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ABSTRACT

Let (42, 1) be a measure space and . 4 : (0, %) — (0. 5¢) some bijective functions. Suppose that
the functional P, . defined on class of -integrable simple functions x : 2 — [0, ). u({ : x(=) >
0} >0, by the formula

P,

[, woxtn
{x>0}

satisfies the triangle inequality. We prove that if there are A. B € £ such that 0 < u(4) < 1 < u(B) <
o, the function 1o ¢ is superadditive, and lim, o /(1) = 0 then there is a p > 1 such that

e =p()r.  w)=vn?, >0

‘The assumption lim, g ¢(1) = 0 can be significantly weakened or, for some measure spaces, even
omitted. The remaining assumptions are essential. In particular. in each of the cases: (i) 4 € £ =
1(4) =0 0r (A > 1: (i) A€ £ = p(4) < 1 or p(A4) = 5. some broad classes of pairs (¢, 1) of
non-power functions for which P ... is subadditive are indicated. These results give a solution of an
open problem posed by W. Wnuk. The reversed triangle inequality is also considered.
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Keywords and phrases. ski's inequality, converse theorem, 7-norm, subadditive function,
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ditive function, multiplicative function, measure space, Raikov theorem, Cantor set.
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1. INTRODUCTION

For a measure space ({2, T, ) denote by S = S(22, £, 1) the linear real space of
all p-integrable simple functions x : 2 — Rand, for x € S, put

Q(x) = {we 2: x(w) #0}.

Note that for two arbitrarily fixed bijections .
tional P, : § — [0,50) given by the formula

P ::{w(fomf;!\‘idﬂ) o) >0

£ (0,50) — (0, 00). the func-

i ) =0
is correctly defined. Moreover taking
o(r) =), (1) = yp(1)er, >0,

wherep > 1and ¢(1), ¥/(1) > 0 are arbitrarily fixed, the functional P,...is equal
to the L7-norm up to a multiplicative constant: in particular, the following im-
plication is an obvious of the Mi ii ity:

20 h0

(vL _pa YO _p r) = Vepes Poal +) € Poo) + Puly)
@(1) U(1)

In the present paper, assuming superadditivity of the function ¢ o ¢ and some

weak regularity conditions of . we show that if in the underlying measure

space (12, X, u) there are two sets A, B € ¥ such that

0 < p(d) <1< p(B) <o,

then the converse implication holds true. The existence of these two sets plays
here a crucial role. If a measure space fails to satisfy this condition. then there
are some broad classes of pairs of non-power functions for which the
functional P, ,, satisfies the triangle inequality (Propositions 2 and 3). The su-
peradditivity condition of the function ¢’ o ¢ is also indispensable. In Theorem
1 we assume that lim, . ¢:(1) = 0. This regularity assumption can be either
significantly weakened (Remark 5) or, if the range of the measure is sufficiently
rich, even removed (Theorem 2). Therefore we conjecture that it is superfluous.
The relevant results hold true for the functionals P, . : S — [0, oc) satisfying
the reversed inequality, where S. := {x € §: x > 0}. In this case no regularity
assumptions of the functions > and ¢ are required.

Theorem 1 with ¢ := ~' gives an improvement of the main result of [3].

This paper gives a solution of a problem posed by W. Wnuk in [11].

2. SOME AUXILIARY RESULTS

We shall need the following result about subadditive functions

Lemma 1. ([4]) If ¢:(0.0c) — (0.00) is subadditive, one-to-one, and
1im,_o (1) = 0, then ¥ is an increasing and continuous.
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Remark 1. Nole lha( if v: (0.00) — R is such that-the function (0,00) € 1 —
then v is subadditi dditi
The next lemma is a special case of a more general result in [5].

Lemma 2. Let real numbers a,b such that 0 < a < 1 < a+b be fixed. Then a
Sfunction F : (0,50)° — [0, 5) satisfies the inequality

aF(x1,%:) + bF(y1,32) < Flax; + byraxa + bys),  x1.x

)2 >0,

if, and only if, the function F is positively homogeneous, i.e.

F(1xy,1x2)

1F(x1,x2), 1,x1,x2 > 0.

3. MAIN RESULTS
The characteristic function of a set 4 C £2is denoted by x.1.
We begin with the following
Proposition 1. Let (2,5, 1) be a measure space such that there are two sets
A, B € T satisfying the condition

0< pu(d) <1< p(B) <.

Suppose that @, v
o p is superaddi

— (0,00) are bijective functions such that the function

lige) =
Then the following conditions are equivalent:
(1) the functional P .. satisfies the inequality
Pou(x+1) SPeu(x) +Pou(d), Xy €5:(4,8),

where S..(A. B) Xpa €S xix >0}
(ii) there is a real p > | such that

(1) = (1), (1) = Y1), 1>0;

(iii) there are some real p > 1 and ¢ > 0 such that

p
U’;l(.\'):((jwlv\'!"du) . xes:

(iv) the functional B...: § — [0,00) satisfies the triangle inequality

Pou(x+5) S Poyx) + Poull),  xy€ES.

Proof. To show the implication (/) = (if) suppose that (i) holds true and put
= u(A). b := p(B\A). Then, obviously,

0<a<l<a+b.



For all x;,x; > 0, the functions x = X1 x4,
Therefore, in view of (i), for all x1, x2 > 0,

X2Xp\4 belong to S.(4, B).
Uap(xr) + bp(x2))

Taking here x| := ¢~ (2), x2 := o~ (§). where s, 7 > 0, gives
Y(s+1) < U(s) + (1), 5.0>0.

Since v is one-to-one and lim,—o v(7) = 0, by Lemma 1, the function < is an
increasing homeomorphism of (0, ). Setting

Xi=XXa XX ViEDXAERXe XL >0
in the assumed inequality we get
(1) wlap(x + 1) +bo(xa +y2)) < lap(x) +bp(x2)) + vlap(n) + bp(y2))
for all x;,x2,y1,¥2 > 0. Replacing x; by ¢~ (x;), yi by ¢! () for i = 1,2, and
making use of the strict monotonicity of ¥, we obtain
) ap(o™ (x1) + 27 0n) +be(e7 (x2) + 7' (12)

< v (Wlax + bxa) + v(ay +by)))

for all xy,x3, 1.2 > 0.
By assumption the function v o ¢ is superadditive which means that

Ue(s +10) 2 Yle(s) +¥le(0),  81>0.

Replacing s by ¢~'(s), 7 by ¢~'(¢), and making use of the increasing mono-
tonicity of ¥, we can write this inequality in the following equivalent form

(3) ) +9() S (e () + 7' D). s> 0.
This inequality and (2) imply that, for all x1,x2, 71,32 > 0,
ay™ (@(x) + (1)) + bv (U(x2) +¥(02)) < ¥ (laxs + bx2) + blays +by))

Thus the function F : (0, 50)> — (0, 0¢) defined by

F(x1,x2) := w7 (0(x1) + ¥(x2)), x1,x2 >0,
satisfies the inequality

aF(x1,%2) + bF(y1,32) < Flax +byraxa +bys)  xp,x2.p1.32 > 0.
By Lemma 2 the function F is positively homogeneous, i.e.

VTN W(a) + (1) = 7 () + ¥(x2), Lxxa >0,

Replacing x| by 1! (x1), x2 by ¢! (x2), we hence get
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G (v + x2)) = U™ () + V(T (), ,x1,%2 >0,

which proves that, for every fixed 1 > 0, the function ¢: o (1) is additive. The
continuity of ¢ o (r¢!) implies that

@) e W) =m(u,  Lu>0,
for a function m : (0,00) — (0,c). Hence
(5) m(t) =%(' (1)), >0,

and, misani ing I phism of (0,). By (4), for all
L t.u >0, we have

m(st)u = v(st" (w)) = o (s(v™"] o (o (1 psi~)(u) = m(s)m(t)u.
Taking here u = 1 we get that m is multiplicative:

m(st) = m(s)m(t), 5,0>0.
The increasing monotonicity of n implies that there exists a ¢ > 0 such that

m(t) =19, 1>0.
From (5) we infer that

(1) = (1), 1>0,
whence

Wop)n) =v(p(), >0,
The function ¢ o ¢, being superadditive and positive, is strictly increasing. The
last relation implies that ¢ is also strictly increasing and, consequently, ¢ is an
increasing homeomorphism of (0, >). From (2) and (3) we have

ap(p7™(x) + 07 () +bo(e7 (%) + 71 (02))

< p(e™N(ax +bx2) + 97 (ay1 + by2))

for all xy, X2, 1,32 > 0.
Now, in the same way as in the case of the function ¢, we can show that there
isa p > 0 such that

(1) = (1)P, 1>0.
Since
voult) = [(Wop)()F, >0,

and the function v o ¢ is superadditive, applying Remark 1, we infer that pg >
1. On the other hand, substituting () = ¢(1)#” and ¥/(r) = v(1)# for 1 > 0, we
obtain, for all xy, x2,y1. 2 > 0,

la(xy + 01 + b2+ y2)')'< (ax] +b35) "+ (@) + by3) .

Replacing here x,, yy. x2, 2, respectively, by
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iy 1 o
arxy, b7y, b7y,

we obtain the inequality

(1 + 7)Y + (a4 1207 (F +5) ' +07 +25)". xixapm >0

Setting here x| y=y2=1 we get 27477 < 21*9, whence pg < | and,
consequently, The above inequality with ¢ =1 becomes the simplest
version of the Minkowski inequality which is known to hold only if p > 1. This
completes the proof of the implication (i) = (ii).

The remaining implications follow from the Minkowski inequality. [0

For a measure space (£2, £, i) put
S.=8.(2.5,p) = {xeS:x>0}.

As an i of Proposition 1 we obtain the following

Theorem 1. Let (2,5, 1) be a measure space such that there are two sets A, B €
satisfving the condition

0<p(d) <1< p(B)<oc.

Suppose that .1 : (0,00) — (0,c) are bijective functions such that v:o ¢ is su-
pp @ i @
peradditive and lim,_o (1) = 0. Then the inequality

Pou(x +y) £ Pyy(x) + Poul(y)s X,y € S+(R,Z, p),
holds true if, and only if. there is a p > 1 such that

o(1)e, (1) = Y(1)1'P, 1>0.

Taking here := ! we obtain the following improvement of the main result
of [3] where  is assumed to be defined on the closed half-line [0, ).

Corollary 1. Let (2., 1) be a measure space such that there are two sets A, B €
X satisfying the condition 0 < j(A) < 1 < p(B) < . Suppose that ¢ : (0,50) —
(0.¢) is bijective and such that lim,_q &~ (1) = 0. If the functional P..
satisfies the inequality

Po(x+1) SPA0) +P.(). Xy €S2 p). xy20.

then there exists a real p > 1 such that

o(r) = (1), 1>0.

Proof. Since P := P, where ¢ the function v o ¢ = id|jo.«) being
additive, is superadditive. Moreover, by the assumption, lim,_o ¢:(r) = 0. Now
the result follows from Theorem 1. O
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Remark 2. In Theorem | the assumption about the measure space (2, %, ) is
essential.
Note that it is not satisfied if, and only if, one of the following cases occurs:
(i) for every 4 € X, we have u(4) = 0 or u(4) > 1;
(if) for every 4 € X, we have y(4) < 1 or u(4) = oc.
In each of these two cases we shall indicate some large classes of pairs (¢, ")
of non-power functions for which P, ., satisfies the Minkowski type inequality.

Proposition 2. Ler (2. 5. 1) be a measure space such that for every A € £
wA)=0 or wu(A)=1.

If 0,05 (0,00) — (0, ) are increasing,  is bijective and convex, log o o exp is
convex and v o  is subadditive, then

Pou(x+3) SPou(x) +Peu(y). x.ye€S(R.Z.p).

Proof. In view of the main result of [6], generalizing a well known Mulhol-
land’s inequality ([9)), the assumptions of > imply that

(J eolx +,r\du) <¢! <J @0 Mdu) +o7! (J vo Md/t)
(xsn) 2 )

for all x.y € S such that u(2(x)). u(2(y)) > 0. Now the result easily follows
from the increasing monotonicity and subadditivity of the function o . and
the definition of P ,..

6)

Example 1. The functions ¢ given by (1) := exp(7) — 1, 7 > 0, and arbitrary v’
such that the function

U(e' . " "
©0,00) 31 =27 ¢ noninereasing,

satisfy the assumptions of the above Proposition 2 (cf. Remark 1). One can take
for instance ¥(r) = log(r + 1), 71> 0.

Proposition 3. Let (2,5, 1) be a measure space such that, for every A € £.

wA) <1 or p(d) =

If 9,02 (0,50) — (0,00) are increasing, ¢ is bijective, nwice continuously differ-
entiable, ¢ > 0, % is superadditive and v o  is subadditive, then

Pou(x+y) S Puu(x) + Pou(y), Xy E€S(2,%, ).

Proof. Making use of Theorem 3 in [3], for all x.y € S such that p(2(x)).
#(2(y)) > 0 inequality (6) holds true. Now the result follows from the increas-
ing monotonicity and subadditivity of the function v:o . O



Example 2. The function ¢ given by ¢(t) .t > 0, and arbitrary bijection > :
(0,5¢) — (0,00) such that the function (0.00) 3t — 1\ %:(:y) is nonicreasing
satisfy the assumptions of Proposition 3. One can take, for instance, v

51
el

Remark 3. In Theorem | the assumption of superadditivity of ¢ o vis essential.
It is a consequence of the following

Proposition 4. Let (2,5, 1) be an arbitrary measure space. If o) = # (1> 0)
for some fixedp > 1,and : : (0,50) — (0, 00) is an increasing homeomorphism of
(0,50) such that the function o  is subadditive, then

o) SPou() +Prul). Xy €S20,

Proof. For all x.y € S(2.5,4) such that u(2(x)). u(R(y))>0. by Min-
kowski’s inequality, we have

" (Lw“ + .\'I"du> =you(lv+,)

<wop(lxl,+vl,) < vop(lid,) +vow(lvl,)

=w([ \XI”du) 3 »(J [)‘\”W) = Posl) + Pry),
- 6

(where |||, denotes here the L7-norm).  [J

Peu(x+)

Remark 4. The assumption that lim,_o¢:(1) = 0 plays an important technical

role in the proof of our basic Proposition 1. Namely, together with Lemma 1, it

allows to conclude that the function ¢ is increasing and continuous on (0,00).
Note that this assumption can be significantly relaxed.

Remark 5. Suppose that > : (0,00) — (0, 0c) is subadditive. If a set C C (0, 00)
satisfies the following condition:

k
(0,8) € C for some 6 > 0 and a positive integer k.
=1

then lim,_o ¢c(f) = 0 implies that lim,_q /(1) = 0 (here ¥|c denotes the re-
striction of ¢ to ).

By Raikov’s theorem [10], if C C (0,0c) and s a point of positive density of
C, then this condition is satisfied. Note also that if C is the Cantor set (so a set
of measure zero), then this condition holds with k = 2 and & = 2 (cf. [1], p. 50).

The next result shows that if the range of measure y is rich enough, then the
assumption lim,_o ¢(7) = 0 in Theorem 1 can be omitted.
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Theorem 2. Theorem I remains true if the assumption lim, o v:(1) = 0 is replaced
by the following condition: there are two sets C, D € S such that

CND=0, 0<pu(C)<1, u(C)eQ. u(C)+uD)

where Q denotes the set of rational numbers.

Proof. Suppose that P, ,(x +y) < P_.(x) + P,.(y), forall x,y € S.. For

IXC+ VXD, XX, p1.y2 >0,

= X1XC + X2XD-

we obtain

Ulep(x1 + 1) +do(x2 +2)) < Ulep(x) +do(x2)) + U(ep(n) +de(r2)),

:= u(D) and ¢ +d = 1. Taking here x; = y3 = ©~'(s) and
271 (1), we get
Us) + o7 (0)] S Ues+di) + (et +ds), 50> 0.

Now the superadditivity of the function ¢ o ¢ implies that
U(s) + (1) < U(es+di) + U(ct + ds), 50> 0,
or, equivalently,
U(s) + (1) S Ules+ (1 - e)t) + (et + (1 - ¢)s), 50> 0,

which means that the function ¢ is c-Wright concave in (0, oc). Since ¢ € (0,1)
is a rational number, in view of the main result of [2], the function v is Jensen
concave in (0, ). By the Berstein-Doetsch theorem (cf. for instance [1], p. 145),
being bounded below, ¢ is concave and, consequently, continuous. Summariz-
ing, we have shown that ¢ is a concave homeomorphism of (0, ). This implies
that ¢ must be increasing and, consequently, lim,_o¢(r) = 0. The proof is
completed.
‘We end this section with the following

Conjecture 1. The assumption that lim,—o v:(1) = 0 in Theorem I is superfiuous.

4 RESULTS FOR THE REVERSED INEQUALITY
In the case of the reversed triangle inequality for the functional P . the sui-
table theory is much simpler. In particular, in the proof of the following "con-
verse theorem™ we do not need any regularity assumption on the function v.
Theorem 3. Let (2.3, j1) be a measure space with two sets A, B € ¥ such that

0 < p(d) <1< p(B) <.

Suppose that . 0.00) — (0.2c) are bijective functions such that the function
U o @ is subadditive. Then
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Pou(x+3) 2 Puu(x) + Poyu(y), x5 €S+(2,Z,p),
if, and only if there is a p € (0. 1] such that
(1) = ()P, U(t K1) /7, 1>0;

Proof. Suppose that P_ . is itive on S.. Similar ing as in the
proof of Pmposmon 1 proves that ¥ is superaddmve Smce 1 is positive it fol-
lows that it is and, ly. ¢isan phism

of (0,00). Setting in the assumed inequality
y1.y2>0,

NIXA + X2XB\A+ = V1X4 +)2XB\45

then replacing x; by ¢~ (x;), 3 by ¢~ (1) for i = 1,2, and making use of the
strict monotonicity of ¢, we obtain

ap(e™ (n) +¢7'0) + be(e7™! (x2) + 97 (02))
> ¢ (@(ax) + bxa) + (ay) +bya)))

for all x; b2 >0
From the assumed subadditivity of the function ¢* o  we infer that

¢ W(s) +u) S o(e7 () +97 (). s> 0.

The last two inequalities imply that the function F : (0,5c)* — (0,¢c),

F(x1,x2) := ¢ (0(x1) + 9(x2)), X1.x2 > 0,
satisfies the inequality
aF(x1.x2) + bF(y1.y2) > Flax) +byr.axs +bys)  x.

Applying Corollary 1 in [8] we infer that F is positively homogeneous. We omit
the remaining part of the proof as it is analogous to that of the implication
(i) = (ii) of Proposition 1. O

Remark 6. The functional P..,. is superadditive on the whole linear space
S(Q.5. ). ie.
Poo(x+¥) 2 Pou(x) + Pou(y), Xy €S(2.Z,p),
if the underlying measure space satisfies the following condition:
for every A € X either u(4) = 0 or u(4) =
In fact, if there were a set A € ¥ such that 0 < p(A4) < oo, then for x := x4
and y := —x we would get
0="P,4(0) = P,

Thus the problem of the global superadditivity of P.... trivializes.

$) 2 Prol) 4 Pru(-3) > 0.

Remark 7. With some obvious changes, the counterparts of Propositions 2, 3
and 4 are also valid.
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Remarks on the definition of the functional & _
Suppose that 2. : [0.5c) — [0.) are one-to-one, onto, and (0) =0
¢(0). Then the functional p_... : S — [0. >c) given by (cf. [3])

'(J”;o

is correctly defined. Obviously. the counterparts of all the results proved above

remain true. Moreover, the possibility of using 0 in the Minkowski inequality for

p.....allows to simplify some steps of the proof (for instance. in Proposition 1).
However

1) the results for the functional P . .. are formally more general (the value at
0 plays no role):

2) in the proof of Proposition 1 we show that the function » and v are
multiplicative: the interval (0.~c) is more natural domain for multiplicative
functions than [0, x):

3) in the counterpart of Proposition 2 instead of logeoy o exp we should
take log o] ) © exp (cf. also Examples | and 2 were adding 0 to the domain of
the function » would be rather inconvenient.

Peolx) \du). X € S(2.%,p),

FINAL REMARK

Theorem 1. Propositions 1, 2 and 3 give a solution of a problem posed by W.
Wnuk in [11].
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