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ON A COMPOSITE FUNCTIONAL EQUATION

Abstract. We determine all continuous functions f : (0,00) — (0, 00) satisfying the
functional equation

1 (2C(f(=2)) = f(z)G (£(=)

where G is continuous and strictly increasing function such that 1 € G((0,00)).

1. Introduction
‘We deal with continuous solution of the composite functional equation

@ f(@G(f(2))) = f(@)G (f(=))
where f : (0,00) — (0,00) is an unknown function. In the case when a
given G is a power function this functional equation was idered in [2].

In the present paper, assuming that G : (0,00) — (0, 00) is continuous,
strictly increasing and such that 1 € G(0,c0), we determine all continuous
and strictly i i lutions of this functional equation.

Note that (cf. also [2]) if f : (0,00) — (0,00) is a bijective solution
of the above functional equation, then the function ¢ := f~! satisfies the
following ( ite!) linear h iterative functional equation

¢ (2G(z)) = G(z)¢(2)-
Since the theory such equations is well-known (cf. M. Kuczma (3] and M.
Kuczma, B. Choczewski, R. Ger [4]), we are mainly interested in noninvert-
ible solution of the considered equation.

Let us mention that in the case when G(u) = u? equation (1) appears in
a division model of population (cf. [1]).
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2. Main result

Our aim is to prove the following
‘THEOREM. Suppose that G : (0,00) — (0,00) is continuous, strictly in-
creasing, and there ezists ay > 0 such that G(v) = 1. A continuous function
f:(0,00) — (0,00) satisfies the functional equation
@) f@G(f(=)) = f(=)G (f(=)), z>0,
if, and only if, there ezist a, b € [0,+0c0], a < b, anda # b ifa =0 or
b= oo, such that

1z 0<z<a
3 f(z)={'y a<z<b

Iz z2b
Proof. Define the functions M, D : (0,00) — (0,00) by
0) M(z) =12G(f(z)), D(z):= f(’) z>0.
We can write equation (1) in the form
) D(M(z) = D(z), z>0.

If M(z1) = M(zs) for some z1, x3 > 0, then, by (5), we get D(z;) = D(x3),
and, consequently, D(z1)M (z1) = D(z2) M (z2). In view of the definitions of
M and D it means that f(z1)G(f(21)) = f(22)G(f(x2)). Since the function
zG(z) is strictly increasing, it follows that f(z) = f(z2). Now the equality
D(z1) = D(z2) implies that z; = z. Thus M is one-to-one, and, by the
continuity of G, M is strictly monotonic.
Suppose first that M is strictly increasing and put
Fiz(M) :={z>0: M(z) = z}.
It is easy to see that
Fiz(M)={z>0: f(z) =~}
We shall prove that Fiz(M) is a nonempty, closed subinterval of (0,0).
For an indirect argument first suppose that Fiz(M) = 0. The continuity
of M implies that either M(z) < z, (z > 0), or M(z) > z, (z > 0). Hence,
by definition (4) of M, either
Gf@) <1, =>0,
or
G(f(z))>1, z>0.
Since G(7) = 1, by the monotonicity of G, we infer that either

6) @<y, z>0
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or

™ f@)>~, z>0

On the other hand, the continuity of M and D, the monotonicity of M, and
equation (5), imply that

D((0,00)) = D(M(1), 1).
Hence, setting
c:=infD([M(1),1]), C:=supD([M(1),1)),
we obtain the inequality 0 < ¢ < D(z) < C < oo forall z > 0 i.e.
O0<ecz< f(z)<Cr<oo, z>0,
which contradicts (6), as well as (7). This proves that Fiz(M) # 0.

To show that Fiz(M) is an interval, for an indirect proof, suppose that
there exists an interval [c,d], ¢ < d, such that ¢,d € Fiz(M), and (c,d) N
Fiz(M) = 0. Consequently, either M(z) < « for all z € (¢, d), or M(z) >z
for all z € (c,d). In the first case we would have

nli_{rngM"(r) =c¢, z€lgd).
From equation (5), by induction, for every integer n, we get

D(z) = D(M™z)), «>0.
The continuity of D implies

D(z) = lim D(M"(z))=D(c), =€ [e,d).
Hence, again by the continuity of D, we get D(c) = D(d), i.e. that
fe)d= f(@e.

On the other hand we have M (c) = ¢ and M(d) = d, which means that

CUE =1 GCU@ =1
Since G is one-to-one, it follows that f(c) = f(d). Consequently ¢ = d. This
contradiction proves that Fiz(M) is an interval. If M(z) > z we argue in

the same way.
Put

inf Fiz(M), b :=sup Fiz(M).
According to what we have proved,

0<a<+o0, 0<b<+oo.
Since M is continuous we have
Fiz(M) =

a,b] N (0,0).
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Hence,
® f@)=7, z¢€[abn(0,+00).
If b < +00 then we have either M(z) < z for all @ > b, or M(z) > & for all
z > b. Suppose that M(z) < z for all = > b. Then, for a fixed z > b,
. e
Jim M"(z) =b.
Hence, by (5) and the continuity of D,

D(z) = lim D(M"(z)) = D), =z >b.

Suppose that M(z) > z for all z > b. Then, for a fixed z > b,
. Cnpy_
Jim M™(2) =b

and, for the same reason,

D(z)= Jim D(M™()) =D(), z>b.
Now the definition of D and the relation b € Fiz(M) imply

f@) =6z =b"(Mz, =>b

If @ > 0, we show in the same way that

f@)=af(@z=a"'()z, O0<z<a
Thus, if 0 < a<b< +oco then we arrive at formula (3) for f. If a =0 and
b = oo obviously f(z) =7, z € (0,00), in accordance with (3), too.

On the other hand, it is easy to verify that the functions given by this

formula satisfy equation (1).

Now suppose that M is strictly decreasing. Then, by the definition of
M, the function G o f is also strictly decreasing. Because G is strictly in-
creasing, so f is strictly decreasing. This is a contradiction because the
function f o M, the left-hand side of equation (1), is strictly increasing,
and the function f - (G o f), the right-hand side of equation (1), is strictly
decreasing.

This completes the proof.

REMARK 1. The assumption that the function G is strictly increasing is
essential. It is a consequence of point 2° and 3° of Theorem 1 in [2] where
G(u)=u"2or G(u) =u"!, u>0.

In the case when G(u) = u~2, besides functions given by (3), for every
continuous function fi : [1,00) — [1,00) such that fi(1) =1, and

fi=z)

T

z—

is increasing on [1, 00),



@
&
4

juation (1) such that f(z) =
an increasing homeomorphic

tinuous f : (0,00) — (0, 00) satisfies

0.%), a<bandas#bifa=0or
(0,0] — (0,00), fy : [b,00) — (0,00)

T<h@<I, sebool

falz) 0<z<a
f@) =41
folz) z>b.

Thus. these two cases show that if the function G is not increasing,
besides (3), some other type of solutions may appear.

REMARK 2. If G is constant, say G = ¢, ¢ € (0,00), then equation (2)
becomes f(cx) = cf(x), z € (0,00), and the continuous solution of this
equation depends on an arbitrary function (cf. M. Kuczma [3]). Thus the
strict monotonicity of G in the theorem is indispensable.

REMARK 3. The assumption that 1 € G((0,cc)) is also essential. It is easily
seen from equation (2) that if 1 € G(0,00) then there is not a constant
solution.
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