CE IM 4 (2003) 435-440

On subadditive functions and ψ -additive mappings

Janusz Matkowski*

Institute of Mathematics, University of Zielona Góra, Podgórna 50, PL-65-246 Zielona Góra, Poland

Received 7 May 2003: accepted 11 June 2003

Abstract: In [4], assuming among others subadditivity and submultiplicavity of a function $\psi \cdot [0, \infty) - [0, \infty)$, the authors proved a Hyers-Ulam type stability theorem for " ψ -additive mappings of a normed space into a normed space. In this note we show that the assumed conditions of the function ψ imply that $\psi = 0$ and, consequently, every " ψ -additive" mapping must, be additive.

© Central European Science Journals. All rights reserved.

Keywords: subadditive function, submultiplicative function, Hyers-Ulam stability, ψ -additive function

MSC (2000): 39B72

1 Introduction

This note is motivated by some recent papers [1], [3] and [4] concerning the Hyers-Ulam type stability theorems for ψ -additive mapping where the subadditive and submultiplicative functions were used. Recall the definition of ψ -additive mapping from [3]:

Let $\psi:[0,\infty)\to[0,\infty)$ be function, E_1 and E_2 normed spaces. A mapping $F:E_1\to E_2$ is called ψ -additive if there is $\theta>0$ such that

$$|F(x+y)-F(x)-F(y)| \leq \theta \left(\psi(\|x\|) + \psi(\|y\|) \right)$$

for all $x, y \in E_1$ (cf. [3]).

In [4] the following Hyers-Ulam type stability result is proved:

Theorem 1.1. Suppose that $\psi:[0,\infty)\to [0,\infty)$ satisfies the following conditions (1) $\lim_{t\to\infty}\frac{\psi(t)}{t}=0$

^{*} E-mail: J.Matkowski@im.uz.zgora.pl

- (2) $\psi(st) \le \psi(s)\psi(t)$ for all $s, t \ge 0$
- (3) $\psi(s+t) \le \psi(s) + \psi(t)$ for all $s, t \ge 0$
- (4) ψ is monotone increasing
- (5) ψ(t) < t for all t > 0.

Then a mapping $F: E_1 \to E_2$ of normed space E_1 into a normed space E_2 is ψ -additive if, and only if, there exist a constant c > 0 and an additive mapping $T: E_1 \to E_2$ such that

$$|F(x) - T(x)| \le c\psi(||x||),$$
 for all $x \in E_1$.

The ψ -additive functions were also considered in [3] and in a recent paper [1].

In this note we prove some properties of subadditive and submultiplicative functions. By applying them we infer that every function $\psi:[0,\infty)\to[0,\infty)$ satisfying the conditions 2 and 5 must be the zero function. Thus, every ψ -additive mapping with ψ satisfying only these two conditions is additive.

2 Some remarks on subadditive and multiplicative functions

We begin with the following

Proposition 2.1. A function $f : \mathbb{R} \to \mathbb{R}$ satisfies the following two conditions:

(i) f is subadditive, that is

$$f(s+t) \le f(s) + f(t), \quad s, t \in \mathbb{R}$$

(ii) there is a $c \in \mathbb{R}$ such that for all $t \in \mathbb{R}$.

$$f(t) \le ct$$
,

if, and only if, f(t) = ct for all $t \in \mathbb{R}$.

Proof. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies condition (i) and (ii). Hence, for all $s, t \in \mathbb{R}$,

$$f(t) = f((t - s) + s) \le f(t - s) + f(s) \le c(t - s) + f(s)$$

whence

$$f(t) - ct \le f(s) - cs$$
, $s, t \in \mathbb{R}$.

Changing the roles of s and t, we get the converse inequality, and consequently,

$$f(t) - ct = f(s) - cs$$
, $s, t \in \mathbb{R}$.

Taking s = 0 gives

$$f(t) - ct = f(0), \quad t \in \mathbb{R}.$$

Setting s=t=0 in (i) we get $f(0) \ge 0$ and from (ii) we have $f(0) \le 0$. Thus f(0)=0. This shows that

$$f(t) = ct$$
, $t \in \mathbb{R}$.

Since the converse implication is obvious, the proof is complete.

Remark 2.2. To show that assumption (i) cannot be replaced by the subadditivity of f on $(0, \infty)$, it is enough to observe that $f: [0, \infty) \to [0, \infty)$, given by $f(t) := \frac{1}{t+1}$, is subadditive and satisfies the inequality $f(t) \le t$ for all t > 0.

Corollary 2.3. A function $\psi:(0,\infty)\to(0,\infty)$ satisfies the following two conditions:

(i) f is submultiplicative, that is

$$\psi(st) \le \psi(s)\psi(t)$$
, $s, t > 0$;

(ii) there is a $c \in \mathbb{R}$ such that for all t > 0.

$$\psi(t) \leq t^c$$
,

if, and only if, $\psi(t) = t^c$ for all t > 0.

Proof. Suppose that $\psi:(0,\infty) \to (0,\infty)$ satisfies conditions (i) and (ii). Then $f: \mathbb{R} \to \mathbb{R}$ defined by $f:=\log c\psi$ exp satisfies the conditions (i)-(ii) of Proposition 2.1. Thus f(t)=ct for all $t\in \mathbb{R}$, and consequently, $\psi(t)=t^c$ for all t>0. The converse implication is obvious

Assuming here c := 1 we obtain the following

Corollary 2.4. If a function $\psi : [0, \infty) \to [0, \infty)$ is submultiplicative, that is

$$\psi(st) \le \psi(s)\psi(t), \quad s, t \ge 0,$$

and

$$\psi(t) < t, \quad t > 0,$$

then $\psi(t) = 0$ for all $t \ge 0$.

Proof. Suppose that $\psi(s)=0$ for some s>0. Then from the submultiplicativity of $\psi,$ we have

$$\psi(t)=\psi\left(s\frac{t}{s}\right)\leq\psi\left(s\right)\psi\left(\frac{t}{s}\right)=0$$

for all $t \ge 0$, which shows that $\psi = 0$ in $[0, \infty)$.

Suppose that $\psi(s) > 0$ for all s > 0. Then with c = 1, the function $\psi \mid_{(0,\infty)}$ satisfies all the assumptions of Corollary 2.3. Consequently, in the other case, we would obtain $\psi(t) = t$ for all t > 0, which contradicts the assumption $\psi(t) < t$ for all t > 0.

We shall prove the following

Proposition 2.5. If $f:(0,\infty)\to [0,\infty)$ is subadditive, that is

$$f(s+t) \le f(s) + f(t), \qquad s,t > 0;$$

and

$$\lim_{t\to 0} f(t) = 0$$

then the limit

$$\lim_{t\to 0} \frac{f(t)}{t}$$

exists and

$$\lim_{t\to 0}\frac{f(t)}{t}=\sup\left\{\frac{f(t)}{t}:t>0\right\}.$$

Proof. Set

$$\beta:=\sup\left\{\frac{f(t)}{t}:t>0\right\},$$

and assume first that $\beta<+\infty.$ Take $\varepsilon>0$ and a>0 such that

$$\frac{f(a)}{a} > \beta - \frac{\varepsilon}{2}$$
.

For every $t\in(0,a)$ there is a unique positive integer $n\in\mathbb{N},$ n=n(t), such that $\frac{a}{a+1}\leq t<\frac{a}{2},$ i.e.

$$\frac{an}{n} \le nt < a, \quad n \in \mathbb{N}.$$

Now, by the definition of β and the subadditivity of f, we have

$$\beta \geq \frac{f(t)}{t} = \frac{nf(t)}{nt} \geq \frac{f(nt)}{nt} \geq \frac{f(a) - f(a - nt)}{nt} \geq \frac{f(a)}{a} - \frac{\frac{g(a - nt)}{n+1}}{\frac{gn}{n+1}}.$$

Since $n = n(t) \rightarrow \infty$ iff $t \rightarrow 0$, and

$$0 < a - nt \le \frac{a}{n+1},$$

we infer that

$$\lim_{t\to 0}(a-nt)=0.$$

The assumption that $\lim_{t\to 0} f(t) = 0$ implies there is a $\delta > 0$ such that

$$0 < t < \delta \Rightarrow \frac{f(a - nt)}{\frac{n}{n+1}a} < \frac{\varepsilon}{2}$$

Now for all $t \in (0, \delta)$ we have

$$\beta \geq \frac{f(t)}{t} \geq \frac{f(a)}{a} - \frac{f(a-nt)}{\frac{an}{n+1}} \geq \left(\beta - \frac{\varepsilon}{2}\right) - \frac{\varepsilon}{2} = \beta - \varepsilon,$$

which proves that $\lim_{t\to 0} \frac{f(t)}{t}$ exists and

$$\lim_{t \to 0} \frac{f(t)}{t} = \beta.$$

In the case when $\beta=\infty$ we can argue in a similar way replacing β by an arbitrary number M>0. This completes the proof.

Remark 2.6. Under the measurability assumptions the above result is proved in [2].

Corollary 2.7. Suppose that $f:(0,\infty)\to [0,\infty)$ is subadditive, that is

$$f(s+t) \le f(s) + f(t), \quad s, t > 0$$
:

and

$$\lim_{t \to 0} f(t) = 0.$$

Then

$$\lim_{t\to 0} \inf \frac{f(t)}{t} \le \lim_{t\to \infty} \sup \frac{f(t)}{t}$$
(1)

if and only if, there is a $c \in \mathbb{R}$ such that f(t) = ct for all t > 0.

Proof. The assumptions imply that f is bounded on every finite subinterval of $[0,\infty)$. By the subadditivity of f (cf. Hille, Phillips [2, p.244, Theorem 7.6.1] there exists a finite limit

$$\alpha := \lim_{t \to \infty} \frac{f(t)}{t}$$

and

$$\alpha = \inf_{t>0} \left\{ \frac{f(t)}{t} : t>0 \right\}.$$

Putting

$$\beta := \sup \left\{ \frac{f(t)}{t} : t > 0 \right\},\,$$

in view of Proposition 2.5, we have

$$\beta = \lim_{t\to 0} \frac{f(t)}{t}$$
.

Of course we have $\beta \geq \alpha$. Condition (1) implies that $\alpha \geq \beta$ and, consequently, $\alpha = \beta$. Setting $c := \alpha$ we obtain f(t) = ct for all t > 0.

3 Remarks on ψ -additive maps

From Corollary 2.4 we obtain the following

Remark 3.1. Suppose that $\psi : [0, \infty) \rightarrow [0, \infty)$ satisfies the conditions 2 and 5 of Theorem 1.1. Then every mapping of normed space E_1 into a normed space E_2 is ψ -additive if, and only if, it is additive.

Applying Proposition 2.5 we get the following

Remark 3.2. Let $\psi:[0,\infty)\to[0,\infty)$ satisfy the conditions 2 and 3 of Theorem 1.1. Suppose that $\lim_{t\to 0}\psi(t)=0$ and 0 is a cluster point of the set

$$\{t>0: \psi(t) < ct\}$$

for some c < 1. Applying Proposition 2.5 we infer that $\psi(t) < t$ for all t > 0, that is, condition 5 is satisfied.

These remarks show that condition 5 of Theorem 1.1 should be either removed or replaced by a weaker one.

References

- P. Găvruta: "On a problem of G. Isac and Th.M. Rassias concerning the stability of mappings", J. Math. Anal. Appl., Vol. 261, (2001), pp. 543-553.
- [2] E. Hille and R.S. Phillips: "Functional analysis and semi-groups", AMS, Colloquium Publications, Vol. 31, Providence, Rhode Island, 1957.
- [3] G. Isac and Th.M. Rassias: "On the Hyers-Ulam stability of ψ -additive mappings", J. Approx. Theory, Vol. 72, (1993), pp. 137–137.
- [4] G. Isac and Th.M. Rassias: "Functional inequalities for approximately additive mappings", In: Th.M. Rassias and J.Tabor, (Eds.): Stability of Mappings of Hyers-Ulam type, Hadronic Press, Palm Harbour, FI, 1994, pp. 117-125.