Janusz Matkowski, Jolanta Okrzesik

ON A COMPOSITE FUNCTIONAL EQUATION

Abstract. We determine all continuous functions $f:(0,\infty)\longrightarrow (0,\infty)$ satisfying the functional equation

$$f(xG(f(x))) = f(x)G(f(x))$$

where G is continuous and strictly increasing function such that $1 \in G((0, \infty))$.

1. Introduction

We deal with continuous solution of the composite functional equation

(1)
$$f(xG(f(x))) = f(x)G(f(x))$$

where $f:(0,\infty)\longrightarrow (0,\infty)$ is an unknown function. In the case when a given G is a power function this functional equation was considered in [2].

In the present paper, assuming that $G:(0,\infty) \longrightarrow (0,\infty)$ is continuous, strictly increasing and such that $1 \in G(0,\infty)$, we determine all continuous and strictly increasing solutions of this functional equation.

Note that (cf. also [2]) if $f:(0,\infty)\longrightarrow (0,\infty)$ is a bijective solution of the above functional equation, then the function $\phi:=f^{-1}$ satisfies the following (non-composite!) linear homogenous iterative functional equation

$$\phi(xG(x)) = G(x)\phi(x).$$

Since the theory such equations is well-known (cf. M. Kuczma [3] and M. Kuczma, B. Choczewski, R. Ger [4]), we are mainly interested in noninvertible solution of the considered equation.

Let us mention that in the case when $G(u)=u^2$ equation (1) appears in a division model of population (cf. [1]).

¹⁹⁹¹ Mathematics Subject Classification: Primary 39B12.

2. Main result

Our aim is to prove the following

Theorem. Suppose that $G:(0,\infty) \to (0,\infty)$ is continuous, strictly increasing, and there exists a $\gamma > 0$ such that $G(\gamma) = 1$. A continuous function $f:(0,\infty) \to (0,\infty)$ satisfies the functional equation

(2)
$$f(xG(f(x))) = f(x)G(f(x)), x > 0.$$

if, and only if, there exist a, $b \in [0,+\infty]$, $a \le b$, and $a \ne b$ if a = 0 or $b = \infty$, such that

(3)
$$f(x) = \begin{cases} \frac{\tau}{a}x & 0 < x \le a \\ \gamma & a < x < b \\ \frac{\tau}{b}x & x \ge b. \end{cases}$$

Proof. Define the functions $M, D: (0, \infty) \longrightarrow (0, \infty)$ by

(4)
$$M(x) := xG(f(x)), D(x) := \frac{f(x)}{x}, x > 0.$$

We can write equation (1) in the form

(5)
$$D(M(x)) = D(x), x > 0.$$

If $M(x_1)=M(x_2)$ for some $x_1,x_2>0$, then, by (5), we get $D(x_1)=D(x_2)$, and, consequently, $D(x_1)M(x_1)=D(x_2)M(x_2)$. In view of the definitions of M and D it means that $f(x_1)G(f(x_1))=f(x_2)G(f(x_2))$. Since the function xG(x) is strictly increasing, it follows that $f(x_1)=f(x_2)$. Now the equality $D(x_1)=D(x_2)$ implies that $x_1=x_2$. Thus M is one-to-one, and, by the continuity of G, M is strictly monotonic.

Suppose first that M is strictly increasing and put

$$Fix(M) := \{x > 0 : M(x) = x\}.$$

It is easy to see that

$$Fix(M)=\{x>0: f(x)=\gamma\}.$$

We shall prove that Fix(M) is a nonempty, closed subinterval of $(0, \infty)$. For an indirect argument first suppose that $Fix(M) = \emptyset$. The continuity of M implies that either M(x) < x, (x > 0), or M(x) > x, (x > 0). Hence, by definition (4) of M, either

or

Since $G(\gamma) = 1$, by the monotonicity of G, we infer that either

$$(6) f(x) < \gamma, x > 0;$$

(7)
$$f(x) > \gamma, \quad x > 0.$$

On the other hand, the continuity of M and D, the monotonicity of M, and equation (5), imply that

$$D((0, \infty)) = D([M(1), 1]).$$

Hence, setting

$$c := \inf D([M(1), 1]), \quad C := \sup D([M(1), 1]),$$

we obtain the inequality $0 < c < D(x) < C < \infty$ for all x > 0 i.e.

$$0 < cx \le f(x) \le Cx < \infty$$
, $x > 0$.

which contradicts (6), as well as (7). This proves that $Fix(M) \neq \emptyset$.

To show that Fix(M) is an interval, for an indirect proof, suppose that there exists an interval [c,d], c < d, such that $c,d \in Fix(M)$, and $(c,d) \cap Fix(M) = \emptyset$. Consequently, either M(x) < x for all $x \in (c,d)$, or M(x) > x for all $x \in (c,d)$. In the first case we would have

$$\lim_{n \to \infty} M^n(x) = c, \quad x \in [c, d).$$

From equation (5), by induction, for every integer n, we get

$$D(x) = D(M^{n}(x)), x > 0.$$

The continuity of D implies

$$D(x) = \lim_{n \to \infty} D(M^n(x)) = D(c), \quad x \in [c, d).$$

Hence, again by the continuity of D, we get D(c) = D(d), i.e. that

$$f(c)d = f(d)c$$
.

On the other hand we have M(c) = c and M(d) = d, which means that

$$G(f(c)) = 1, \quad G(f(d)) = 1.$$

Since G is one-to-one, it follows that f(c)=f(d). Consequently c=d. This contradiction proves that Fix(M) is an interval. If M(x)>x we argue in the same way.

Put

$$a := \inf Fix(M), \quad b := \sup Fix(M).$$

According to what we have proved,

$$0 \le a < +\infty$$
, $0 < b \le +\infty$.

Since M is continuous we have

$$Fix(M) = [a, b] \cap (0, \infty).$$

Hence

(8)
$$f(x) = \gamma$$
, $x \in [a, b] \cap (0, +\infty)$.

If $b<+\infty$ then we have either M(x)< x for all x>b, or M(x)>x for all x>b. Suppose that M(x)< x for all x>b. Then, for a fixed x>b,

$$\lim_{n\to\infty} M^n(x) = b.$$

Hence, by (5) and the continuity of D,

$$D(x) = \lim_{n \to \infty} D(M^{n}(x)) = D(b), \quad x > b.$$

Suppose that M(x) > x for all x > b. Then, for a fixed x > b,

$$\lim_{} M^{-n}(x) = b$$

and, for the same reason,

$$D(x) = \lim_{n \to \infty} D(M^{-n}(x)) = D(b), \quad x > b.$$

Now the definition of D and the relation $b \in Fix(M)$ imply

$$f(x) = b^{-1}f(b)x = b^{-1}(\gamma)x, \quad x > b.$$

If a > 0, we show in the same way that

$$f(x) = a^{-1}f(a)x = a^{-1}\left(\gamma\right)x, \quad \ 0 < x < a.$$

Thus, if $0 < a \le b < +\infty$ then we arrive at formula (3) for f. If a = 0 and $b = \infty$ obviously $f(x) = \gamma$, $x \in (0, \infty)$, in accordance with (3), too.

On the other hand, it is easy to verify that the functions given by this formula satisfy equation (1).

Now suppose that M is strictly decreasing. Then, by the definition of M, the function $G \circ f$ is also strictly decreasing. Because G is strictly increasing, so f is strictly decreasing. This is a contradiction because the function $f \circ M$, the left-hand side of equation (1), is strictly increasing, and the function $f \cdot (G \circ f)$, the right-hand side of equation (1), is strictly decreasing.

This completes the proof.

Remark 1. The assumption that the function G is strictly increasing is essential. It is a consequence of point 2^o and 3^o of Theorem 1 in [2] where $G(u) = u^{-2}$ or $G(u) = u^{-1}$, u > 0.

In the case when $G(u) = u^{-2}$, besides functions given by (3), for every continuous function $f_1: [1, \infty) \to [1, \infty)$ such that $f_1(1) = 1$, and

$$x \to \frac{f_1(x)}{x}$$
 is increasing on $[1, \infty)$,

there exists a unique continuous solution f of equation (1) such that f(x) = $f_1(x)$ for all x > 1: moreover, the function f is an increasing homeomorphic mapping of (0, oc) onto itself.

In the case when $G(u) = u^{-1}$, a continuous $f: (0, \infty) \to (0, \infty)$ satisfies (1) if, and only if, there are $a, b \in [0, \infty)$, a < b, and $a \neq b$ if a = 0 or $b = \infty$; and continuous functions $f_a : (0, a] \to (0, \infty), f_b : [b, \infty) \to (0, \infty)$ satisfying the conditions

$$\frac{x}{b} \le f_a(x) \le \frac{x}{a}, \quad x \in (0, a]; \quad \frac{x}{b} \le f_b(x) \le \frac{x}{a}, \quad x \in (b, \infty];$$
$$\lim_{x \to a^-} f_a(x) = 1 = \lim_{x \to b^+} f_b(x)$$

such that

$$f(x) = \begin{cases} f_a(x) & 0 \le x < a \\ 1 & a \le x \le b \\ f_b(x) & x > b. \end{cases}$$

Thus, these two cases show that if the function G is not increasing. besides (3), some other type of solutions may appear.

Remark 2. If G is constant, say $G = c, c \in (0, \infty)$, then equation (2) becomes f(cx) = cf(x), $x \in (0, \infty)$, and the continuous solution of this equation depends on an arbitrary function (cf. M. Kuczma [3]). Thus the strict monotonicity of G in the theorem is indispensable.

Remark 3. The assumption that $1 \in G((0, \infty))$ is also essential. It is easily seen from equation (2) that if $1 \notin G(0, \infty)$ then there is not a constant solution.

References

- [1] J. Dhombres, Some Aspects of Functional Equations, Department of Math., Chulalongkorn University, Bangkok, 1979.
- [2] P. Kahlig, A. Matkowska, J. Matkowski, On a class of composite functional equation in a single variable, Aequationes Math. 52(1996), 260-283.
- [3] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat., Vol. 46, Polish Scientific Publishers, Warsaw, 1968.
- [4] M. Kuczma, B. Choczewski, R. Ger. Iterative Functional Equations, Encyclopedia of Math. and its Applications, Vol. 32, Cambridge University Press, Cambridge - New York - Port Chester - Melbourne - Sydney, 1990.

Janusz Matkowski

INSTITUTE OF MATHEMATICS

UNIVERSITY OF ZIELONA GÓRA

65-246 ZIELOWA GÓRA, POLAND

and

INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY

Bankowa 14

40-007 KATOWICE, POLAND

E-mail: J.Matkowski@im.uz.zgora.pl

Jolanta Okrzesik DEPARTMENT

DEPARTMENT OF MATHEMATICS

A.T.H. BIELSKO-BIAŁA

Willowa 2 43-309 BIELSKO-BIAŁA, POLAND

E-mail: jokrzesik@ath.bielsko.pl

Received November 14, 2001.