permits to generalize the classical notions of the
convex, concave and affine functions in the following way (cf. [1], [3], [12].

[13)).

Definition 1. Let J C & be an interval, A/ : J2 — Jameanon J.and I C J
an interval. A function ¢ : [ — J is said to be:

which is (strictly)

conves with respect to M on I. or simply. M-convez on I. i

(M) € M) 2p). 2.y € L.

M-concave on T, if the inequality is reversed and

M-affine on 1. if it is both M-convex and M-concave: i.c.. if,
2 (M(x,y)) = M(2(x). ¢y). 2.y € L.

Remark 1. Suppose that M : J% — J is a mean. Then

every constant function 7 : J — J and the identity function = id | is
M-affine,

w0

for M = min or M = max every increasing function ¢ : J — J is M-
affine. Thus, if M is not strict, then the class of M-affine functions is.
in general, essentially lager.

B

¢, strictly increasing and onto, then the inverse
is M-concave.

Note that taking in these definitions M = A, where A : B* — R denotes
the arithmetic mean, A(r.y) = 5¥. we obtain the sical Jensen affine and
Jensen convex functions.

Remark 2. Supposc that a mean M (0.
funcrion of an order p & X: thar is. M(t

Lp=1

— (0.5) is a homogencous
ty) = *M(z.y). t.x.y > 0. Then

2. setting h(t) := M(t, 1), t > 0, we have
z

M(z.y) :yh(;)

i

ry>0: h(1) =1
n -1

0 SLz>0,7#1,
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and these inequalities are strict iff M is a strict mean. Moreover, if I is
differentiable at the point 1. then 0 < h(1) < 1.

3. besides the consrant fanctions, every linear funcrion () = A1), 7 €
R, is M-affine,

4. if c€ (0,50) and ¢ : (0.50) — (0.o¢) is M-affine. then so is cp.
Remark 3. Suppose that Al : J> — J is a mean and I, I C J are intervals.
Horih — — J are M-affine, then clearly, the composition 720,
is also M -affine.

Let us note the following.
Lemma 1. Let J C R be an interval and M : J> — R a strict and continuous
mean. Suppose that M is strictly monotonic with respect to one of the variables
(in a neighborhood of the diagonal {(x,x) : x € J}). If I C J is an interval
and g, : 1 — J are M-affine, continuous, and ¢(x1) = ¥(1), ¢(xa) = ¥(2)
for some 1,22 € I, w1 # xa, then ¢ = ¢
PROOF. Assume that M is strictly monotonic with respect to the first variable.
Put Io == {x € I : ¢(z) = ¢(x)}. By the continuity of  and v the set Io is
closed in I. Assume that &y < 5. We shall show that [ry.z] < To. Indeed.
in the oppusite case the set [r1.2] \ Ip would be ar most countable sum of
nonempty intervals. If (a.b) is one of such an intervals, then @(a) = w/(a),
2(b) = w(b). Tence we get

(M (a,b)) = M(g(a). 2(b)) = M(v(a), v:(b)) = v:(M(a.b))

Since M is a strict mean, we have a < M(a.h) < band consequently, M(a.b) €
Iy: that is. a desired contradiction. In particular we have proved that I is
an interval. Suppose thar o # . Then ar least one of the endpoints of
the interval Ip would be an inrerior point of I. Assume, for instance, thar
¢ :=minl; belongs to I. Let us take zq € Io, zo > ¢. Since M is strict, we
have ¢ < M| < 2. The continuity of the function I 3 2
implies that there is a 4 > 0 such that [ 5.20] C I and M(x.x0) € [
for all € [¢ — 8,.o]. Hence for x € [ — 6, xo] we have

M(w(x), p(x0)) = M(v(x), ¥(x0)) = v:(M(x, 70))
= o(M(x,20)) = M(p(x), ¢(2a))

Since M is stricrly increasing with respect 1o the first variable, we infer thar
w(x) = plx) for all x € [c — 4,z0], which contradicts to the definition of
¢. (Choosing o close enough to c. we can argue similarly in the case when
M s increasing with respect to the first variable in a neighborhood of the
diagonal.) o
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3 A Basic Result for Homogeneous Means
The main result of this section reads as follows.

Theorem 1. Let M : (0,50)? — (0,) be a strict and homogeneous mean.
Suppose that the function h : (0.) — (0.5) defined by h(z) := M(x.1). 2 >
0. is twice differentiable, and 0 # /(1) # 1. If there exists an M -affine func-
tion, continuous at a point which is neither constant nor linear, then there is
ap&R such that

(wz? + (1 - % ot
Mizyg) = {‘“’ A=wly)? forp#0 s,

ey forp=0

where w:=h'(1)

PROOF. Let > : (0.x) — (0.) be continuous at a point g, and M-affine
funcrion: i.e.
2 (M, y)) = M(p(x),2(y), .y >0. (1)

Suppose that ¢ is nontrivial: that is. it is neither linear nor constant in (0. 3).
By Remark 2 we have 0 < A'(1) < 1. The continuity of A" implies that A is
strictly monotonic in a neighborhood of 1. It follows that in a neighborhood of
the diagonal A is locally strictly increasing with respect to both variables. To
show it note that there is an ¢ > 0 such that 0 < K'(t) < 1 t € (1 — .1 +2).
Let us fix an arbitrary y > 0. Since, by the homogeneity of M.

Mr.r_,,):yh(f>. 2y>0. @
Yy

*
e (E), ms
. y) (y ©y

and. consequently. Lhere is an ¢ > 0 such that L (z.y) > 0 for all 2.y > 0
such that 1 — ¢ < £ < 1+ = which proves that M(-.y) is increasing in a
neighborhood of y for every y > 0. Similarly, since

IM z.,(x
B0 BB (o8

> 0 such that {’7‘7’\..'. y) > 0 for all
. This proves that our mean M is stricrly
bles in # neighborhood of the diagonal.

we have

and. (1) = 1. we infer chat. chere
r.y > 0 such that 1 <E<1+
increasing with respect to Forh va
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Suppose that ¢ is continuous at a point zg > 0. Choose y > 0, y # o, such
that M is stricrly increasing with respect 1o both variables in a joint neighbor-
hood of the points (q. 7). (70, ). (). Assume, for instance. that 7y < y.
Then g < M{xg.y) < y. Take an arbitrary point 2o € (2o, M(xo.y)). By
the continuiry and the stricr increasing monotonicity of the function M (zo.-).
there is a unique yo € (xo.y) such that 20 = M(zo.yo) and the funcrion
M{(-.yo) is serictly increasing in a neighborhood of ao. Tet (z,) be an arbitrar
sequence such that 2, — 2 as n — ¢ and =, € (wo. M(x0.y)) for all n €
Hence, for every n there is a unique o € (w0.y) such that M (. y0) = 2.
Moreover we have =, — = as n — oc. In fact, in the opposite case, for a
subsequence of (z.,,). by the continuity of M. we would get

3
s

Jim M (2 p0) = M(z.30) =

for some & # o, which contradicts to the striet monoronicity of M(:,yo) in
0./ Now. making use of the M-affinity of . the continuiry of AL and the
continmity of 2 at g, we get

m e(za) = lim (M (ea.yo)) = lim M((
k= - ~

= M{z(ro). lyo)) Mxo.y0)) =

which proves that 7 is right-continuons at %. Assuming that y < M(ro.y) <
2 in the same way we can show that ¢ is left-continuous at zo. Thus we have
shown that i is continuous in a neighborhood of the point zo. (The argument
used in the proof of the continuity is similar to that applied in [10].)

Tet (a.}) denote the maximal open interval of the continuity of ¢ such
that 7 € (a.b). Suppose that b < 2. Since M is strictly increasing in &
neighborhood of (b,5), choosing = sufficiently close to b, and the numbers
20,40, 7o < b < 3 < yo, We can argue as in the previous step to show that
s continuous in & right neighborhood of b. This contradicts the definition
of b and proves that b = oc. A similar argument shows that @ = 0. Thus ¢ is
continuous on (0.0 is complered.

Since the constant and lincar functions are M-affine, Lemma 1 implies that
& is strictly monotonic and there is no interval I C (0,2¢) such that @7 is
constant or linear. Moreover equation (1) can be written in the form

() on ()

The funcrion 7. being monoronic, is differentiable almost everywhere. Let r >
0 be a differenriability point of 7. Relation (3) and the assumed differentiabili

>0. (3)




CONVEX FUNCTIONS WITH RESPECT TO A MEAN

of h imply that, for arbicrarily fixed y > 0, the funcion  is differentiable at

differentiable eve:

& point yh (5) . Consequently, <
Differentiation of both sides with respect to x and y gives, respectively,

A () n

(Nore that the continuity of the right-hand side of (4) with respect 0 ¢ im-
plics the continuity of (yh (;)) with respect to y and. consequently. the
continuity of '.) Suppose that /(z) = 0 for some g > 0. Since 1’ is con-
tinuous at 1 and A'(1) # 0, relation (1) implics that ' (yh (ﬂ) =0 for all

y from a neighborhood of the point xo. Moreover. the function y — yh (—)

maps every interval neighborhood of o on a nontrivial interval. In fact, in
the opposite case. this function would be constant on some neighborhood of

ina

ot e h 7) = 2. Since A(1) = 1, we infer that ¢ = g and A(t) =

neighborhood of the point 1. Consequencly, M (x.y) = « in a neighborhood of
the point (. xp). This is a contradiction because M is a strict mean. Hence
¥ (x) = 0 in a neighborhood of xg. and » would be constant in this neigh-
borhood. By Lemma 1. ;> would be constant on (0, x). This contradicts the
assumprion thar 2 is nontrivial. Thus we have shown that & # 0 in (0.x)
Let (a.4) C (0.2c) be the maximal interval such that 1 € (a.3) and
W(t) # 0 for all t € (a,3). Take arbitrary t € (a.3) and x,y > 0 such that

Z = t. Since ' # 0. from (4) we infer that Now from (3) and

8)-r()s

(4) we obtain

(6)




236

MATKOWSKI

Setting H(t) := pudh —t. t € (a. 3). we get

Lzl
( ,“'”) te(a.3):y>0. @
2(y)

')
’(w)

H(t) =

and. of course, H is differentiable in (a. 3). Suppose thar there is a (o € (e 3).
to # 1. such that IT(fs) = 0. Then we would have I7 (22} = 0 for all

(toy)

y > 0. llence either II(t) = 0 in a neighborhood of t, or =t for
all y > 0. The first case cannot occur because, by the definition of H, we
would have h(t) = ¢ in a neighborhood of fo. and. consequently, by (2).
Miry) = _,//'(5) -

o for some k > 0 and for all w.y > 0 such thar
£ belongs to the neighborhood of fo. Since M is a strict mean. we have k
<1 Hence, by (1), plke) = ¢ (A (.9)) = M (0
) for all & > 0. Thus ¢ coincides with & linear fumction at the
points  and kr. By Lemma 1, the function ¢ must be linear, which is the
desired contradiction. In the second case we would have 22 = 20 for a1l
v >0, and again, ¢ would be a linear function. Thus we have shown that

H(t)#0forall (€ (a.3). (#]1.

Setting y = 1 here we get /(1) = /(D ZEL t < (a.3) e¢1 Whence,
the differentiability of H implies that ¢ is twice differentiable in (a.)\ {1}
Taking (7) into account, we infer that  is twice differentiable in (0,oc). Dif-
ferentiating both sides of (7) with respect to € (av. 3) we obtain

) ()" (ty)y W)\, Sy y(fy))
_ 2wy, + 20y
e I (m)) o) ( V)

for all t € (a,3): y > 0. Taking ¢ := 1 here and replacing y by x, we get

+H(1)=0.7>0. 8)

Since h(1) = 1 and, by assumption, h'(1) # 1, we have

tpa g o
) = g =t = g~ A0
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Hence 242 ~1 = 0. z > 0. and, consequently, there would cxist a ¢ > 0
such that {x) = &r. a > 0. which is a contradiction.
Putting p HU) we can write equation (8) in the following equivalent
A
form i
@) _ -
¥

For p = 1 the only functions satisfying this differential equations are linear.
Solving this differential equation for p # 1 we obtain

1 i 0#p# 1, then, for some a.b € R.a >0, 5> 0.
olz) = (az? + 0" 2> 0: )
2. if p=0, then, for some a.bER, 0 # a # Lb#0.
Pz) = b2, >0, (10)
(we have excluded here the constant and linear functions)

Now we shall find the form of the mean M in cach of these two cases. In
the first case, when 0 # p # 1. from (3) we have

2\1? .\ e, [ laz? +0)P
a|yh —)] ﬂ-b) = (ay? + 5" h [ ) 2y > 0.
( [y (y @+ (ay? +b)'"” ¥
Replacing a'/#c and a'/#y. here respectively by & and y we obrain

(] )=o) ) oo

Multiplying both sides by an arbitrary ¢ > 0 (cf. Remark 2. part 4) we ger,
for all z.y > 0.

(o (G )" = r rena((1£322)")

Replacing cz, cy. c?b, here respectively, by .y and r, we obtain

()] +rmwen [,, ((j::)”’)r P
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Hence, for all r.z,y > 0.

p o \1P\1?
o= o ()] =0 [,.((;,,_;) )]

Taking into account that the right hand side does not depend on r > 0. and
the relation h(1) = 1. we obrain, for all x.y > 0.

e\ 17
(M) = lim {(yhr) [A((” ')‘ )] —r}
S

= h(1)y* +

¥ (1) - )

Consequently, M(x,y) = (wa? + (1 —w)y?)"’” . &,y > 0, where w
Since w € (0.1), M is a weighted power mean.
Now consider the second case when p = 0. From (3) we have

(] () w0

Putting  := £ for .y > 0. we obrain the functional equation
gti=3 v

K(1)

()" =h(t"). t >0.
Define F: & — & by F := logohoexp. Then F(0) = 0. F is differeniable at 0,
F(0) = I(1), and F sarisfies the functional equarion F(au) = aF(u), u € R.
Since this equation is equivalent to a=!F(u) = F(a='u). (v € R), we can
assume, without loss of generality. that la < 1. llence, by induction. F(a"u) =
a"F(u) forall u € Rand n € N. Thus F(u) = Z222u, ueRine 1. Lerting
n = 50 we get F(u) = F'(0)u. u € R. and. consequently. h(t) = t¥, t > 0.
Of course we have 0 < w < 1. Thus in this case M(z,y) = 2%y'~", z,y > 0,
where u := I(1) which proves that M is a weighted geometric mean. O

Remark 4. Note that in the case p # 0 every function ¢ of the form (9) with
positive a and b is M-affine, and in the case p = 0. every function of the form
(10) with positive a and b is Al-affine.
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Remark 5. Let A/ : (0,)% — (0, ) be a homogeneous mean and let h, h* :
(0,2¢) — (0.5¢) be defined by h(z) := M(x.1), h*(x) := M(1.x). x > 0.
Then h*(x) = xh (1) . & > 0. If moreover h is differentiable at the point 1
and (1) =0, then (h*)' (1) = 1 and vice versa.

To show that the assumption 0 % A’(1) # 1 is essential consider the fol-
lowing.

Remark 6. Let M/ : (0,x)* — (0,x) be a homogeneous mean. Suppose that
h:(0.x) — (0.x) defined by h(x) := M(x.1), & >0, is twice differentiable
(in a neighborhood of 1) and k(1) = 0. h"(1) # 0. If o : (0.x) — (0.) is a
twice differentiable M-affine function, then either ¢ is linear or constant. The
same remains true if twice differentiability is replaced by nth differentiability
and K'(1) = (1) = ... = h*=D(1) = 0. ™ (1) #0.

Proor. Differentiating twice both sides of (3) with respect to a we obrain

#EE)ECN 3 () ()

W (z(_l_)) P@E (;(r)) ).

ev)/ ¢l #ly)

+

Taking here y :
we get b (1)¢' (x) (£
and, consequently, ¢ is linear. The same argument works in the
after n times differentiation of both sides of (3) and the substitution
only two summands do not disappear and we again get the above differenti
cquation. o

= 0. Tf  is not constant, then £l

—

As a consequence of Theorem 1 we obrtain the following.

Corollary 1. Let M : (0.5)? — (0.x) be a strict. symmetric. and ho-
mogeneous mean. Suppose that the function h : (0.0c) — (0,2c) defined by
h(x) == M{x.1). x > 0. is twice differentiable. If there exists an M-affine
function, continuous at a point which is neither constant nor linear, then there
isap€ R such that

e\ VP
M) = (=52)" gorp#0
N forp=0.
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4 A Generalization Involving 1/-Convex Functions

) = (0.) be a strict continuous mean. Suppose

Theorem 2. Let M : (
that:

1. there are a.b > 0, a < 1 < b, {2EL ¢ Q. such that the linear functions
— b are both M-convex (or both M-

v

(0.) 3 — azx. (0.x) 3

concave).

2. the function h(r) := M(x.1). x > 0. is twice differentiable. and 0 #
h(1) #1

If there exists an M-affine function, continuous at least at one point. which

R such that

is neither constant nor linear, then there is a p
P (L—why) P forp 0.
forp=0

Sy >0

where w = h'(1).

of the functions (0.5¢) 2 » — axand (0.x) 3

ProoF. The assumed conve
& hr implies that

aM(r.y) € Mar,ay). b Mba.by). .y >0

Hence, by induction, for all n.m € N and x,y >0
@ M.y € M@ a”y): 6" M(e.y) < MW" by).
whence

a™b" M(x.y) € M(a™b"r.a™b"y): mn.€ N,y > 0.

The assnmprions on a and b imply that the sor {a”b" : m.n.& K} is dense
in (0.x). The continuity of A/ implies that tA(x.y) < M(ta.t; y >0,
which. obviously vields the homogeneiry of A/. Now our theorem fnllm\c fmm

Theorem 1.

5 Non-Homogeneous Means - A Characterization of
Weighted Quasi-Arithmetic Means

By Remark 3. if g : J — J is M-affine, then, for every n € N, irs nth iterate
" is M-affine If, movcover, g is inverrible, then the inverse g~ is M-affine on
(). and the family of iterates {g* : k € Z} is a group consisting of M-affine
functions.

We begin with recalling the following.
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Definition 2. Let J C 2 be an interval. A one-parameter family {9 ueR}
of continuous functions g* g“og we €
0 = id|, is said to be an iteration group (cf. M. Kuczma [8], p.197-198). If for
continuous or measurable.
continuous or measurable.

the iteration group is caleh, respectively

Remark 7. Suppose that {g* : « € &} is an iteration group in an interval J.
Then the function F : J x B —J . F(a.u) := g*(x). satisfics the translation
vquarion F(F(x.w).v) = Flrou+v). x & J.ww € R I J is open and

B} s & contimous feracion group. then (. Aczél. 2] p. 248, there
Y 5\u]e(‘t e homeomorphic function 7 © determined_uniquely up
to an additive constant (cf. [2], p. 246), such “hac Fla, u) = 772 (y(@) + )
€ J, u€ R and, consequently, g*(x) = 7~ (+(z) ), £ € J, u € R. Setting
@ i= exp oy we can write this iteration group in the form g*(z) = a~(e*a(z)).
2 € Jiu € R, wherea : J — (0, ) is a surjective homeomorphism determined
uniquely up to a multiplicative positive constant. The function a is referred
to as a generator of the iteration group. Note that the family {J* : { > 0}
defined by f1 1= g1, ¢ > 0, is a ‘multplicacive” iteration group; hat is
fooft=f" st>0 and

fla)y=a  (talr)), t > 0,0 J. (1)

In the sequel it is convenient to write the iteration groups in their multiplicative
forms.

Tet us mention that M. C. Zdun [14] proved that every measurable iteration
group is continuous.

A motivation for the present section is the following obvious comment.
Remark 8. The family {/* : # > 0} of linear functions f*: (0.5c) — (0.5c).
f@) x>0 s a continuous (multiplicarive) iteration group. Moreover,
a mean M : (0,5)? — (0.2¢) is homogeneous if. and only if, cvery
of this family is M-affine.

Now we prove this assertion.

Theorem 3. Let J C K be an open interval and M : J? — J a strict mean.
Suppose that there exists a continuous iteration group {f' : t > 0} of the
form (11) which consists of M-affine functions. Furthermore, suppose that
b (0.00) — (0.5¢) defined by h(u) == a(M(a=*(a).1), « > 0 is twice dif-
ferentiable, and 0 # h'(1) # 1. If there exists an M-affine function, continu-
ous at a point, that is neither constant nor an element of the iteration group
{ft:t>0}, then

M(a.y) = 87 (wi(a) + (1 - w)3(y) . 2.y € J
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for some continuous and strictly monotonic function 3 : J — (0.5) and
w = h'(1); that is, M is a weighted quasi-arithmetic mean.

PRrOOF. By assumption each function of the iteration group {f' : t > 0} is
M-affine; ie.. fU(M(x,y)) = M(f'(x), f'(), t > 0,2,y € J. There exists
(cf. Remark 7) a surjective homeomorphism a : J — (0.0¢) such that f*(x
a~!(ta(r)). t > 0.z € J. Hence

a~Hta(M(z.y))) = M(a~ (ta(z)).a7 (ta(y))). t > 0.2,y € .
Take arbitrary w.v > 0. There are 2.y € J such that = = ™' () and y =
a~'(v). Setting these numbers into the above formula, we obtain

a(M(a™ (tu).a™ (te))) = ta(M (o™ (w). M(a™*(v))). t.u.v > 0.

which shows that the funetion K : (0.)2 — (0.x) defined by RK(u.v) =
a(M{a= u).a™ (1)) w.r > 0. is homogencous. It is also obvions that K
is a strict mean. By Theorem 1, K is a weighted power mean with a power

p & E and the weight w = h'(1). Whence
= (wla(@)® + (1 = w)a()] #
o= {® [M_(\.l)_ (1 = wla(y)] Progo
a~Ha(z)“a(y)=+] forp=0

To complete the proof it is enough to take 3(r) := a(r)?. x € J. in the case
p#0.and 3:=Inoa in the case p = 0.

Remark 9. If M is a weighted quasi-arithmetic mean with generator . then
the family {#~' 010 3: 1> 0} is an ireration group and every function of this
family is M-affine.

The following of Theorem 2 for g means is a
characterization of the weighted quasi-arithmetic means.

Theorem 4. Let J C & be an open interval and M : J® — J a strict con-
tinuous mean. Suppose that there is a homeomorphism o : J — (0. ) such
hat

1. for some a.b > 0. a < 1 < b. the number {52 is irrational and the
Sunctions a~' o (aa) and =" o (ba) are both M-convex (or both M-

concave):

2. the function h : (0.5¢) — (0.¢) defined by h(x) := a(Ml(a™}(x).1)). x >
0. is twice differentiable and 0 # h'(1) # 1
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If there exists an M -affine function, continuous at a point which is neither
constant nor of the form a~! o (ta) for at > 0. then

M(z,y) =37 (wBz) + (1 - w)3y). «yed,

for some continuous and strictly monotonic function 3 : J — (0,2c) and
w=h'(1); that is, M is a weighted quasi-arithmetic mean.

PROOF. By the M-convexity of the functions a™! o (aa) and a™! o (ba) we
have
“Haa(M(z.y))) € M(a™ (a(a™ (). e (ala™ (4)))
and
a7 (ba(M(z.y))) < M(a™* (bla™ (z)).a™ (bla™ (v)

for all 2,y > 0. Hence, taking into account that o~ o (aa) and a~" o (ba) are
increasing, by induction, we obtain, for all m € N and &,y > 0,

aMa"a(M(z.y))) € M@ @™ (a7 2)).a7 ™ a7 W)-
and for all n € N and r.y > 0.
a t(Ba(M(x.y) € Ma (B (@~ ). a = (0" (e ).

Nand ry >0,

From these two inequalities we ger, for all m.n &
a~ (@b a(M(x,9))) € M(a™ (@"b" (0™ (x)).a™ (@"b" (2™ (4)))

Now the density of the set {a™b" : m,n, € K} in (0,20) and the continuity of
A imply that, for all t.z.y > 0.

~H(ta(M(z.y)) € M(a™ (tHa  (@).a7 (Ha )

that is, for every ¢ > 0 the function a~" o (a) is A/-conv Smce for every
t > 0, the function a~* o (ta) is increasing, its inverse. a=% o (t1a) is i
concave (cf. Remark 3). It follows that a= o (ta) is M-affine r every £ >0
Since the family {f* : t > 0} with f* := a~" o (ta) is an iteration group. our
result follows from Theorem 3. o

6 Some Conclusions for M/-Convex and “1/-Affinely Con-
vex” Functions

Let us introduce the following notion.



241 JANUSZ MATKOWSKI

J* — ] a mean.
if for every xy €
= ¢(mo) and p(z) <

Definition 3. Ter J C R and 1 C J be intervals and )
A function f i [ — J is said to be M-affinely conve
there is an M-affine function ¢ : J — J such that f{zg
fle)forallz el

For a function [ : [ — J denote by E(/) the epigraph of /: ie., the set
E(f):={(z.y) e T xR: f(x) Sy}
Remark 10. A function f : I — J is M-affinely convex if. and only if.
there is a family ® of AM-affine functions ¢ : I — J such that E(f) =
N{E(): 08}
Theorem 5. Suppose that M = J* — ] is @ mean in an interval J which is in-
creasing with respect to each variable. Then every M-affinely convea function
is M-conver.

PrOOF. Let I C J be an interval and suppose that f : [ — J is M-affinely
convex. Take r.y € I. By Definition 3 there is an Al-affine function 2

J — J such thar f(M(a.y)) = ¢(M(z.y)) and 2(u) < f(u) forall u € T
Hence, by the M-affinity of ¢ and the increasing monotonicity of M, we have
FM(@.y)) = A M(2.y) = M(2(2). 2(y) < M{f(x). f(0))- a

Remark 11. Given a continuous and strictly monortonic function 3:J — R
and w € (0.1). denote by M : J? — .J the quasi-arithmetic mean

Mi(ey)

wdz) + (1 - w)B(y)). z.y € J.

Suppose that a function f : [ — . is measurable (or the closure of the graph
of £ docs not have interior poins). Then, obviously.

1. if 3 is increasing, then f is AMfs-convex iff the function 3o fo 37" is
conves.
2. if 4 is decreasing, then f is M-conves iff the funcrion 3o fo 474 is

concave.
Now it is easy to see that

o fis My-convex iff it is Ms-affinely convex.

We obrain the following an immediate consequence of Theorem 1

Proposition 1. Let M/ : (0.x)? — (0. ) be a strict homageneous non power
mean. If h = M{(-.1) is twice continuously differentiable and 0 # h'(1) # 1.
then the following conditions are cquivalent:
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1. a function f : (0,50) — (0,2¢) is M-affinely convex.
2. [ is either constant or linear or f(x) = max(a.cz). x € (0.5c). for some
a.c>0.
Example 1. The logarithmic mean L : (0,c)? — (0, ).
forr #y
for .

P s M)
Liz.y) o= 4 e

is homogeneous and non-power. By Theorem 1 (cf. also [11]), every continuous
at a point L-affine function is either constant or linear. Since the function
exp |(0.~) is L-convex (cf. 10]), taking into account the above Proposition, we
infer that the notions of L-convexity and L-affine convexity are not equivalent.

7 Open Problems and Final Remarks

In Theorems 1-4 we assume twice differentiability of the mean. It is an open
question wether these results remain true under weaker regularity conditions.
Let us mention that in a recent paper [3], J. Aczél, R. Duncan Luce moti-
vated by some problems in utility theory and psychophysics, considered the
functional equation H(K (s.t)) = L(H(s). H(t)). s 2 t > 1. where K and L
are homogeneous functions, which is more general than (1). Assuming thar H
is twice differentiable and strictly increasing, and the functions K and L are
twice differentiable, the authors determine the forms of H and K. According
t0 a personal communication, this functional equation will be also considered
in [4].

Acknowledgement 1. T am greatly indebted to the referee for several valu-
able comments, in particular for a simplification of some calculations in the
proof of Theorem 1.
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