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A solution of a problem of Z. Daréczy
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Abstract. Under some regularity assumptions, a problem of Z. Daréczy on
mixed quasi-arithmetic means is solved.

1. Introduction

In 1999, Z. Daréczy (3] posed a problem to determine the class of “mixing-
arithmetic means” which are quasi-arithmetic. In this paper we solve this problem,
under some regularity assumptions of the generators of these means.

In Section 2 we introduce necessary definitions to formulate the problem and
recall Aczél’s theorem on bisymetry functional equation which is applied in the
proof of the main result. In Section 3, assuming that the generators of the occurring
means are of the class C2, we prove that the “mixing-arithmetic mean” is quasi-
arithmetic if, and only if, it is the arithmetic mean. In the proof, unexpectedly, a
Stolarsky mean E_, _3, related to Cauchy’s mean-value theorem, appears.

2. Some definitions and Aczél’s theorem
Let I C R be an open interval. A function M:J x I — I is called a mean if

min(z,y) < M(z,y) < max(z,y), zyel.
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A mean M is called strict if for all @,y € I, « # y, these inequalitics are sharp.
A mean M is called symmetric if for all x,y € I, M(z,y) = M(y,z). A mean
M:(0,00)2 — (0, 00) is called homogeneous if

Mita,ty) =tM(z,y),  ta,y>0.

By CM(I) denote the set of all continuous and strictly monotonic functions
@:1 — R. Recall that a mean M: I x I — I is called quasi-arithmetic if there exists
a function ¢ € CM(I) such that M = M¥l, where

o z) + 9(y
M¥(z,y) = ¢ 1(%) BT
Following Z. Daréczy, a mean M: Ix I — I is called mizing-arithmetic if there
exists a function ¥ € CM(I) such that

My(z,y) =¢7! (M+L—Wﬂ) zyel

In the proof of the main result we need the following (cf. [1] or J. Aczél and
J. Dhombres [2], Theorem 1, p. 287-288).

Theorem 1. (J. Aczél). Let I C R be an interval. Suppose that M:I x I — I is
a symmetric and continuous mean which is strictly increasing with respect to each
variable. Then M is quasi-arithmetic if, and only if, M satisfies the bisymmiry
functional equation

M (M(z,y), M(z,w)) = M (M(z, z), M(y,w)), z,y,z,w€ L.

3. Main result
In this paper we prove the following
Theorem 2. Let @, € CM(I) be twice continvously differentiable. Then
My = M¥
if, and only if,
o) =az+b,  Y@)=cz+d, zel,

for some a,b,c,d €R, a#0#c.
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Proof. Suppose that M1¥) = My, i.. that

= (w(ﬂ;—w(y)) . (¢(z)+w(y3)+w<%> R
Setting
f=pou, v J=w(),
we hence get
(1) 3MU(z,y) = MYz, y) +2+y, zyeJ
that is,
o) 3t (f(ﬂ;f(y)) g (g(r);ry(y)) Loy, BGET

Assume additionally that
3) ¢@) A0#Y (@), =zel

Now the assumptions of ¢ and v imply that f and g are twice continuously dif-
ferentiable in J. Differentiating both sides of this equation with respect to = we
obtain
£(z) J(x)
f) oo dl o SN L ye
Ty ~ 7 (MEwy) o Ve

Similarly, differentiating both sides with respect to y, we obtain

') 9'(y) 2,

_ = + Ly € J.
7 (MU (z,y) g (MU)(z,)) e
Subtracting these two equations we get
1) — F ) — o
f'@) - f'y) _ d@) -9 W) wed

3= )
7 (MU(z,y)) ~ ¢ (MF(z,9))
which implies that
L@ -1 g'(z)=g'(v)
Ll =

smzm, zyez#y.
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Letting here y — z we get

f@) _ @
e =@ TS

and, consequently, there is a constant k € R, k # 0, such that
g =k
Hence, applying (4), we obtain

f'(z) [/ ()P

SO - FOEEE Ty e
which implies that
f (M"'(I,y)) = /=) zy€d.

73°
3__I'@ o
eE)

Suppose that there is an zg € J such that f”(zo) # 0. Since f” is continuous,
there is a subinterval K of the interval J such that f” is strictly monotonic in K.
As MU is a mean, we have M19/(K, K) = K and, consequently,

f'(z)
el 73
&
(3[’(A1Ill(z.y) = 2)

Hence, making use of the relations (1) or (2), we get

M) (z,y) = () . myek

f'(z)
e 1/3
(3 FmEy) T 2)

which can written in the equivalent form

, L @RS (MY,y))
[ (5M@ ) - =) RETTm o e R LR S

3MU(z,y) = () +z4y,  ayek,
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The symmetry of the left-hand side of this equation implies that

O R RS e v = A
From the last two equations we obtain
F@Ff MEy) _ (Pl M@y e
3f/(x) —2f (MU(z.y))  3f'(y) - 2f' (MU(=,y))
or. equivalently,
@) @) nyek.

37/() - 2f (MUI(z,y)) ~ 3F() - 2f (MU(z,9))’
Hence. after simple calculations, we obtain

e N @IOI@ G
7 (M9) = rers e VK

Putting
hi=fof,
and making use of the definition of the mean M, we hence get
z+y) _ _ 3h(x)h(y) [h(z) + h(y)]
H(5Y) = R rah TR Y0

Since h is continuous and strictly monotonic in f(K), we can write this functional
equation in the form
A (Iz"(.r)+h“(y)) 3zy(z +y)

2

Sty 9)? @,y € f'(K).

o

The left-hand side is a quasi-arithmetic mean with a generator h~!. The right-hand
side
3zy(z +y)
M(z,y) = g —s, 2y (K
(2,9) e 2y + y € f'(K),
i also a mean. However it is not quasi-arithmetic. In fact, if M were quasi-
hmetic, then, according to theorem of Aczél, we would have

M (M(z,y), M(z,w)) = M (M(z, z), M(y, )
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for all 2.y, z.w € f'(K) and, as M is real analytic in (0, 0)2, this relation would
hold true for all positive z,y, z, w. Since

M (M(1,2), M(3,4) # M (M(1,3), M(2,4)),
the mean M is not quasi-arithmetic. Thus relation (5) is false and, consequently,
f"z)=0, zeld

Hence
fz)=az+B, z€l,
for some a, 3 € R, a # 0. Setting this function into (2) we infer that

a(r)+ﬂ(y)) _T+y
2 2

z,y€J,

and, consequently,
g(z) =d'z+ 4, zel
for some o, 8 € R, o’ # 0. Now the definitions of the functions f and g imply
that
¢(z)=ar+b, Y)=cx+d zel,

for some a,b,c,d € R, a # 0 # c.

Till now we have additionally assumed condition (3). According to the as-
sumptions of the theorem the set

Z:={zel:¢(x)=0or¢(z) =0}
is closed and its interior is empty. Thus
nz=JI,
s€S

where {I : s € S} is a family of open disjoints intervals for some at most countable
set S. According to what has already been proved, the functions ¢ and ¥ are affine

on each of the interval I, i.e.

¢(x) = asx + b, P(z) = sz + ds, zel,
for some ay, by, ¢s, ds € R, as # 0 # c;. Now the differentiability of the functions ¢
and ¥ implies that there are a,b,¢,d € R, a # 0 # ¢, such that
as=a, by=b ¢ =c¢ di=c,
and, consequently, the set Z must be empty. This completes the proof of the “only
if” part of our theorem. Since the converse implication is obvious, the proof is

completed.
]
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Corollary 1. Let ¢,1: € CM(I) be twice continuously differentiable. Then
105 if and only if. M, = A = MU¥), where A denotes the arithmetic mean in 12

connection with relation (5) let us note

Remark 1. The function M: (0, 20)% — (0,00),
3ay(z +y)

2a? +zy +y)?’

E Ma,y): 2.y >0,

appeared in proof of the theorem, is a homogencous mean. It is not

how that the power mean

P4 yp\ 1P
()7 awso

log2

P loga—log3

est to M of all the homogencous quasi-arithmetic means.

Remark 2. Mean (6) is related to Cauchy mean-value theorem. In fact, applying

z—a7? z—a73 (z>0),

S every fixed @,y > 0, o # y, there exists an M(z,y), min{z,y} < M(z,y) <
=x{x.y}. such that

2y
=3M@y),

3zy(z +y)

2(z2 +ay +y)?2’ TEY.
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