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On subadditive functions and ¢-additive mappings
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Abstract: In [4], assuming among others subadditivity and submultiplicavity of a function
4 [0,00) = [0,00), the authors proved a Hyers-Ulam type stability theorem for “p-additive”
mappings of a normed space into a normed space. In this note we show that the assumed
conditions of the function 1 imply that % = 0 and, consequently, every “Y-additive” mapping
must be additive.
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1 Introduction

This note is motivated by some recent papers [1], (3] and [4] concerning the Hyers-Ulam
type stability theorems for ¥-additive mapping where the subadditive and submultiplica-
tive functions were used. Recall the definition of v-additive mapping from [3]:

Let ¢ : [0,00) — [0,00) be function, E; and E, normed spaces. A mapping
F: By — E, is called ¥-additive if there is 8 > 0 such that

|F(z +y) — F(z) - F(y)| < 0 ¥ (llll) +¢(llyl))
for all 2,y € By (cf. [3)).
n [4] the following Hyers-Ulam type stability result is proved:

Theorem 1.1. Suppose that ¥ : [0,00) — [0, 00) satisfies the following conditions
(1) lim, o 82 =

““E-mail: J.Matkowski®im.uz.2gore.pl



436 J. Matkowski / Central European Journal of ics 4 (2003) 435-440

(2) w(st) < P(s)p(t) for all 5,6 > 0
(3) %(s+1) < %(s) + P(t) forall 5,¢ 2 0

(4) ¥ is monotone increasing

(5) ¥(t) <t forall t>0.

Then a mapping F : E; — E; of normed space E}into a normed space E; is -additive
if, and only if, there exist a constant ¢ > 0 and an additive mapping T : Ey — E, such
that

|F(z) - T(z)] < ct(llzll),  forallz € Ey.

The ¥-additive functions were also considered in (3] and in a recent paper [1].

In this note we prove some properties of subadditive and submultiplicative functions.
By applying them we infer that every function ¢ : [0,00) — [0, 00) satisfying the condi-
tions 2 and 5 must be the zero function. Thus, every ¥-additive mapping with ¢ satisfying
only these two conditions is additive.

functions

2 Some remarks on subadditive and multi
We begin with the following

Proposition 2.1. A function f: R — R satisfies the following two conditions:
(i) f is subadditive, that is

fls+t) S f(s)+f(t), steR;
(ii) there is a c € R such that for all t € R,
fe) <d,
if, and only if, f(t) = ct forall t € R.
Proof. Suppose that f : R — R satisfies condition (i) and (ii). Hence, for all 5, € R,
F&) = f((t =) +3) < f(t =) + fs) S olt = 8) + f(s),

whence

f@)—ct<f(s)—cs, steER
Changing the roles of s and ¢, we get the converse inequality, and consequently,

f)—ct=f(s)—cs, stER
Taking s = 0 gives

f)y-ct=f0), teR

Setting s = ¢ = 0 in (i) we get £(0) > 0 and from (ii) we have f(0) < 0. Thus f(0)
This shows that

f)=ct, teR
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Since the converse implication is obvious, the proof is complete.

Remark 2.2. To show that assumption (i) cannot be replaced by the subadditivity of f
on (0, 00) or [0, 00), it is enough to observe that f [0, 00) — [0, 00), given by f(£) := 7,
is subadditive and satisfies the inequality £(£) < ¢ for all ¢ > 0.

Corollary 2.3. A function ¥ : (0,00) — (0, 00) satisfies the following two conditions:
(i) f is submultiplicative, that is

Y(st) S U(s)p(t),  st>0;
(ii) there is a ¢ € R such that for all £ > 0,
w(E) <t
if, and only if, ¥(t) = t° for all ¢ > 0.

Proof. Suppose that 1 : (0, 00) — (0, o) satisfies conditions (i) and (ii). Then f: R — R
defined by f := logo o exp satisfies the conditions (i)(ii) of Proposition 2.1. Thus
£(t) = ct for all t € R, and consequently, %(t) =  for all ¢ > 0. The converse implication
is obvious.

Assuming here ¢ := 1 we obtain the following
Corollary 2.4. If a function ¥ : [0,00) — [0, 00) is submultiplicative, that is
Y(st) S U(s)u(t), 5,120,

and
w(t)<t, >0,

then () = 0 for all £ > 0.
Proof. Suppose that ¥(s) = 0 for some s > 0. Then from the submultiplicativity of ¥,
we have ¢ &
v =v(st) <v@v(f) =0
s s
for all t > 0, which shows that ¢ = 0 in [0, 00).
Suppose that %(s) > 0 for all s > 0. Then with ¢ = 1, the fanction ¥ |(oc) satisfies

all the assumptions of Corollary 2.3. Consequently, in the other case, we would obtain
¥(t) =t for all ¢ > 0, which contradicts the assumption %(t) < ¢ for all ¢ > 0.

We shall prove the following
Proposition 2.5. If f: (0,00) — [0,00) is subadditive, that is

fs+t) S f(s)+ f(1), st>0;
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and
hm ft)y=

then the limit

1 0

=0 t
exists and . .

22 g {10,050},

Proof. Set

ﬂ:=sup{f() t>0}

and assume first that § < +co. Take £ > 0 and a > 0 such that

@) 58
¢ Py
For every t € (0,a) there is a unique positive integer n € N, n = n(t), such that
L <t<gic

—<nt<a n€N.
n+1

Now, by the definition of § and the subadditivity of f, we have
g3 {8 i@, ) fl@) = fla=nt) , fla) _ fla—nt)
t nt nt nt a <

Al

Since 7= n(t) — o0 iff t — 0, and

a
<o~ —,
n+l

we infer that
lim(a —nt) = 0.

The assumption that lim,o f(t) = 0 implies there is a § > 0 such that

fla=nt) ¢
et

O<t<d=

Now for all t € (0,6) we have
L0, f@
&2

In the case when § = oo we can argue in a similar way replacing 8 by an arbitrary
number M > 0. This completes the proof.
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Remark 2.6. Under the measurability assumptions the above result is proved in [2].

Corollary 2.7. Suppose that f : (0,00) — [0, 00) is subadditive, that is
S0 <610, st>0
and
lim £} = 0.
Then

()

limint fi) < Jmsp 2 )

if and only if, there is a ¢ € R such that f(2) = ct for sll t>0.
Proof. The assumptions imply that f is bounded on every finite subinterval of [0,0c).

By the subadditivity of f (cf. Hille, Phillips [2, p.244, Theorem?.6.1] there exists a finite
limit

e i 10
and
a:i)\f{f—(t—):!>0}.
ot
Putting

>0}

£

8= hmf

in view of Proposition 2.5, we have

£ course we have 3 > a. Condition (1) implies that a > & and. consequently, a
Setting ¢ := a we obtain f(t) = ct for all ¢ > 0.
3 Remarks on t-additive maps
From Corollary 2.4 we obtain the following

Remark 3.1. Suppose that ¢ : [0,00) — [0,00) satisfies the conditions 2 and 5 of
Theorem 1.1, Then every mapping of normed space E; into a normed space E is ¥~
additive if, and only i, it is additive.

Applying Proposition 2.5 we get the following

Remark 3.2. Let ¢ : [0,00) — [0,00) satisfy the conditions 2 and 3 of Theorem 1.1
Suppose that lim;—o () = 0 and 0 is a cluster point of the set

{t>0:%(t) <t}
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for some ¢ < 1. Applying Proposition 2.5 we infer that %(t) < ¢ for all ¢ > 0, that is,
condition 5 is satisfied.

These remarks show that condition 5 of Theorem 1.1 should be either removed or
replaced by a weaker one.
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