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An invariance of the geometric mean with respect to Stolarsky mean-type
mappings

J. Biasifiska-Lesk, D. Gtazowska, J. Matkowski

ABSTRACT. W detomine allpairs o Solrsky meass (Er Ein) such that G © (Ers, Eir) = Gy where
G = Eqis type mappiog (Ers, Exm ) to the
mapping (G, G) is considred. An application o fnetioralequation s given.

1. Introduction
A well-known identity

G(y) = G y),Hx ), %y >0

written shortly as G = G o (4,H), where G, 4, H stand, respectively, for two variable geomelic,
i s Bachonls meats, st AinGs o 0 3 1 rvariante oF s genmenit e
with respect to the mean type mapping (4, H).

Recently this identity, together with the convergence of the sequence of iterates of the mapping
(4,H) 10 (G, G), appeared to be helpful in solving a problem (cf. [4]) posed by H. Haruki and Th.
M. Rassias [2].

The purpose of this paper is to determine all pars (£, Ex) of Stolarsky means with respect to
which G is invarian

G o (ErpErm) = G. [0)

One of the consequences of the invariance is the convergence of the sequence of iterates of the
mapping (£, Ex) satisfying this equation to the mean-type mapping (G, G) (¢f.[3]).
Section 2 is devoted o some basic definitions and auxiliary results.
In seetion 3 we prove the main result which says that G is (E., Ex» )-invariant if, and onl
ane of the following condions occurs

s#0andk=-r;
#0,r + s,k + mand eitherr = ~sand k = —m, ork = —rand m =

Moreover, G is a unique continuous mean which is invariant with respect to each pairs of these
means.

Forr=2,5 = land k= ~1,r = -2 we getthe identity G = G o (4, H).

In section 4 we apply these results to find a general continuous solution of the functional equation
of the form

Flx,y) = FM(x, y),N(x, ),
2000 lassiication. Pri 60, Secondary 39B12, 26A1
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where M, N are some means. A special case of this functional equation appears in a problem posed
by H. Haruki and Th. M. Rassias [2].

2. Some definitions and auxiliary results

Let/ < R be an interval. A function M : 2 — R is said to be a mean on 12 if
min(x,y) < M(x,y) < max(x,y), xyel

If moreover for allx, y € I, x # , these inequalities are sharp, the mean M s called strict, and M is
called symmetric, if for all x, y € I, M(x,y) = M(y,%).
Note that if M : 2 - R is a mean, then M is reflexive, that is, M(x,x) = x forall x & Iand,
consequently, for every interval J < I we have M(J?) = J; in particular, M(1*) = L.
Amean M : (0,%0)? — (0,) is called homogeneous if
M(tx,ty) = tM(x, ), t,x,y > 0.

Let M,N : I I be means. A mean K : > — Iis called invariant with respect 1o the mean-
type mapping (MN) : P — I, shortly, (M, N)-invariant, if

KM(x.y),N(x.p)) = Kxy),  xyel
Let us quote the following

THEOREM 1 (¢f. [3]). Let aninterval I < R.If (M,N) : I> ~ I is a continuous mean-type

mapping such that at most one of the coordinate means M and N is not strict, then:
© there is a continuous mean K : I> - I such that the sequence of iterates (M,N)")=, of the

mappmg (M N) comverges (poiniwise) o a continuous mean-type magping (K,K) : I — B

20 K is (M,N)-invariant;

3%a mlumuous (M, N)-invariant mean- rype mapping is unique;

4% if Mand N are strict means then so is

59 if 1= (0,%0) and M,N are homogeneous, then K is homogeneous.

Throughout this paper we assume that .. = (0,). Let us take arbitrary s & R. Recall thata
function £, : R, x R, — R, is said to be a Stolarsky mean on R? if

LZE)T resre0

(Efm"{‘m)* 5%0,r=0

Eus) =3 (525)".  re0s=0
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forallx,y € R, andx # y; ifx = ythen E,(x,y) = x forallr,s € Randx € R,.
In the sequel we denote Eoo by G.

REMARK 1. For everyx,y € Ry, the function R* 3 (r, s) - Eys(x, y) is continuous
( Stolarsky [4] ).

REMARK 2. Noe that Erg = Eos if r = s.
3. Main results

We begin this section with a result of a negative character.

PROPOSITION 1. Let r, k,€ R\{0}. A geometric mean G is not (Eys, Exm)-invariant if one of
the. fallowmg conditions holds true
#0,m=0andr=5+0;
2. k#0,m=0,rs#0andr+s;
3. k#0,m=0 andr=s%0.

PROOF. Part 1. Suppose, for an indirect proof; that there exist r, k € R, 7k # 0, such that (1)
holds true with s = rand m = 0, that i that

eﬁ(%)ﬁ(wﬁ_%)%a% xy>0, x%y.

Setting here y = 1 we get

e+ xFT B +
H ( v ) x x>0, x# 1L @)
'his equation can be written in the form

~Ledn(2zl) -

77 Inx, x>0, x=1.

Differentiation of both sides gives

Etlnr=xt sl _ refinyex el
kGF—1)Inx w1y A0 % L

Defining fi : Ry — R, g¢ : R, — Rand b, : R, — Ruby
filx) = kelnx -zt £ 1, x>0, x# 1,

gi(x) = k(= 1)lnx, x>0, x#1,

he(x) = (= 1), x>0, x=*1,

we can write this equation in the form



Blasifiska-Lesk, Glazowska and Matkowski 45

x) _ SO
%sﬁ%, x50, x# L.
Differentiation of both sides gives

[0)20) @) _ [ 0)helx) L)
8 5] &

i(x)

forallx > 0,x # 1, where
filx) = Px*inx,

2hx) = kx* (kinx+ 1) - &,

Hiw) = 2rxt (= 1).
Letting x — 1 in this equation, we obtain

T o

Taking the fourth derivatives of both sides of equation (2), leads to the equation
) f(x)
(g‘(x)) (&h,(x)) x>0, x% L

s 1

(A)‘” _ BPm-figl - 30d+figh) | Sharglel +6(ei)’ (i gu—figi)
& @) (@0 '

Since

interchanging here the roles of f; and f as well as g and i, we obtain the formula for (£) .
Applying these formulas, and letting x — 1 in this equation, we get

_ k=20

=r(r?-10). “)
Now, from (3) and (4) we infer that rk = 0, which contradicts to the assumption that r,k € R\{0}.
Part2. Suppose, that there exist 7, 5,k & R\{0}, 7 # s, such that (1) holds with m = 0 that is
that
By TE[ oy +
2T [ ] = wr>0 5o
Setting here y = 1 we get
ra=t *(%L)*”, x>0, x# 1.
Defining fi; : R, — R, g¢ : R, — R by

ful) = (35=L

x>0, x#1,
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a0 = (220), >0 21,
we can write this equation in the equivalent form
fol®) =xgi(), x>0, x# 1L ©
Calculating the second derivatives of both sides we get
fra) = 2g4(x) +xgL(x), x>0,x# 1,

‘where

= )‘E!-T‘x’*-‘gr+.y)-—sx‘~rx’

SY -1 =1y

Fi) = 55y

hlnx=(F=1) ok
) = Ty (=)

Letting here x - 1 we obtain
ktres=0. ©)
Similarly, since
) =4gP @) +xgP(x), x>0, x= 1,
and
fO0) = 6g0() +xg®x), x>0, x=1,
letting x ~ 1 in these equations we obtain
—2( 41 453) 4+ 5(R2 472 4 52) £ T0(k +7 +5) = 2r5(r +5=5) = 0, @)
and
16(kS + 75 +55) = 42(=K* +14 +5%) = 1687(F +73 +57)
+4305(~K2 + 72 +57) + 15519k + 7 +5) + 861075 — 1617r5(r +5)

+84rs(r2 + 52 4 75) + 1675(r +5)(r2 +52) = 0.
Solving the system of equations (6), (7) and (8) we infer that ksr = 0. This contradiction completes
the proof in this case.

Part 3. Suppose, for an indirect argument, that there exist k,m, » € R, kr # 0, k # m such that

c.;(ﬁ)#(%%)*”y, o

Setting here y = 1 we get
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e'7(x)7"( "if—-—L) =x x>0, x= 1l
“This equation can be written in the form
(&
Calculating the second derivatives of both sides we get

mmet = 1 = Lm) — b = 12— L+ k)
(k=m) " - 1) - DT

_ =D +2m = 1) =X lnx(x" = L1 + 1))
- " =1)° |
Letting here x - 1 we obtain
ktm=6 _ _r+3
2 3
Taking the third derivatives of both sides of (9) we get
=) T ()~ ) = 82

‘where
et [3K(t — 1) + 20 - 1) 4 R + 1)
e [3keet — 1) + 264 - 1)* + R3¢ ]
-1y
G- rxInx[2(¢" = 1)2 +3rG¥ = 1) + P2 + 45"+ 1) ]
-1
_ 267 - 1) 4 3 + 1) + 26 = 1))
-1y ’
Letting here x - 1 we obtain
-%smz.

©)

(10)

an

Similarly, caleulating the fourth derivatives of both sides of (9) (we omit writing too long explicit

formulas) and letting x - 1, we get

(llo—bn)(lt+4m)—-(k5+m3) G

(12)

Solving the system of equations (10), (1) and (12) we infer that cither » = 0 and k = -, which
contradicts to the assumption that &, i, € R\{0}, or r = —m and k = m, which contradicts to the

assumption that & = . Thus the proof is completed.

Now we prove the main resul:

47
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THEOREM 2. Let k,m, 1, s € R . A geometric mean G is (Eys, Exn)-invariant if, and only if,
one of the following conditions holds

@ k=m=r=s=0;
(it) r#0 ad m=s=0;
(i) k=m#0, r=s%0 and k=-r
(W) k0, res, kem, and
either
r=-s and
or
and
or

and  m=-r.
PROOF. Taking into account Remark 2, we can divide the proof into four possible cases
depending on the form of the mean E,» in equation (1).

Casel. k=m=0.
In this case we have Ey, = G, and, consequently, cquation (1) can be written in the form

G(Ers(xy),G(x)) = G(xy), %y >0.
Hence, by the reflexivity of G, we have
GExy),G(x)) = G(Gxy),G(x1)), %y >0.
The increasing monotonicity of G, implies that
Ers(xy) = Gxy),  xy>0,

and, consequently, r = s = 0. Obviously for 7 = s = k = m = 0 equation (1) s satisfied.

Case2. k# 0,m= 0.
In view of parts 1 — 2 of Proposition 1, it is enough to consider the case when » # 0 and s = 0.
So, according to the definition of Stolarsky means, assume

(,(Tx;:{m)*(m;;-_m)txy, T

Setting here y = 1 we get

_ ;(xk‘

CGE(ER) -5 w0 e
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Definingf; : R, — R., gk : Ry — Ry by
A= (E21)%, x#1,

we can write this equation in the following form

S =xgx), x>0, x=1

&i(x) =

Hence
FE) = @) +xgix), x>0, x=1,
where

S = X(rinx—1 +l(

x(rinx)?
sy o XKz =1)+1 (4)‘—*
&ix) = (kinn) T .

Differentiation of both sides of this equation yiclds
) = 2g4x) +x, x>0, x=1,
where

(= D)(rlnx)®x +r(¥ — Dlnx = (r+ D' = 1)
(rx(" = 1)Inx)?

5=

Letting here x - 1 we get
‘Now assume that k =

7.
. Then, for x # y,

- +
Gt B0t - [ (s )
B —r)(Inx = Iny)(x" _
- (b N B L 5 L g,
which completes the proof in this case.
Case3. k=m=0.

In view of parts 1 and 3 of Proposition 1, it is enough to consider the case when r # 0. So,
according to the definition of Stolarsky means, (1) takes the form

e»e(g)’*’g-f(ﬁ)ﬁm. 5y>0 xey

Setting here y = 1 we obtain



50 Blasiriska-Lesk, Glazowska and Matkowski

)Pt () FT =k, x>0, x% 1,

or, equivalently,

Differentiating both sides we obtain
rinx x*
(]_x’—] )+xu_
Defining ; : R, — Rby
fx) =
we can write this equation in the form

[@)+Ax) =1, x>0, x= 1

(1-ghe), x>0 x=1,

Hence
H@+AE =0, x>0, x=1,
where

1y o TG+ DIy =267~ 1))
VAS) o

Letting x ~ 1 in this equation we obtain

r+k _
3 0,

and, consequently, k = —r.
On the other hand, if k = —r, then, forall x # y,

sy () B 59)) = (e’* (%)##(;—I)*”)L

er e\ ¥
= (,d—'?‘%y?%"%.?—) = [ = G(xy),
which completes the proof in this case.
Case4. k+m.
In view of parts 2 and 3 of Proposition 1, it is enough to consider the case when

k0 k=mres
According to the definition of Stolarsky means, equation (1) can be written in the following

(G222) (A52) " -0 x50 we

STy TR

Setting here y = 1 we obtain
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=x, x>0, x#1

Defining f;; : Ry — Rand gim : R, — Rby

=

Su) = (FE=L)7, xs0 we 1,

Gam(x) = ({,&%)"L‘ x>0, x 1,
this equation can be written in the form
Srs(X) = xgim(x), x>0, x# 1.
Hence
S) = Gun(®) +38im(x), x>0, x# 1,
where

X (r +5) —sx* —rx”
7509 = 5=y (5521) T

ol ) B )

nl) = ﬁ(% ¥l Xk -1)

From (13) we have

) = 28hn() +Xghn(x), x>0, x# 1
Letting here.x ~ 1 we get

k+m+r+s=0.

Letting x ~ 1 in the relation

@) =4g@lx) +xgil(x), x>0, x=1,
we get

207 +53+ B +m¥) =502 +52 K2 =m?) = T0(r + 5+ k+m)

+2km(k+m+5)+2rs(r+s-5) = 0.
Similarly, letting x — 1 in the relation
£ = 6g8hx) +xgfx), x>0, x=# 1,

gives

(13)

14)

1s)
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—16(kS +m5 475 +55) =420k 4 = —54) + 1687(K +m® +13 +5%)

H4305(K2 4+ m? = 12— 52) = 15519(k + m + 7 +5) — 161Thkm(k + m)

—1617rs(r +5) = 16[km(K +m3) + K2 (k+m) + rs(r +5°) +r252(r +5)]

—161775(r + ) — 8A[Km(K? + ko + m2) = rs(r? + s + 57)] = +8610(km — rs) = 0.
(16)
Finally, taking the cighth derivatives of both sides of equation (13) we have
90 = 8g00) +xgB@) =0, x> 0x% 1.
Letting here x — 1 we obtain

T44(E7 +m7 477 +57) + 404(K5 + 6 — 16 — 56) = 31260(kS +m% + 15 +5%)

—82085(K* +m* —r* %) + 7827120k +m® + 73 +57)

+2130030(K + m? 2) —3909420(k +m + 7 +5) = 165270(2m? ~ r2s2)
+644112[km(k + m) + rs(r +5)] - 163620[km(K* + m?) = rs(r2 +5?)]
~30420[km(k> +m?) + rs(r3 +53)] + 4260060(kn ~ rs) a7
+808[km(k + m) = rs(rt +5)] + 976(k3m? - rs%)
4Lk +m®) + Rm2 (8 +m3) + Bmd (8 +m?)]
LSS +55) + 725200 +57) + 135302 +57)]

~30000(k2m?(k + m) + r253(r + 5)] + 892[RPm>(K* + m?) = 3533 +57)] = 0.
Solving the system of equations (14), (15), (16) and (17), we infer that, either

== and k=-m,

- and m=-s,



Blasinska-Lesk, Glazowska and Matkowski 53

k=-s and m=

On the other hand:
ifr = =5 then, forallx,y > 0,x # y,

G(E55(5,9), E-mm(.)) =

= FemmE = =6,
ifk = —randm = —s then, forallx,y > 0, x #y,
=)
oy

F(EELE)T < fer = cax

and similarly if & = —s and m = —. This completes the proof.

G(Ers(x.), E-rs(x3)) =

S

REMARK 3. Calculating the derivatives of the order sixth and cighth of the functions in (13) as
well as the suitable limits to get equations (16), (17), we applied the software package
Mathematica 4.0.

From Theorem 1 and Theorem 2 we obtain the following

COROLLARY 1. Suppose that k,m, r, s € R satisfy one of the conditions (i) - (iv) of Theorem

2. Then the geomeiric mean G is the only continuous and (Ers, Exn)-invariant mean. Moreover
the sequence of terates (Ers, Exn)" of the mapping (Eqs, Exn) converges 1o the mapping (G,G) on
R

EXAMPLE 1. Consider the logarithmic mean L : (0,)? - (0,%),

_:L’ x+y
Lixy) = { hrly %
x x=y

and its conjugate mean” L* : (0,%0)? - (0,%0),

%y > 0.

Since L = Eyo, L* = E-y, in view of Corollary 1, we have
lim (L,L*)" = (G,G) pointwiscin (0,%0)%.

EXAMPLE 2. Consider the identric mean E : (0,0)? - (0,w),
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>
L&Y
Ban=4 TGN wer,
% s
and its conjugate mean” E* : (0,%0)2 » (0,e), Eyy = E and Ey = E* where

E'(xy) = %y >0.

1
K3’
Since L = Eyg, L* = E-y, applying Corollary 1, we have

lim (E,E*)" = (G,G) pointwise in (0,%)?.

EXAMPLE 3. Takingr = 2, s = 3 and k = -2, m = -3 we have

o 2
Eany) = 3ERFEE Easey) = § 2E

By Corollary 1
lim (E23,E-3)" = (G,G) pointwise in (0,)2

4. An application
H. Haruki and Th. M. Rassias [2] posed the following

PROBLEM. Is it truc that a continuous function F : (0,)? — R satisfies the functional
equation

FAEy), Hxp) = Fxy), %y >0,
if, and only if, there is a continuous function f : (0,%0) — R such that
Fxy)=fey),  xy>0?
An affirmative answer was given in [4]. Applying Corollary 1 we prove the following more general

‘THEOREM 3. Let k,m, r, s € R satisfy one of conditions (i) - (iv) of Theorem 2. Suppose that
afunction F : (0,®)* — R is continuous on the diagonal A = {(x,x) : x > 0}. Then F satisfies the
functional equation

FErs,y) Exmx,)) = Fx,y), x>0, a8)
if, and only if, there is a continuous function f : (0,0) — R such that
Fxy)=fxy),  xy>0.

PROOF. Suppose that a function F : (0,c0)? — R satisfies equation (18). By induction we
hence get

Fx,y) = F(Ers, Bkm)"®9)), - %y >0, neN.

Letting here 11 ~ o0, and making use of Corollary 1 and the continuity of F on the diagonal 4, we
obtain
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Fx,y) = FG(x y),G(%»)),  %y>0.
Putting
fw) =F(Ju,Ja), u>0,

we hence get F(x, y) = flxy) forallx, y > 0.
Since the converse implication is obvious, the proof is completed.

Forr=1,s=0andk
we obtain the following

1, m = 0 taking into account the notations introduced in Example 1,

(COROLLARY 2. Suppose that a function F : (0,%0)* — R is continuous on the diagonal
{(%,x) : x > O}. Then F satisfies the functional equation

Fxy) = FL& )L (D), %y >0,

i, and only if, there is a continuous function f : (0,) R such that F(x, y) = flxy), %,y > 0.
REMARK 4. Theorem 3 remains true if (0,0) is replaced by an arbitrary interval I < (0,0).
Applying Theorem 1 one gets the following generalization of Theorem 3.

PROPOSITION 2. Let I R be an interval, and suppose that M : I = Iis an arbitrary strict
and gt g Then
M5 P = T defined by M* (x,y) = 555 is a mean;
20 lim (M,M")" = (G,G) pointwise in I;

39 afunction F : I R which is continuous on the diagonal {(x,x) : x € I}, satisfles the

Junctional equation

Fx,y) = FM(x,y),M*(x,)),  xyel,
if, and only if, there is a continuous function f : I » R such that F(x, y) = fixy) for all x,y & I.
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